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Abstract New production processes, as Additive Manufacturing (AM), allow the
production of objects and shapes characterized by a growing complexity, especially
when compared with those normally manufactured in traditional production pro-
cesses. It is thus necessary to develop methods which can be applied to the study of
the variability of a dataset whose elements are manufactured realizations of the same
nominal model, which can carry a very high degree of complexity. In the present
work, we propose a method allowing modeling a wide variety of possibly local ge-
ometric deviations of the manufactured object with respect to the nominal model.
A way of identifying and monitoring these kind of deviations, based on Principal
Component Analysis in Hilbert spaces, is proposed as well. The proposed method
is tested on a real datased of items produced via AM.

Abstract Lo sviluppo di nuovi metodi di produzione, quali I’ Additive Manufactur-
ing (AM), rende realizzabili forme geometriche sempre pil articolate ¢ molto piul
complesse di quelle normalmente realizzate in processi produttivi pit tradizionali. Si
rende dunque necessario lo sviluppo di metodi statistici applicabili all’esplorazione
della variabilita di dataset in cui ogni osservazione ¢ una realizzazione effettiva-
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mente prodotta di un modello nominale, che pud presentare un elevato grado di
complessita. Nel presente lavoro viene proposto un metodo che consente, in linea
di principio, di modellare un insieme molto ampio di deviazioni geometriche, anche
locali, degli oggetti prodotti rispetto al modello nominale, e di rilevare successiva-
mente tali deviazioni via Analisi delle Componenti Principali in spazi di Hilbert.
Tale metodo viene altresi testato su un dataset di oggetti reali prodotti via AM.

Key words: Statistical Process Control, Object Oriented Statistics, Compositional
Data Analysis, Functional Data

1 Introduction

Additive Manufacturing processes are becoming more and more important, since
they are facing a continuous technological improvement, and they allow the realiza-
tion of a wide variety of shapes and geometries. The production of complex shapes
(e.g, objects with a complete asimmetry, or with an internal lattice structure) consti-
tutes an interesting challenge for Statistical Process Control. The necessity of ade-
quate methods, suitable to the statistical control of this kind of objects, is moreover
driven by the fact that the industrial sectors in which AM presents the greatest po-
tentialities are the aerospace and the biomedical sectors ([10]), both areas in which
the identification of production errors is foundamental.

After the manufacturing phase, data usually come as reconstructed shapes (e.g., via
tomography), in the form of a point cloud, possibly associated to a triangulated
mesh. Point clouds are a class of data whose statistical process monitoring has been
studied by several authors ([6], [7], [11], [12]). In all cited works, points in the recon-
structed point cloud were associated with their deviation from the nominal geometry
(usually a CAD model), hence producing a deviation map. However, the deviation
map generated by the distances of the points in the reconstructed point cloud is usu-
ally different from the deviation map generated by the distances of the points in
the nominal point cloud from the reconstructed object. Different information are,
in general, carried by the corresponding deviation maps, as follows from the for-
mal definition of Hausdorff distance between subsets of a metric space, which was
firstly introduced, in a completely different context, by Hausdorff in [1]. In [15] we
propose to summarize all the information content about the differences between an
object and its corresponding model using two deviation maps. These maps are then
used in a monitoring method based on a functional Principal Component Analysis
for compositional data (SFPCA, [8]), allowing to exploit this information content
completely. In this communication, performances of the method shall be showcased
on a dataset of manufactured objects, produced via Additive Manufacturing at the
Department of Mechanical Engineering at Politecnico di Milano. These objects will
be briefly introduced in the next section.
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2 Test Dataset: a motivating example

The dataset on which all the analyses are carried out consists of a sample of 16
meshes, resulting from the tomography of plastic objects produced via Additive
Manufacturing at the Department of Mechanical Engineering of Politecnico di Mi-
lano. These objects are trabecular egg-shaped shells, and they constitute a quite re-
alistic example of the geometric complexity that can be achieved by Additive Man-
ufacturing processes. We show the nominal model in Fig. 1.

Fig. 1 Nominal CAD model for the produced trabecular structures.

Among the sixteen produced items, we have objects with no evident defects (In
Control), as well as items affected by different kinds of geometrical deviations (Out
of Control). In Fig. 2 we show two realizations of defective elements, on the left
an item affected by irregularities on the geometrical structure, on the right a case in
which a struct is missing.
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Fig. 2 Different kind of geometric deviations in the manufactured objects

It is worth noting that these geometrical deviations are an example of the com-
plementariety of the two deviation maps mentioned in Section 1. Indeed, while the
local irregularities can be detected if one measures the distance of points of the
manufactured object from the nominal model, a missing struct is visible only when
considering distance of points of the nominal model from the manufactured object.

3 Methodology: a density representation of Hausdorff maps

The general problem of analyzing the differences between two meshes or point
clouds can be efficiently stated by referring to the definition of Hausdorff distance,
given below (see [2] for a deeper insight).

Definition 1. Let X,Y be two closed, bounded, non-empty subsets of a metric space
(U,d). Their Hausdorff distance is defined as

dy(X,Y) :=max < supinfd(x,y),sup inf d(x,y) (D
xex Y yey xeX
This definition implicitly introduces two maps, which are
dx :Y — R", dx(y) := infd(x,y) )
xeX
and
dy : X = IR" dy(x) := igd(’“y) 3)
y

which will be called, as already done, deviation maps. A key idea underlying the
method we propose in [15] is that both deviation maps should be analyzed to re-



Statistical control of complex geometries, with application to Additive Manufacturing 5

trieve all possible differences between a reconstructed geometry and the nominal
one. In the case of a dataset of point clouds, these maps are easily computed, since
they are represented by finite, discrete sets. From each map we estimate a density
obtained by dropping the spatial information carried by the data. These are fx and
fv, representing the PDFs of the values of dy and dy respectively (or of a monotone
transformation of these). The dataset of PDFs can be analyzed on the common sup-
port of the densities through SFPCA ([8]), which extends Functional Principal Com-
ponent Analysis ([3]) to probability density functions. The natural space in which
PCA of density functions can be coherently performed has been defined by ([4]),
and laterly studied in other works ([5], [9]). It is the space Bz(cub), defined as the
set (of equivalence classes) of positive functions with square-integrable logarithms

B*(a,b) :={f > 0s.t. logf € L*(a,b)} “)
where the equivalence relation is defined as
fi=fh = dec > 0s.t. fi=cfrae.. ®))

In B?(a,b), operations and inner product are defined as

hef=fif (6)
a®fi=f,a€R (7

_ 1 Jilx) | fa(x)
s = 5y /[ ey gy 4 ®

This space is a useful extension of the Aitchison geometry (see [13] for a com-
plete reference), in which PCA can be applied in the form of SFPCA ([8]), and it
can be practily applied relying on the centered log-ratio transformation, as in [14].
Dimensionality reduction via SFPCA allows reducing the monitoring problem to a
multivariate one based on the scores along the first K principal components. In [15],
we build a control chart scheme based on the scores vectors, which allows detecting
out of control conditions for the produced objects.

4 Results and conclusion

SFPCA, based on a geometric structure coherent with the features of probability
density functions, provides interpretation tools which are quite powerful when cou-
pled with the geometric iterpretation of the introduced deviation maps. This di-
mensional reduction technique provides a very good compromise between spatial
simplification (all spatial information is dropped) and loss of information (the func-
tional approach allow to performs data analysis directly on density functions). The
control chart scheme based on SFPCA proves to be very effective in detecting out-
of-control conditions deriving from either widespread or localized defects. Indeed,
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the method performs well also in presence of local defects affecting just a small part
of the whole point cloud, exhibiting then good detection power.
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