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Abstract: Historic buildings account for more than one-quarter of Europe’s existing building stock
and are going to be crucial in the achievement of future energy targets. Although a drastic reduction in
carbon emissions would slow climate change, an alteration in the climate is already certain. Therefore,
the impact of climate change on retrofitted historic buildings should be considered in terms of
occupants’ comfort, heritage conservation, and energy performance. Inappropriate interventions
might weaken the potential of traditional climate adaptive solutions, such as thermal mass and night
cooling, leading to higher risks of overheating in a warming climate. Similarly, retrofit solutions
will change the moisture dynamics of historic envelopes, which might lead to moisture damages
when combined with more extreme precipitation events. This paper reviews recent literature that
provides evidence of climate change’s impact on retrofitted buildings, reveals potential future risks,
and thereby sheds light on new factors influencing the decision-making process in the retrofit of
historic buildings.

Keywords: historic buildings; energy retrofit; climate change; internal climate; overheating;
moisture risks

1. Introduction

The severity and the impact of climate change have been rigorously assessed in scientific literature.
According to IPCC’s (Intergovernmental Panel on Climate Change) Fifth Assessment report [1], the
increase of global surface temperature by the end of the 21st century is expected to exceed 2.6–4.8
◦C compared to 1986–2005 in the most pessimistic scenario. Together with this temperature increase,
extreme climate events are expected to occur more frequently. For instance, the length, frequency, and
intensity of heatwaves might increase in large parts of Europe, Asia, and Australia. It is also likely
that “extreme precipitation events will become more intense and frequent in many regions” [1]. The
EEA (European Environment Agency) also confirmed this tendency [2]. However, the changes among
different regions will not be uniform. Heavy precipitations are likely to become more frequent in most
parts of Europe, especially in Scandinavia and Eastern Europe in winter.

Climate change is an increasing challenge for the conservation of the built heritage. It could
lead to accelerated degradation or loss of cultural heritage [3], due to continuous degradation or
destructive climatic events. Weather- and climate-related natural hazards, such as river/coastal floods,
landslides, wildfires, etc., could cause catastrophic loss of historic buildings. Buildings exposed to
natural hazards attract much attention because of the immediacy of the losses. On the other hand,
cumulative degradation risks are increasing due to climate change. For instance, the temperature
increase in winters could lead to a higher prevalence of insect pests and fungal attack, warping of
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timber elements, staining, and discoloration of masonry [4]. In this regard, cumulative degradation-risk
assessment and adaptation are necessary to ensure buildings’ resilience to new climate conditions.

Since the change of the century, several European projects studied the impact of climate change
on historic buildings. For instance, the European project NOAH’S ARK [5] defined the meteorological
parameters that are critical to the built heritage and developed a vulnerability atlas and a guideline
to prepare structure and materials for future risks. On this basis, the CLIMATE FOR CULTURE
project [6] enhanced the risk prediction method with high-resolution climate models and whole
building simulation for specific regions. NANOMATCH [7] aimed at producing nanostructured
materials for historic materials under the climate change context, and PARNASSUS [8] focused on the
impact of future flooding and wind-driven rain on historic buildings due to climate change and the
validation of adaptation measures. Nowadays, researchers from the ADAPT NORTHERN HERITAGE
project [9] are working on the identification of possible adaptation activities for heritage sites in the
Northern Periphery and Arctic. These projects confirmed the relevance of investigating the impact of
climate change on historic buildings. The studies looked into the consequences of higher temperatures,
shifting precipitation patterns, higher flooding risks, and rising sea levels, which will influence heritage
conservation, energy performance, and retrofit decisions. However, all these studies considered historic
buildings in their original state, that is, before any energy improvement intervention.

To limit climate change and guarantee energy security, increasing attention is paid to the
energy retrofit of historic buildings. In fact, the construction sector contributes 18.4% of total global
anthropogenic GHG (greenhouse gas) emissions [1]. Historic buildings constitute a considerable share
of building stocks in Europe since more than 14% of existing buildings were built before 1919, 12% were
built between 1919 and 1945 [10], and around 40% were made before 1960 [11]. Residential buildings
constitute 22.7% of the buildings built before 1945, and the share of residential buildings built between
1945–1969 is 26.2% [12]. Most of these historic buildings have not undergone any energy retrofit. The
average U-value of walls in residential buildings built before 1945 is 1.45 W/m2K, and 1.39 W/m2K
for the walls in residential buildings built between 1945–1969 [13]. As a result, the average energy
consumption in historic buildings is considerably higher than in modern buildings [11]. It is estimated
that the renovation of European dwelling stock built before 1945 could save up to 180 Mt of CO2 per
year afterward [10] and improve the thermal comfort of occupants.

Carbon emission and sustainability targets call for more efficient buildings. This implies
demolishing and reconstructing new buildings or implementing retrofit solutions in the existing
stock. In the debate of “demolish” vs. “retrofit”, the environmental benefits of retrofitting historic
buildings have been proved using an LCA (Life Cycle Assessment) approach. From a sustainability
point of view, existing buildings already embody the energy used in the construction process, including
resource extraction, transportation to the plant, and manufacture of construction materials. [14]. The
embodied energy of the construction process could amount to up to 30% of the whole life cycle energy
consumption [15]. With demolition, the embodied energy would be discarded. Therefore, preserving
historic buildings is in itself sustainable, not to mention that historic, cultural and aesthetic values
protected. It is important to highlight that, in the case of historic buildings, preservation principles
should be as important as energy efficiency and emission targets [16].

Despite the environmental benefits and urgency, the renovation rate of historic buildings is still
very low. In Europe, the average total rate of energy renovations which achieve more than a 3% primary
energy saving in residential buildings was only 5.2% during 2012–2016 [17]. In the renovation building
stock, the share of buildings renovated to nearly zero energy building standard was 17.5% in 2016 [17].
One of the barriers to climate change mitigation in the built heritage sector is the compatibility of retrofit
solutions with the historic fabric [18]. Retrofit interventions can change the building’s performance
substantially, from indoor climate to the envelope’s moisture dynamics [19,20].

Although a drastic reduction in the carbon emissions would slow climate change, some alteration
in the climate is already certain, and therefore the impact of future climate should be considered when
retrofitting a historic building. Combined with a changing climate, inappropriate choices of retrofit
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solutions might further endanger building conservation and weaken the building’s performance. As
a consequence, there is a need to investigate the performance of the retrofitted historic buildings in
the context of climate change. However, there are no review studies focusing on this topic. Some
studies summarized the method and techniques used in energy retrofit of historic buildings [21,22] or
the criteria to assess and select the optimal solutions [23,24]. Some studies pay attention to specific
topics. For instance, Sofia Lidelöw et al. discussed how heritage values are analyzed and approached
in energy retrofit practices [25]. Fredrik Berga et al. reviewed research agenda and identified the key
barriers in integrating user behavior to energy retrofit [26].

This paper first defines the relevant concepts and introduces historic building-related policies
on climate change mitigation and adaptation. Then, a review of recent literature is presented,
providing evidence of the combined impacts of climate change and energy retrofit on historic buildings.
Ultimately, potential future risks are highlighted together with the future research needed. The impacts
are summarized into three aspects: energy consumption, indoor climate, and building conservation. A
systematic keyword search in scientific databases (e.g., Scopus), a common methodology for literature
review [21,27], is used in this paper to identify and analyze recent articles. A combination of terms is
possible thanks to the use of key terms (including synonyms) and Booleans like “OR” and “AND”.
The search query used was “historic building” or “built heritage” or “traditional building” or “historic
center” or “historic district” and “climate change” or “future climate” and “(energy) retrofit” or
“renovation” or “internal insulation” and “overheating” or “thermal comfort” or “thermal mass”
or “ventilation” or “passive cooling” or “energy (efficiency)” or “(wind-driven) rain” or “building
conservation” or “hygrothermal performance”.

2. Concepts and Related Policies

Historic buildings are defined in this paper in line with the scope of European standard EN
16883:2017 Conservation of cultural heritage—Guidelines for improving the energy performance of historic
buildings [28]. That is, a historic building does not necessarily have to be formally “listed” or protected;
therefore, the definition refers to any building that is worth preserving. At the same time, retrofit refers
to the modification of the existing configuration, aimed at improving the building’s conditions to an
acceptable level while minimizing energy consumption.

Mitigation and adaptation are two main policy responses to climate change. Climate change
mitigation refers to the efforts to limit global warming through cutting GHG emissions. EU-wide,
the climate-energy policy framework has been developed to mitigate climate change since the early
1990s [29]. In 2009, the “Climate and energy package” set three main targets: 20% cut in greenhouse
gas emissions (from 1990 levels), 20% of EU energy from renewables, and 20% improvement in energy
efficiency [30]. Moreover, the EU renewed its commitment to the goal of keeping global warming
below 2 ◦C above pre-industrial levels. Heads of State and Government also formally adopted the
objective to reduce emissions by 80–95% by 2050 in comparison to 1990 levels.

In the building sector, several directives are issued to improve the energy performance of both new
and existing buildings. In EPBD 2002/91/EU [31], a minimum energy performance is defined, but the
Member States are in charge of the detailed implementation. After that, EPBD Recast 2010/31/EU [32],
the standards to calculate energy performance and the compulsory energy certification, are formulated.
To fulfil the energy requirements, the directive also introduced the nearly zero-energy building (NZEB)
concept. Member States should ensure that by the end of 2020, all new buildings are NZEBs. Directive
2012/27 [33] establishes a common framework in order to ensure the achievement of the 20% headline
target on energy efficiency. To fulfill the target, Member States shall establish a long-term strategy
for mobilizing investment renovation, and public bodies’ buildings should play an exemplary role.
More specifically, 3% of the total floor area of heated and/or cooled public buildings must be renovated
annually to meet the minimum energy performance requirements. Recast 2018/844 [34] requires the
Member States to plan long-term renovation strategies and update every three years as part of the
National Energy Efficiency Action Plan. All directives state that buildings officially protected because
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of their special architectural or historical merit and buildings for worship and religious activities are
exempt from energy performance requirements [33].

According to EU Climate action, climate change adaptation means “anticipating the adverse
effects of climate change and taking appropriate action to prevent or minimize the damage they can
cause, or taking advantage of opportunities that may arise. It has been shown that well planned,
early adaptation action saves money and lives later” [35]. Compared with climate mitigation policies,
climate adaptation policies fall behind significantly. The Commission of the European Communities
set out a first framework to reduce the EU’s vulnerability to the impact of climate change in the White
Paper published in 2009 [36]. It addresses the objectives and actions to increase the resilience of several
sectors, including physical infrastructure. A key deliverable is the web-based European Climate
Adaptation Platform (Climate-ADAPT) [37]. After that, the EU adaptation strategy was launched in
2013 [38]. It fills both knowledge and action gaps and complements these efforts through the strategy
on an EU level. By creating a basis for better informed decision-making on adaptation and making key
economic and policy sectors more resilient to the effects of climate change, this strategy encourages
and supports Member States’ action on climate adaptation.

In the building sector, the EU adaptation strategy includes a Staff Working Document [39],
which provides guidance to adapt the infrastructure. It addresses the common challenges brought
by climate change and the instruments on the EU level that might need to be revised. One of the
most important instruments used to regulate infrastructure sectors are standards. Since 2014, the
European Standardization Organizations are fostering the integration of climate change adaptation in
the standardization of the construction/building sector [40].

3. Energy Performance of Historic Buildings

3.1. The Implications of Changing Energy Needs

A change in the climate will cause a change in the heating and cooling required to achieve a
comfortable indoor environment. Therefore, energy consumption will vary with the changes. There is
still a substantial lack of understanding when it comes to historic building stock. As shown in Table 1,
there is a paucity of literature on historic buildings’ energy performance in the climate change context.
Most studies investigate how historic buildings could play their role in climate change mitigation
instead of the impacts of climate change on their energy performance. Retrofit action is justified in a
climate mitigation perspective [41], the enablers and barriers for the historic building to mitigate climate
change are discussed [18,42], as well as the energy and GHG emission saving potential (Section 3.2).

Due to the increasing global temperature, heating load is decreasing in winter, while in summer,
historic buildings are facing the dilemma of increasing cooling load or uncomfortable conditions [43].
The same situation has been found in the general building stock [44,45], where the impact on the total
energy use varies with climate zones. In the USA [46], buildings in hot climates like Houston, Miami,
and San Diego will experience a net increase in primary energy needs while regions in cold or frigid
weather will have a decrease. Additionally, Li et al. [47] summarized the impact of climate change on
energy use in different climate zones around the world. In severely cold climates, energy use tends to
decrease because the heating load reduction would outweigh the modest increase in summer cooling.
In the hot summer and cold winter climate zones, the magnitude of reduction in heating and the
magnitude of increase in cooling could be comparable.

The changes in energy use highlight the need for adaptation and mitigation strategies. Since the
existing climate zones may change in the future [48], as well as heating and cooling degree days [49,50],
any new or updated regulation should consider these changes [51]. Moreover, inadequate sizing
of systems could lead to energy inefficiency or discomfort. Large variations in energy performance
due to climate change are found within and between building types as well as climate zones around
the world [52–55]. In a campus model of Michigan, the additional cooling energy use by the end of
the 21st century reaches 46% of the total power plant annual production, which is alarming for the
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utility [51]. However, in California, climate change only prompts modest increases in grid resource
capacity (electric grid configuration on 2050) [56].

3.2. Energy Retrofit and Building Performance

The impact of energy retrofit on the energy performance of historic buildings has been examined
previously, including of a wide range of retrofit interventions regarding envelope improvement and
HVAC system updates [57,58]. Overall, the positive impact of retrofit on the energy performance
encourages the promotion of retrofit in historic buildings. For instance, in a historic residential
building built in the early 1900s in Havre (USA), an energy retrofit could achieve 81% energy saving
with a payback period of 4–8 years [59]. Savings in energy consumption and carbon emissions are
a dominant criterion when assessing the effectiveness of an energy retrofit [23]. Previous studies
on energy consumption after retrofit confirm the importance (and limitations) of building energy
simulation (BES) in assessing the impact of retrofit [23]. Another review work outlined energy retrofit
impacts in different building types, and the great energy potential, between 20% and 68%, in residential
buildings is shown [21]. Beyond the energy performance, other topics related to the impact of retrofits
in historic buildings, such as the use of new analytical tools [60] or occupancy behavior [26], are
currently being investigated.

Established energy targets and the development of new energy systems urge the energy efficiency
improvement of the entire built heritage [61]. Thus, the performance of the historic building stock as
a whole, rather than at the individual building scale, is also explored. Some practical barriers, like
the lack of local plans, the lack of coordination and integration among local planning instruments,
or the lack of knowledge of the actual energy situation and intrinsic value of heritage [62,63], are
limiting the implementation of retrofit at a wider scale. Indicators like EPC (Energy Performance
Certificates), vacant ratio, and building age [64] have been used to overcome these barriers. With
a similar bottom-up method, Csoknyai et al. developed and compared seven residential building
typologies from four countries in Eastern Europe and found that the energy-saving potential achieved
with deep renovation of buildings built before 1945 ranges between 60.4% and 79.8% [65]. Most Urban
Building Energy Modelling (UBEM) relies on typical building typologies or archetypes to represent the
most frequent categories in the stock. In [66], an attempt is made to implement heritage value into the
building archetypes to improve their reliability. Alternatively, a top-down approach is used to perform
the GHG balancing of the medieval historic center of Siena (Tuscany, Italy) in [67]. The results show
that the installation of photovoltaic panels on roofs (outside the medieval district) could enable the
carbon neutrality of the historic center in about 30 years.

The aforementioned literature focused on the method, technique, assessment, or selection of
retrofit solutions according to the energy performance, while climate change as a significant influencing
factor is not considered (Table 1).

Table 1. Main literature on building energy performance. HB = Historic building specific, RB =

Retrofitted building specific, CC = Climate change considered.

No. Region/Country HB RB CC Content/Main Finding

[43] Prague, Czech
Republic Yes Yes Yes Cooling demand increases due to

climate change

[44] Adelaide, Australia No Yes Yes
Climate change shifts energy

demand, cooling becomes
dominant in the dimensioning

[45] Växjö, Sweden. No No Yes Overheating increases in climate
change scenarios
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Table 1. Cont.

No. Region/Country HB RB CC Content/Main Finding

[46] Several climate zones
in USA No No Yes

Energy use changes in different
climate zones due to climate

change

[48] Several climate zones
in China No No Yes

Changes in energy use and
climate zones due to climate

change

[59] Havre, USA Yes Yes No Strong energy and economic
justifications of retrofit

[61] Sece, Latvia Yes Yes No Novel insulation material is tested

[65] Eastern-European
countries Both Yes No

A detailed comparative analysis
of residential building stock of

Eastern-European countries

[57] Italy Yes Yes No
The same retrofit action will be

invalid when in mismatched
climate zone

[58] Seoul, Korea Yes Yes No
The effect of energy efficiency

measure packages in an office and
a museum is analyzed

4. Internal Climate of Historic Buildings: Comfort and Energy

A building’s envelope is the interface between indoor and outdoor environments. Besides thermal
conductivity, the two main interactive processes that are controlled by this interface and that influence
the indoor climate are thermal inertia and air exchange. Temperature in “free-running” buildings
is closely dependent on outside temperature because of their reliance on passive strategies [68,69].
Thermal mass, which refers to construction mass that could store heat, is a passive climate regulation
strategy commonly found in historic buildings. They are usually featured with high heat capacity
materials such as bricks, natural stone, and tiles [70]. A large body of literature has verified the thermal
inertia effect of thermal mass and its benefits for the internal thermal comfort [71–73]. Passive cooling
effects combining thermal mass and natural ventilation, especially night ventilation, could remove
excess heat to maintain a comfortable temperature during summer. For example, Gagliano et al. [74]
verified that thermal mass and ventilation in historic buildings could reduce cooling demand by 30%
in a moderate climate. Many investigations showed the principle and effect of night cooling to reduce
surface and indoor temperatures [75–78]. However, this passive cooling technique relies heavily on
buildings’ thermal mass, outdoor temperature daily swing [78], solar radiation, and, ultimately, user
behavior, as it has to be appropriately managed. For example, Gagliano et al. [79] suggested a time lag
of 12 to 14 h for the east walls of a massive historic building (Catania, Italy). Any change in the climate
and building will, therefore, affect the original passive solutions or imply more energy use to provide a
comfortable internal climate.

4.1. Global Warming and Historic Buildings

Indoor climate is the result of a complex interaction of several factors, e.g., the building geometry
and envelope, HVAC system, occupants, and external climate. Despite the complexity of indoor
climate, the direct correlation between internal and external conditions has been largely investigated
and verified. For instance, Coley et al. [80] explored the relationship between changes in internal
and external temperature. The study was based on building simulations and included the dynamic
representations of occupancy densities, solar gains, air densities, airflow, and heating systems. Despite
this complex heat flow, a direct relationship was found fitting to a linear regression with different
constants of proportionality (that is, of steepness) depending on the building types. Similarly, indoor
daily mean temperature has a linear relationship to outdoor running mean temperature [81]. This
linear relationship between internal and external temperatures could be used to estimate the buildings’
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resilience to climate change, and it has the potential to predict future indoor climate. In the study of
the relationship between indoor and outdoor humidity, it was found that indoor absolute humidity
has a strong correlation with outdoor absolute humidity all throughout the year [82]. Kramer et
al. [83] established an indoor climate prediction model for historic buildings. In this model, the indoor
temperature is an output of outdoor temperature and solar irradiation. Then, the indoor relative
humidity is calculated on the basis of the outdoor atmospheric pressure and the modeled indoor
temperature. According to these researches, the indoor climate of historic buildings is strongly related
to the outdoor climate.

The impact of climate change on the indoor environment of historic buildings has been previously
studied, and an increase in indoor temperature is found across Europe (e.g., The Netherlands and
Belgium [84], Southern England [85], Croatia [86]). The change in indoor relative humidity differs
depending on the location: it rises in the Netherlands, Belgium, and Croatia, while it shows little
changes in Southern England. The growth in temperature could cause both a rise in the degradation of
the collections and a decline in thermal comfort conditions. But these studies have focused on the
conservation of historic artifacts rather than on the thermal comfort of the occupants. Studies on future
thermal comfort are still very limited in historic buildings despite the fact that the passive cooling
effect of massive walls and ventilation could fail to compensate for a future temperature rise. With
climate change, there is a growing need for thermal mass and ventilation cooling, as different studies
have shown. For instance, in Istanbul, the time where ventilation, high thermal mass, and evaporative
cooling is needed increases from 1.4% to 5.95% [87]. In southern Spain, discomfort hours rise by more
than 35% in social multi-family buildings built in the post-war period due to climate change [88].
Similarly, a pre-1900 dwelling in London with high thermal mass and ventilation could effectively limit
the change of indoor temperature in 2005. Yet, with the external temperature increase, the average
temperature of the entire house tends to be unacceptable, showing that thermal mass and ventilation
cannot ensure a comfortable thermal condition any longer [89]. Adding more thermal mass may not
translate into significant thermal comfort improvements [90]. Instead, an adequate ventilation strategy
could make vital differences. By improving the ventilation plan, discomfort hours would be cut from
53% to 7% in 2080 in a living room of a typical 1960s building in Lisbon (Portugal) [91].

4.2. The Role of Thermal Mass and Natural Ventilation

Retrofit solutions also play a vital role in the configuration of the indoor climate. Pretelli and
Fabbri [92] introduced several concepts to describe the indoor microclimate of historic buildings at
different use phases, which emphasized the changes in indoor climate due to the retrofit interventions.
With the increase in the adoption of retrofit solutions in historic residential buildings, occupants’
thermal comfort should be carefully evaluated.

Internal insulation is a standard solution in the energy retrofit of historic buildings [93–95].
However, the addition of internal insulation may minimize the positive effect of thermal mass and
ventilation in summer. Some investigations have looked into these drawbacks. In Cirami et al.’s [96]
simulation results, the operative temperature in rooms insulated with six different retrofit solutions is
always higher than an un-retrofitted historic wall on the hottest day. However, night cooling could
still counterbalance the adverse effect in southern Italy. Similarly, it was found that internal insulation
applied to historic masonry walls leads to a temperature rise on the internal surface of up to a 3 ◦C in a
Mediterranean climate and, consequently, may cause overheating [97]. Moreover, the constant indoor
temperature before retrofit wildly fluctuates after retrofit.

In summary, previous research has already identified the potential risk of overheating in retrofitted
historic buildings. Combined with an outdoor temperature increase, overheating risk might increase
significantly in retrofitted buildings in the future. In Lee et al.’s [69] dwelling case study, overheating
occurs in future climates with four different construction typologies (including masonry) due to the
addition of insulation. In a retrofitted Victorian house in Birmingham (UK) [98], the overheating hours
could be effectively limited to 3% of the occupied hours at present with appropriate window shading
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and ventilation. In comparison, in the future, this is limited to 10% of the hours in 2050 and 22%
in 2080. Without natural ventilation or solar protection, thermal mass cannot remedy the situation.
However, the implementation of new solar protection features on historic façades is, in most cases, not
feasible due to the need for the preservation of original historic style and features. There is still a need
for further research to quantify the effect of climate change and to identify alternative retrofit solutions
that prevent overheating and achieve thermal comfort both in the present and future scenarios.

Literature on the internal climate of historic buildings mainly focused on the conservation
requirements of artifacts or the overheating problem caused by retrofit (Table 2). However, a relevant
gap should be addressed: to optimize the indoor comfort of retrofitted buildings, the impacts of climate
change and retrofit on the passive climate regulation system should be investigated.

Table 2. Main literature on internal climate. HB = Historic building specific, RB = Retrofitted building
specific, CC = Climate change considered.

No. Region/Country HB RB CC Content/Main Finding

[80] London, UK No Both Yes
The relationship between increases
in external and internal temperature

is studied.

[81] UK Yes Both No
A comparative experiment is

conducted between retrofit and
un-retrofitted historic buildings.

[83] Netherlands and
Belgium Yes No Yes

A simplified hygrothermal model to
reproducing indoor climates for
historic buildings is presented.

[88] Seville, Spain Yes No Yes A predictive model of indoor
comfort is generated.

[89] London, UK Yes No Yes The potential of overheating in
different dwellings is investigated.

[96] Italy Yes Yes No
Overheating and mold formation

induced by insulation are
investigated.

[97] Italy Yes Yes No

The optimal retrofit solutions for
three constructions are identified
according to indoor comfort and

energy saving.

[69] London, UK Yes Yes Yes
A new indicator of overheating risk

is introduced and demonstrated
using a case study of a dwelling.

[98] Birmingham, UK Yes Yes Yes
The human behavior effect on

indoor comfort in future is
investigated.

5. Moisture Dynamics in Historic Walls and Building Conservation

The hygrothermal performance of historic building materials should be assessed before any
retrofit action is implemented to ensure the compatibility of the measures proposed. D’Ayala et al. [99]
monitored temperature and relative humidity in two historic walls and concluded that historical brick
and mortar have different moisture absorption and desorption characteristics, even within the same
building. Ultimately, the moisture content (MC) of historic walls with higher surface water absorption
coefficients is more sensitive to exterior climate factors such as rain, wind, and solar radiation [100].
When high moisture conditions persist, damages like condensation, mold growth, wood decay, and
frost damage may happen. Masonries with low surface temperatures are also more vulnerable to these
moisture risks due to the increase of relative humidity. These low temperatures are especially found in
places such as thermal bridges, corners, or cold attics [101]. Wood, generally used in historic residential
buildings, is susceptible to mold growth. With suitable relative humidity and temperature, the decay
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process will start with mold growth and follow with fungal attack. Moreover, if the high moisture
content continues through winter, frost damage is likely to occur.

5.1. The Implications of Changing Precipitation Patterns

Changes in climate factors could accelerate the erosion of detailing and construction or undermine
binder and coating [4,102]. Among all climate factors, wind-driven rain (WDR) is particularly important.
It can cause both surface erosion and weaken the construction. Erkal et al. [103] summarized the
evidence of WDR erosion on historic façades and explored materials’ response to three different
diameters of raindrops. With bigger drop size, water splashes more and runs off after striking the
surface. Several research studies have shown that WDR directly affects the moisture content of historic
envelopes. Abuku et al. [104] compared the mold growth risk with and without WDR in a moderately
cold and humid climate on the inner side of a historic brick wall. The results showed a severe risk
of mold growth in summer and winter when WDR loads are considered, while there is a little risk
without WDR loads. In Johansson et al.’s [105] laboratory study, a 250 mm wall was built to represent
the real historic wall situation, and it was exposed to normal rain loads from Gothenburg (Sweden)
and Bergen (Norway). The study revealed that WDR is the dominant factor determining the moisture
movement in the wall. Furthermore, D’Ayala and Aktas [99] not only verified the adverse impact of
WDR but also inferred that more frequent rain could be even more dangerous for the historic envelope.
Nik et al. [106] simulated future moisture loads in a wooden wall and found that higher amounts
of moisture will accumulate in walls in the future. Besides WDR, moisture that diffuses across the
wall as vapor is another main source of moisture. Diffusion across the envelope is strongly related to
indoor temperature and humidity [107,108]. In practice, moisture transport due to imperfection of
the vapor barrier could increase the vapor transport significantly [109]. Moisture related risks of the
envelope are found in buildings with large rates of moisture production or lack of ventilation [110,111].
Future changes in indoor climate could change the moisture states in historic walls. Physical models
are established to facilitate the prediction and control of indoor climate in historic buildings [112–114],
which could be an ideal method for investigating the impact of climate change on historic envelopes.

Mold growth negatively affects the environmental quality of the internal climate and the durability
of the envelope. Different mold risk management approaches have been developed in buildings with
or without active thermal controls [115,116]. However, climate change will impose new challenges on
mold prevention. In the last 20 years, mold growth has been observed more frequently than before in
ventilated attics in Sweden [117]. Temperature and humidity levels will increase in cold attics in future
climate scenarios, and the risk of mold growth increases with these changes. Moreover, to retrofit
the attics with insulation could decrease the condensation risk but cannot reduce the risk of mold
growth. In the case of wooden structures, their durability depends on the moisture and temperature
conditions as well as the exposure time. The decay of the wooden beams is usually caused by damaged
downpipes, leaking roofs, and WDR [118]. With more extreme rain events in the future, the risk of
water runoff along masonries due to unsuitable drainage systems will increase, while at the same time,
inadequate retrofit solutions could further increase the relative humidity in the constructions.

5.2. Fabric Improvements and Hygrothermal Performance

Implementation of internal insulation usually changes the moisture dynamics in historic walls. In
some cases, internal insulation brings extra vapor diffusion resistance, which will impede the inward
drying of the wall [105]. This adverse effect is especially significant in the case of vapor-tight insulation
systems. Additionally, the temperature gradient across the original wall is reduced with the addition
of insulation. For instance, Odgaard et al. [119] monitored the hygrothermal performance of a historic
masonry wall (with and without diffusion-open insulation) for more than two years. They found that
the relative humidity of the insulated wall was 20–30% higher than that of the untreated wall. In
Kehl et al.’s [118] simulations, the moisture content of wooden beams and in masonry walls is always
increased when coupled with interior insulation.
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Frost damage is a mechanical weathering process caused by the water freeze–thaw cycle. Due to
the changes that retrofit interventions impose on the existing structure (e.g., the lower temperature on
the outer surface due to the application of internal insulation), frost damage is more likely to occur.
Zhou et al. [120] proposed to use the number of actual ice growth and melt cycles as an indicator for
freeze–thaw cycles. After simulations of both uninsulated and internally retrofitted brick walls, an
increase of freeze–thaw cycles is found in Switzerland after internal retrofitting. Biseniece et al. [121]
studied the thermal behavior of retrofitted historic buildings with two insulation materials and revealed
the possibility of frost damage. As mentioned above, the frequencies and intensity of precipitation in
winter may increase in many regions of Europe, which implies enhancing the risk of frost damage.

With moisture accumulation in historic envelopes, the durability of materials and thermal
efficiency of the building may be endangered. To prevent this, some historic retrofit projects adopted
capillary-active insulation systems that transport the moisture content [122,123]. However, the results
of some investigations still show skepticism about capillary-active insulation systems. Vereecken et
al. [124] compared the hygric performance of different internal insulation systems in the laboratory:
vapor open, non-capillary active system, capillary-active systems, and vapor tight systems. Their
results pointed out that, in the steady-state winter conditions, moisture captured by capillary-active
systems is higher than by the traditional vapor-tight system. X-ray projection analysis showed that
the moisture was accumulated between the glue mortar and the insulation. Klõšeiko et al. [125] also
confirmed the high humidity levels in capillary-active systems (calcium silicate, aerated concrete, and
polyurethane board with capillary-active channels), which increase the risk of mold growth.

Before a retrofit intervention, historic buildings are often sufficiently ventilated by uncontrolled
air infiltration through old windows and doors. Any energy retrofit is likely to increase the airtightness
of the envelope, which could reduce the building’s capacity to remove any excess of moisture. When
combined with inappropriate window operation by the occupant, risks of moisture damages could
increase [111].

The response of retrofitted envelopes to climate change in specific areas remains unclear. Only a
few studies have investigated historic buildings in both retrofit and future climate scenarios (Table 3).

Table 3. Main literature on moisture dynamics in historic envelopes. HB = Historic building specific,
RB = Retrofitted building specific, CC = Climate change considered, WDR = wind-driven rain.

No. Region/Country HB RB CC Content/Main Achievement

[102] Italy Yes No Yes
An integrated method to assess and

predict future degradation of historic
building is proposed.

[104] Essen, Germany Yes No No The impact of WDR on envelope’s
hygrothermal responses is studied.

[106] Sweden No No Yes The impacts of CC on WDR and walls
are investigated.

[117] Sweden Both Yes Yes
The hygrothermal performance of
ventilated attics impacted by CC is

investigated.

[118] Essen, Germany Yes Both No
The moisture state of wood beam ends
is analyzed in terms of main moisture

source and influencing factors.

[119] Denmark Yes Both No
The impact of internal insulation is

investigated by the analysis of
monitored data and risk assessment.

[120] Switzerland Yes Yes No
An index for freeze–thaw damage is

developed and the impacts of internal
insulation are studied.
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Table 3. Cont.

No. Region/Country HB RB CC Content/Main Achievement

[121] Riga, Latvia Yes Yes No
The impact of internal insulation on
freezing risk is studied by long term

monitoring.

[124] Hot/cold box No Yes No
The hygric performance of massive

walls with different insulation systems
are compared.

[111] Basel, Switzerland No Yes No The impact of occupant behavior on
mold and condensation is assessed.

6. Conclusions

In this study, the effect of both climate change and retrofit interventions have been summarized.
A changing climate will result in increased temperature and changed rain pattern; together with
retrofit solutions, it may change the energy use, indoor climate, and moisture dynamic of historic
buildings. In regard to energy use, the positive impact of retrofit on energy performance encourages its
implementation in historic buildings as well as development of further solutions. On the other hand,
variations in energy use due to changes in the future climate highlight the need for adaptation and
mitigation strategies. In regard to the internal climate, overheating will be an increasing concern in the
future. The combined effect of internal insulation and increased outdoor temperature may increase
energy demand for cooling. In regard to moisture dynamics in the historic envelope, moisture risks
are more likely to occur due to changes in the external climate (e.g., changed precipitation pattern)
and subsequent changes in the indoor climate. Considering that retrofit interventions could reduce
the drying capacity of the walls and modify the temperature gradient, and the combined effect of a
changing climate and retrofit interventions could undermine the conservation of the historic envelopes.

Literature in four different research fields on historic buildings, directly linked to climate and
retrofit scenarios (Figure 1), is reviewed. Literature on general building stock is added if the literature
specific to historic buildings is too scarce. The results show that the impacts of climate and retrofit on
performance can be summarized into three main aspects: energy use, indoor comfort, and moisture
dynamics in the envelopes. Therefore, it is necessary to establish a multi-criteria approach for the
selection of retrofit interventions. The study of the combined impacts is still very limited (Field-iv in
Figure 1). To close this gap, historic buildings’ performance-i (current and un-retrofitted scenario) and
performance-ii (current and retrofitted scenario) should be compared to assess the impacts of current
retrofit solutions. With this knowledge, the additional impact of climate change could be assessed by
comparison of historic buildings’ performance-ii (current and retrofitted scenario) and performance-iv
(future and retrofitted scenario). Through these studies, the role of thermal mass and natural ventilation
in future scenarios and the relationship between the moisture state of a historic building, rain pattern
changes, and retrofit solutions could be further evaluated. Ultimately, deepening knowledge on these
topics will allow better informed decisions as they will provide a better understanding of future risks
to energy efficiency, occupants’ thermal comfort, and building conservation.
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