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Abstract
Induced seismicity as an effect of injection of fluids in a geological basin is a widely
observed phenomenon which is nowadays under public scrutiny. In most cases, the
numerical simulation and interpretation of these phenomena requires models with
a high degree of realism. In turn, this requires accounting for complex interactions
between the fluid and solid components, as well as a detailed description of geome-
try and a high degree of heterogeneity in the material properties. Also, issues related
to the uncertainty of parameters, to an incorrect modeling of sub-scale or multiscale
effects and to a limited knowledge of initial conditions are unavoidable and can be
detrimental to the reliability of the results. In this work, a statistical analysis including
uncertainty quantification and sensitivity analysis on variances has been applied as a
post-processing to data coming from a set of numerical simulations of a real world
setting (the Val D’Agri oilfield), with the aim of studying the stability of a fault that
is known to have experienced a good amount of microseismicity during the modeled
period. The uncertainty quantification targeted the effects of fault surface local orien-
tation and pore pressure fluctuations, as well as variability in the friction coefficient of
the fault. The analysis of variances focused on the effects of varying the permeability of
the fault damage zones (the area enveloping the faults) and the geometrical orientation
of the fault as well. Themodel shows that the zone where the microseismicity has been
measured is included in awider regionofmoderate instability,which is higher the lower
the permeability of the fault damage zone. From themodel results the fault seems to be
far from a critical state, but the analysis offers, nevertheless, some useful information
on the relationship of slip tendency with geometrical and flow quantities in the system,
and suggests some improvements in the dynamical model assumptions and settings.
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1 Introduction

The numerical modeling of geophysical systems has received a lot of interest since
the first appearance of modern computing science itself. Given the advances both in
computing power and numerical techniques, the number of possible applications of
numerical simulation has steadily risen, and many of them are relevant for common
human activities (most notably related with weather prediction, engineering and risk
assessment). Nevertheless, the modeling of such systems comes with the unavoid-
able issue of the reliability of the results, subject as they are to both model and data
limitations.

The need to assess how reliable the model results are at given conditions implies
some sort of probabilistic interpretation of the assumptions and data. Various tech-
niques have been developed over the years, and they are usually grouped under the
general terms of uncertainty quantification and sensitivity analysis. Uncertainty Quan-
tification (UQ) aims at finding the amount of uncertainty in an output given the
variability of a set of data or assumptions, while Sensitivity Analysis (SA) searches for
a quantification of both the absolute and relative importance of the various parameter
uncertainties on the results. Geophysical and environmental applied studies, with the
great amount of inherently uncertain parameter values and strongly non-linear behav-
ior, are a perfect area of application for these techniques. Uncertainty quantification
and sensitivity analysis have been extensively used to study atmosphere and ocean
(Kalra et al. 2017; Aleksankina et al. 2018), hydrology (Roy et al. 2018), nuclear
waste disposal (Saltelli and Tarantola 2002), or basin and crust studies (Maina and
Guadagnini 2018; Colombo et al. 2018; Formaggia et al. 2013).

The importance of an uncertainty evaluation is even greater when dealing with
systems subject to strong nonlinearities, extreme conditions or abrupt/ discontinuous
change of state past some threshold. This is the case for severe weather (Molini et al.
2009), climate change (Peng et al. 2002), floods (Hall and Solomatine 2008), and fault
reactivation (Vidal-Gilbert et al. 2009). The study of fault reactivation in geological
systems, among the others, meets strong interest from the scientific community, indus-
try and policy makers. Particular attention is put on cases in which reactivation can be
caused by injection of fluids into the subsurface related to human activities, such as
oil production and CO2 sequestration.

The material composing the shallower part of the earth’s crust is brittle and rock
layers contain fractures. If those fractures at some point experience tangential dis-
placements, they are called faults. Such faults, subject to tectonic forces, can either
slide at a regular speed (creeping motion) or accumulate the stresses in form of elastic
energy and suddenly release it, dissipating part of the energy locally because of fric-
tion, and transmitting the rest in form of seismic waves and slip along the fault plane
(Turcotte and Shubert 2014).

When fluid is injected through a well it causes an increase of pore pressure, which,
reducing the effective normal stress, leads to a weakening of the fault and can cause
its sliding (induced seismicity). The effect has been known since 1960s, but with the
recent increase of injection operation from industrial explorations both observation of
the phenomenon and discussions of possible hazards have since multiplied (Moeck
et al. 2009; Worum et al. 2004; Bao et al. 2014; Pereira et al. 2014; Ellsworth 2013).
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Recently, microseismicity induced by wastewater injection has been observed and
analyzed in depth, thanks to an unusually large amount of data available, from the
events occurred in Val d’Agri in early 2010s. (Stabile et al. 2014; Improta et al. 2015;
Buttinelli et al. 2016). Val d’Agri is situated in the Southern Apennines (Italy), and it
hosts the largest on-shore oilfield in Europe. It is an extensional basin characterized
by a complex fault system (Buttinelli et al. 2016).

In 2015, it included 25 oil wells with total production rates around 90 barrels/day.
The wastewater associated with oil production has been re-injected in an unproduc-
tive well (CM2) since June 2006, with maximum injection rates between 6× 104 and
8× 104 m3/month. The injection well is located between two oppositely dipping nor-
mal faults (Improta et al. 2015; Buttinelli et al. 2016) (see Fig. 1). During the injection
period, the area was subject to various measurements: a dense network managed by
INGV(Istituto Nazionale Geofisica e Vulcanologia) active until the first half of June
2006, and networked monitoring both from the ENI (Ente Nazionale Idrocarburi, an
Italian energy company) and the regular INGV network. From the analysis of seismic

Fig. 1 The model domain (on the top); The fault system (on the bottom). F1 is the one considered in the
statistical analysis
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data, in Improta et al. (2015), the authors found a strict correlation between micro-
seismicity (earthquakes with magnitude Mw ≤ 2.2) and wastewater injection rates. In
addition, the quick onset and migration of seismicity suggested a rapid propagation
of pore pressure perturbations within a high permeability damage zone (Improta et al.
2015).

In this paper, uncertainty quantification tools are adapted and applied to a numerical
study of the aforementioned case.

The paper is structured as follows: Sect. 2 describes the governing equations and
their numerical discretization, Sect. 3 lists the two main methods used in the statistical
analysis, Sect. 4 describes the result of the analysis, and Sect. 5 draws the conclusions.

2 Numerical simulation

The results subject to statistical analysis are provided by geophysical simulations run
using the software (ABAQUS 2013), a commercial finite element suite.

2.1 Governing equations

Let Ω be a three-dimensional domain containing N f embedded surfaces Γi , with
i = 1, . . . N f representing the faults. We also define Γ = ⋃N

i=1 Γi as the union of
such surfaces. Across each Γi material properties and variables can be discontinuous,
so, when necessary, we will denote with a superscript + and − its vaules on the sides of
the surface. The governing equations for the problem of poroelasticity in the presence
of faults are two conservation equations and a condition on the displacement across
Γ . The conservation of fluid mass reads:

∂m

∂t
+ ∇ · w = ρ f f , (1)

where m is the fluid mass, f is a volumetric source term, ρ f the fluid density and
w = ρ f v, with the fluid velocity v determined by the Darcy equation. Note that
the fluid mass m changes as the result of changes in porosity, i.e. due to mechanical
deformations, and, to a lesser extent, due to compressibility. We can write its time
derivative as:

∂m

∂t
= ∂(∇ · u)

∂t
ρ f + 1

M

∂ p f

∂t
, (2)

where M accounts for the compressibility of the fluid and the solid grains, the
divergence of the displacement u describes the volume change associated with the
deformation of the solid skeleton and p f is the fluid pressure. Denoting with k the
permeability tensor, with μ f the dynamic viscosity of the fluid and with g the gravi-
tational acceleration vector, the Darcy equation reads:

v = k
μ f

(∇ p f − ρ f g). (3)

123



GEM - International Journal on Geomathematics            (2020) 11:14 Page 5 of 20    14 

Throughout this work, the permeability is considered to be isotropic, so that k = kδδδ,
where δδδ is the unit tensor.

From the point of view of fluid flow the fault core, geometrically represented by Γ ,
is modeled as an interface with finite permeability κc (ABAQUS 2013). Considering
that the fault core is extremely thin and has a permeabilty several orders of magnitude
lower than its surrounding, we consider that no noticeable amount of fluid can move
tangentially inside the core itself. Thus, we neglect the flow inside the fault surfaces
Γ but allow the flow across them. This, in turn, can cause a jump in pressure between
the two sides of Γ . The fault core is surrounded by an envelope of damaged rocks of
normal permeability where the fluid can move normally. For similar reasons, denoting
with nΓ the normal to the fault and pointing towards the + side, we have that:

v+ · nΓ = v− · nΓ ,

i.e. the normal flux across the fault is continuous since we have set its storativity to
zero. Thus, we have the interface conditions for the fluid problem:

⎧
⎪⎨

⎪⎩

v+ · nΓ = − κc

μ f
(p+

f − p−
f )

v− · nΓ = − κc

μ f
(p+

f − p−
f ).

(4)

The second equation to describe a poroelastic system consists in the mechanical
equilibrium equation:

∇ · σσσ + ρbg = 0. (5)

Here, σσσ is the Cauchy total stress tensor, and ρb is the bulk density, defined as ρb =
φρ f + (1 − φ)ρs , where ρs is the density of the solid and φ is the porosity.

For a porous medium fully saturated with water, the relation between stress and
effective stress σσσ ′ is expressed by the Terzaghi effective stress principle:

σσσ ′ = σσσ − p f δδδ. (6)

If the effective stress tensor is expressed in a reference system where it becomes
diagonal, it is usually useful to figure it as an ellipsoid where the three eigenvalues
represent the semi-axes, and are numbered in decreasing order of their absolute value
as σ1, σ2, σ3 (Wangen 2019). For the experiments in question, the tectonic stress is
such that σ1 is expected to align with the vertical direction, σ2 with the y axis and σ3
with the x axis.

We recall that, in a poroelasticmedium, displacement is linked to the effective stress
according to a constitutive equation that can be written as:

σσσ ′ = CCCdr : εεε(u), (7)
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where ε is the deformation and CCCdr is the fourth order modulus tensor whose compo-
nent, for the isotropic elastic response case, are expressed as:

Cdri jkl = G(δikδ jl + δilδ jk) + (K − 2G/3)δi jδkl , (8)

where G and K are the bulk and shear modulus, and are functions of the Young
modulus E and Poisson ratio ν:

G = E

2(1 + ν)
(9)

K = E

3(1 − 2ν)
(10)

Values for these parameters as used in our model are displayed in Table 1.
If the stress tangential to the fault becomes large enough, the fault can slip. This

relative displacement is a vector d along the fault plane Γ :

d = u+ − u− on Γ (11)

with the additional requirement that d lies on the surface Γ , so that the fault can slide
without opening.

The condition for fault slip comes from Amonton’s Law, which states that the
maximum tangential stress is proportional to the effective normal stress on the surface,

τ = μΓ σ ′
n . (12)

Here, σ ′
n = (σσσ ′nΓ ) ·nΓ , with nΓ the normal to the fault surface, stands for the normal

component of the effective normal traction, τ is the shear stress modulus while the
shear traction vector can be computed as τττ = σσσnΓ − σnnΓ . μΓ is the sliding friction
coefficient, whose typical values range from 0.6 to 0.8, but can be less of 0.4 in the
presence of clayminerals (Collettini et al. 2009).We can then define the Slip Tendency
as

ST = τ

σ ′
n
. (13)

Table 1 Hydromechanical properties of the layers. Rock density ρs , Young modulus E , Poisson ratio ν,
Bulk modulus K f , porosity φ and permeability k

Layer ρs (kg/m3) E (GPa) ν K f (GPa) φ k (m2)

L1 2520 32.16 0.30 2.2 0.1 10−15

L2 2610 49.16 0.28 2.2 0.08 10−19

L3 2830 84.35 0.26 2.2 0.05 10−14

L4 2830 84.35 0.26 2.2 0.049 10−16
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If ST < μΓ no slip occurs and the stress state is stable. If not, the strength of the fault
is overcome and slip may start to propagate along the fault plane.We can thus partition
the fault surface Γ into two regions: a locked part ΓL and a slipping part ΓS . This
partitioning evolves during the simulation, i.e. a point which is initially stuck can fail
and start slipping if the tangential stress exceeds the maximum value, and conversely a
slipping point can stop sliding if the conditions change. On the locked part of the fault
we will impose a given value of the displacement jump (d), whereas on the slipping
portion we impose the limit tangential traction according to Amonton’s law.

The above equations can be combined obtaining a system for the unknowns: dis-
placement u and fluid pressure p f . The complete system thus reads:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (σσσ ′(uuu) + p f δδδ) + ρbggg = 000 in Ω

1

M

∂ p f

∂t
+ ∂εv(uuu)

∂t
− ρ f ·

(
kkk

μ f
∇ p f − ρ f ggg

)

= ρ f f in Ω

u+ − u− = d on ΓL

τ = −μΓ σ ′
n

ḋ

‖ḋ‖ on ΓS

− kkk

μ f
∇ p±

f · nΓ = κc

μ f
(p+

f − p−
f ) on Γ

(14)

where ḋ indicates the time derivative of the displacement d.
Note that the traction on ΓS depends on the effective normal pressure, the fric-

tion coefficient and its direction such that it opposes the slip velocity. Moreover, we
remark that due to the frictional contact the problem is strongly nonlinear and needs to
be solved by means of a suitable iterative method. In particular, the algorithm imple-
mented in Abaqus starts with a guess for the slip vector d, then, after the solution of the
elasticity problem compares the tangential stress with the limit value and determines
whether the point has failed, then iterates these steps pointwise until convergence.

2.2 Experimental setting and input parameters

The structure of the geophysical system (layers and faults) is deduced from published
data (Buttinelli et al. 2016) and corresponds to the part of theVal d’Agri oilfield affected
by induced seismicity. The domain is a volume of 9×12×9 km, with the top boundary
following the topographic surface (see Fig. 1). The volume is occupied by 4 layers
that differ in rock density, Young modulus, Poisson ratio, porosity and permeability.
The corresponding values are reported in Table 1. The pores are assumed to be fully
saturated with water with ρ f = 103 kg/m3.

The volume contains 5 embedded surfaces representing the faults, as shown in
Fig. 1. The faults and their proximities have properties that differ from the rest of the
medium. We distinguish between the faults’ core, represented by frictional contacts
and a low permeability (see Sec. 2.1), and the surrounding damage zone modeled by
means of an envelope of mesh elements around the contacts where it is possible to set
permeability values kd that differ from the original surrounding rock.

123



   14 Page 8 of 20 GEM - International Journal on Geomathematics            (2020) 11:14 

Table 2 Variations of
permeability of the damage zone
(kd ) and fault cores (kc)

Experiment kd (m2) κc (m2) μΓ

A1 10−13 10−19 0.6

A2 10−14 10−19 0.6

A3 10−15 10−19 0.6

μs is the sliding friction coefficient

The computational grid is a tetrahedral mesh which honors the geometry of the
faults, i.e. the faults are approximated by faces of the grid elements. In particular we
have employed a mesh of approximately 3 × 106 tetrahedra.

Themesh nodes onΓ are split, this means that the nodes along the fault surfaces are
duplicated, new node-IDs are assigned to the new nodes, and the mesh connectivity is
updated. In this way, each fault is characterized by two surfaces that are geometrically
coincident but distinct from the numerical point of view: one surface belongs to the
hanging-wall block and the second one to the foot-wall block (Vadacca et al. 2018).
The nodes on the perimeter of the fault are instead merged, as it is assumed that no
crack propagation phenomena occur.

As for the boundary conditions, atmospheric pressure is imposed at the top bound-
ary, together with a zero-flux condition on the other boundaries.

The time integration of the model has been conducted using a three stage approach,
with two sequential preparation steps and a simulation step.

1. In the first preparation step the model was subjected to gravitational loading and
to an initial uniaxial stress field.

2. In the second preparation step a velocity of ±3 mm/y has been applied in the
x direction, normal to the boundaries orthogonal to the x-axis simulating the
extensional tectonic regime active in the region.

3. In the simulation step, the injection from the well bottomwas added and the model
was run for almost 8.5 years. The injection rate is shown in Fig. 3. It approximately
reproduces the injection rate reported by Improta et al. (2015).

Three experiments have been conducted with the same methodology, varying the
permeability of the faults damage zones. The permeability ranges from the same
permeability as the surrounding host rock (setup A3, with kd = 10−15m2) to a value
2 orders of magnitude higher (A1). The data for the three experiments are listed in
Table 2. The permeability of the fault core and the friction coefficient are kept the
same for all the simulations (Vadacca et al. 2019).

3 The statistical analysis tools

In this section we present two groups of methods developed with two goals in mind:
(a) accounting for the unpredictability in the stress tensor and local errors in fault
geometry and (b) evaluating the effects of the permeability of the fault damage zone
on the stability of the fault. This is possible since the total stress is continuous across
faults and can thus be interpolated, for instance, at different fault locations. In order to
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answer to (a), a UQmethod has been chosen, where the effect of normal deviation from
the mean values is analyzed. The strategy chosen to solve (b) has been a sensitivity
analysis based on the analysis of variances.

The dynamical model, due to its sheer cost compared to the available computational
resources, was unsuitable to be run even for a moderate number of times on the same
case study. This means that the development of the statistical tools for the analysis
has focussed on the idea of applying it as post-processing to a very limited numer of
geomechanical simulations (one in the case of the uncertainty quantification, three in
the case of the sensitivity analysis) performed with reference values. At the same time,
this choice operates a selection on the parameters suitable to the analysis. Variation on
parameters as the ones shown in Table 1, for example, cannot be considered without
running the whole model many times.

The quantity of interest for these experiments is the Slip Tendency (ST) [seeEq. (13)
and Sec. 2.1]. The parameters used in our statistical analysis are: the dip (zenithal) and
strike (azimuthal) angles, the pore pressure p f , the permeability of the faults damage
zone and the uncertainty in the fault friction coefficient. More specific considerations
about the quantification and treatment of the uncertainty in relation with the various
parameters are made in Sec. 4.

3.1 The uncertainty quantificationmethod

For theUQmethod,wehave taken into account the uncertainty related to three different
quantities:

– The geometric orientation of the fault surface, that can be expressed as variations
in the zenithal (dip) and azimuthal (strike) angle of the normal to the surface.

– The effects of fluctuations in the pore pressure, which directly influence fault sta-
bility. From the phenomenological point of view, this is like assuming the presence
of small scale variations that can locally influence the outcome of the flow, whose
effects however are not strong enough to change the shape of the stress tensor.

– The uncertainty on the friction coefficientμΓ , whose value determines the strength
of the fault (Sibson 1985).

The error distributions are assumed to be normal for both angles as well as for
p f . The fluctuations included in the statistical analysis are going to be small, the ST
changes smoothly with the angles (cfr. Wangen 2019 ch. 3 ) and the variation in the
p f alone cannot change the ST pattern [i.e. the direction of the principal stresses, see
(Morris and Ferrill 2009)]. Thus, given also the relatively large number of points to be
analyzed, the normal distributions are sampled at regularly spaced intervals. Denoting
by eξ the standard deviation of a normally distributed random variable ξ with zero
mean, the interval [− 3eξ , 3eξ ] is divided into Nξ intervals of equal length δξ . A pair

of values is assigned to each interval. The first is the weight w
ξ
j of the j th interval,

defined as:

w
ξ
j = 1√

2πeξ

∫ ξ̃ j+1

ξ̃ j

exp

(
− ξ2

2e2ξ

)

dξ = Φ0,eξ (ξ̃ j+1) − Φ0,eξ (ξ̃ j ) (15)
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where ξ̃ j ,ξ̃ j+1 are the endpoints of the interval [ξ̃ j , ξ̃ j + δξ ], and Φm,eξ (ξ) is the
normal cumulative distribution function:

Φmξ ,eξ (ξ) = 1

2

[

1 + erf

(
ξ − mξ√

2eξ

)]

(16)

where mξ is the value of expectation of the random function ξ , set as 0 in Eq. (15)
because it is assumed that the mean is equal to the deterministic value.

The second is the representative value ξ j of the j th interval, chosen as the value at
which the area of the distribution curve between [ξ̃ j , ξ j ] and [ξ j , ξ̃ j+1] is the same:

Φ0,eξ (ξ j ) = 1

2

(
Φ0,eξ (ξ̃ j+1) + Φ0,eξ (ξ̃ j )

)
(17)

.
These definitions make it possible to add two additional points at the extremes

of the distribution, for the intervals [−∞,− 3e] and [3e,∞] given the values of
erf(−∞) = − 1, erf(+∞) = 1.

In our uncertainty quantification we consider the fluctuations in the pore pressure,
dip and strike angle, denoted exchanging ξ with p, d and s respectively. From the
point of view of the numerical implementation, the fault normal is computed for each
triangular element composing the fault surface. Values andweights are stored in arrays
for a normalized standard deviation, so that the real values can be obtained by a simple
rescaling.

Details on how the parameters are chosen can be found in the next Sect. (4).
Since the friction coefficient μΓ , which should be compared to the slip tendency

to assess stability, can be also affected by uncertainty, we define a new quantity called
Probability of Slip (PS),which is obtainedweighting eachST evaluationwith aweight-
ing function WμΓ (ST), so that the PS is defined as:

PS =
Nd∑

i=0

Ns∑

j=0

Np∑

k=0

wd
i ws

j w
p
k WμΓ (STi, j,k), (18)

where Nd , Ns and Np are the number of sample for the dip, strike and pore pres-
sure distributions respectively. If the Heaviside function Θ were chosen for W
(WμΓ (ST) = Θ(ST − μΓ )), then the friction coefficient would be considered as
a deterministic threshold, i.e. the contribution to the probability of slip would be zero
for each evaluation such that ST ≤ μΓ . However, if we characterize the uncertainty
of μΓ by its standard deviation eμ from the expected value we can use the cumulative
distribution function as a weighting to compute the probability of slip:

Wμ,eμ(ST) = ΦμΓ ,eμ(ST) (19)

where eμ is the standard deviation attributed to the friction coefficient μΓ .
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3.2 The sensitivity analysis

The analysis of variances is based on the seminal work of Sobol (1993). In what
follows, we will restrict the description for a 3-parameter case, which will be sufficient
for our model.

Let’s consider a random function p, which depends on a set of parameters xi , i =
1, 3 . If we consider a parameter interval normalized on a cube K 3 with sides of unit
length, we can write the average value of p on it.

p =
∫

K 3
p(x1, x2, x3)dx =

∫ 1

0

∫ 1

0

∫ 1

0
p(x1, x2, x3)dx1dx2dx3 = p0 (20)

if we integrate p on the square composed by any two of the three variables and subtract
p0, we get the function (with i1 �= i2 �= i3):

pi1(xi1) =
∫ 1

0

∫ 1

0
p(x1, x2, x3)dxi2dxi3 − p0, (21)

whose integral with respect to xi1 is zero. This means also that the set of function pi1
(i = 1, 2, 3) are orthogonal, in fact for i �= j :

∫

K 3
pi1 pi2dx = 0. (22)

In a similar way it is possible to define:

pi1i2(xi1 , xi2) =
∫ 1

0
p(x1, x2, x3)dxi3 (23)

It is then possible to decompose the original random function p with the series:

p = p0 +
3∑

i1=1

pi1 +
3∑

i1=1

3∑

i2=i1+1

pi1i2 + p123 (24)

or:

p = p0 + p1 + p2 + p3 + p12 + p13 + p23 + p123 (25)

If p ∈ L2, it can be used to define the centered second order moment (variance):

D2 =
∫

K 3
p2(x)dx − p20 (26)
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Squaring Eq. (24), considering also Eq. (22), one gets:

D2 =
3∑

i1=1

D2
i1 +

3∑

i1=1

3∑

i2=i1+1

D2
i1i2 + D2

123 (27)

where:

D2
i1,...,is =

∫ 1

0
. . .

∫ 1

0
p2i1,...,isdxi1 . . . dxis (28)

At this point, following Sobol (1993), the sensitivity Si can be obtained from the
variances simply by:

Si1,...,is = D2
i1,...,is/D

2. (29)

In this work, we apply the analysis of variances to compare the effects of the
variations in the fault angles with those of different values of permeability of the fault
damage zone.

With this choice of variable Eq.(27) can be rewritten simply as:

D2 = D2
k + D2

d + D2
s + D2

k,s + D2
k,d + D2

k,d,s, (30)

where the subscripts k, d and s denote permeability, dip and strike respectively, and
the various components can be computed using Eqs. (20) and (28).

Since the computations are limited to a post processing of only 3 simulations, to
obtain the values of stress for all possible sampled values of permeability we per-
form an interpolation of the stress tensor among the three given simulation results as
follows. As stated before, the three simulations (A1, A2 and A3) are run with dif-
ferent permeability of the damage zones (for the values of the permeability look at
Table 2). For each element of σσσ , the interpolation on the kd value is done using a
pair of quadratic polynomial (one for each of kd intervals [log(10−13), log(10−14)]
and [log(10−14), log(10−15)]), imposing the continuity of the derivative on the central
point (kd = log(10−14)).

Also for this analysis, since ST changes smoothly with the angles and we expect
small changes in the principal stress orientations for the effects of varying the perme-
ability (Morris and Ferrill 2009), the distribution is considered to be smooth enough
to not require a Monte Carlo method. The number of samples is computed at equally
spaced points, and are considered of equal probability.

4 Results and discussion

The fault system is shown in Fig. 1. The fault F1 is the one where themicro-earthquake
swarm was observed (Buttinelli et al. 2016).

The data for the Val D’Agri oil field in our possession for that time are the one
published by Improta et al. (2015) and Buttinelli et al. (2016), and are restricted for the
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most part to the seismicity data and the shape and position of the fault, extracted from
geophysical data. We do not have access to borehole data that could let us estimate in
situ stresses, thus they are deduced from regional data (Montone and Mariucci 2016).

Given the position of the injection point (nearer to the fault F2 than to F1), and
the fact that both F1 and F2 show similar orientation with respect to the tensional
stress, the appearence of the micro-seismicity on F1 is unexpected, unless assuming
some variability in our data. Because of this, in this stage of the work we focused our
analysis on the fault F1 in order to find possible sources of local instability.

The triangulated surface of the fault has been used to compute the normals for each
of its elements. Given the node splitting on the surface, the interpolation has beenmade
on the two elements nearest to the fault, one from the top and one from the bottom,
and for the ST evaluation the higher value of the two sides has been considered (as in
Jha and Juanes (2014)).

The geomechanical simulation has been run using Abaqus on an HPC network. It
used 32 processes on a single node with Xeon E5-4610 V2–2.3GHz processors and
a total of 240 GB of RAM. The simulations took about 40 h to complete. After that,
the relevant data (stresses, pore pressure) for the elements in contact with the fault
F1 have been extracted and the computation of the statistics has been conducted on a
laptop with a Python script.

The uncertainty quantification has been carried out for each element composing
the fault surface at each timestep. 9 values have been sampled for each uncertain
parameter, obtaining a total of 729 evaluations per element per timestep.

Given the limited knowledge of the data, the range of variation of each parameter
had to be chosen based on discussions and heuristic considerations. We summarize
shortly how they have been chosen.

Angles (strike and dip):The angle is decomposed in its zenithal (dip) and azimuthal
(strike) component. Considering that the typical dimension of a surface element
side is between 50 and 100 m, a standard deviation of 5◦ has been chosen. This
translates in a standard deviation between two points of 4–8 m. The deviation is
applied as follows: the normal to the surface is converted in spherical coordinates,
then the deviations are applied to the angles and the new spherical coordinates are
used to compute the ‘perturbed’ normal.
Pore pressure: The uncertainty in the transport of fluid in the model is considered
only for its effect on the final pore pressure. This approximation is expected to
be reliable only for small fluctuation, as localized overpressure should influence
deformation and stresses. The hydrostatic dependence of pressure makes unprac-
tical to fix a single value for the pressure variation. A relative error er = 0.02 has
been chosen instead. The fluctuation are extracted from a normal distribution with
a standard deviation of er p f and added to the normal stress.
Permeability of the damage zone: The evaluation of the effect of permeability
of the damage zone should have complex effect on transport of fluid and final
stresses. In this model an evaluation of the effects has been accomplished doing 3
simulation with different values of damage zone permeability kd and interpolating
the value of the stress tensor between them. The range of variation has been chosen
in order to include values suggested in otherworks (Improta et al. 2015), and ranges
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between 10−13 and 10−15 m2. More information on the method used can be found
in Sect. 3.2.
Friction:Variation on the friction coefficientμΓ , being the actual threshold for slip
initiation, can have a fundamental impact on the final result. The amount of local
variation ofμΓ is connected to the knowledge of the local variation in thematerials
and couldn’t be assessed from the data at our disposal. Typical value of friction
coefficient for carbonates is commonly assumed to be 0.6 with variations that
can decrease up to 0.5 (Scuderi and Collettini 2016). In the model the standard
deviation of μΓ was set to be 0.05 on a basic value of μΓ = 0.6. No further
considerations are made on the spatial variation of the material, as this would
require many dynamic simulations.

Figure 2 shows the average values of ST as well as the PS (see Eq. 18) map for
the F1 fault for the experiments A1, A2 and A3. Both quantities are greater the lower
is the permeability k f . The data are taken from the final timestep. The instability is
maximum on the borders of the fault, where the nearby surface of other faults or the
domain boundary are limiting fluid motion. In none of the cases the ST exceeds the
friction coefficient, and the PS computed with the non-deterministic threshold does
not exceed 0.05. With a higher permeability, the fluid gets transported away from the
source more efficiently and the stability is higher.

In Fig. 3, the ST averaged over all the triangles is plotted versus the time of the
simulation. It can be seen how the profiles follow the rate of injection, with greatest
value for case A3 and the lowest for case A1. In the same figure, the square root of
the variances of the ST are reported. We divide them between the variance among
point (which covers about 4/5 of the total), and the variance among the set of values
of each point. This subdivision is similar to the one used in dispersion inside fluids
(see Csanady 1973 p. 84). If ST stands for the local average for the single surface
triangle over the UQ set, and 〈ST 〉 stands for the spatial average, then defining the
spatial average of the variance on each triangle:

e2L = 〈e2〉 =
〈(

(ST − ST)2
)〉

. (31)

and the spatial variance of the triangle averages:

e2S =
〈
(ST − 〈ST〉)2

〉
(32)

The total variance is e2T = e2S + e2L .
The variance e2S is in an inverse relationship with its average value, showing that

the increase of pore pressure due to the injection from the well reduces the spatial
disparities inside the fault surface, whereas the average local variance e2L is subject to
an increase. Comparing the experiments with different permeabilities with each other,
it is possible to see that the variations between the eL values are not very pronounced.
Conversely, in the eS values there is an indication that, at least in this scenario, to a
higher permeability in the damage zone corresponds a higher variablity in the ST and
that the increase of pore pressure produced by injection has a stronger impact on the
reduction of spatial variabilities the higher the damage zone permeability.
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Fig. 2 On the left column the the values of ST are shown for the case A1(top), A2 (middle), A3(bottom).
On the right column, the corresponding values of PS. The data refers to the last timestep
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An effect of including into the analysis a probabilistic threshold on μ is visible in
the spatially averaged PS values plotted versus time, as shown in Fig. 4. The graph for
the 3 simulations follows closely the one for the average variances in Fig. 3, but it can
be seen that to a linear increase in the injection rate corresponds a response in terms
of PS that is more than linear. This can be ascribed to the different weighting of high
and low values of ST. Another cause for this effect can be a non symmetrical form of
the final distribution of ST, but this possibility has not yet been inspected.

The analysis of variances has been run on the last timestep only. For each element
of the fault F1 we have computed the normal and a variation in azimuthal and zenithal
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Fig. 5 Sensitivity analysis of the problem, with Dip, Strike and Permeability dependency

angle has been sampled at equally spaced intervals for a range − 5◦,+ 5◦. Each angle
component has been sampled 100 times.

Results are shown in Fig. 5. About 99% of the variance is due to the 3 chosen
parameters taken independently. Variations in the zenithal (dip) angle are the main
source of variance in the top (left in the graph) border of the fault, and on the elements
along the y boundary. The minor relevance of the azimuthal angle is expected since
the largest of the principal stresses is oriented with the z axis. In the remaining part of
F1, variance is mostly associated with the variations of permeability. It is interesting
to note that most of the microseismicity reported in Improta et al. (2015) is measured
in the lower central-SE part (bottom right part of the map) of the fault, where the
dependency of the variance of ST on the permeability is higher. The remaining sensi-
tivity of combined variables covers for a small part of the total. The combined effect
of permeability and dip variations is the most relevant and makes up for most of the
remaining 1% of sensitivity. For the fault F1, then, there is no indication whether the
source of variation can be ascribed more to the geometry of the fault or to the value of
permeability, and the interplay between the two is large enough to become important
when the ST is near its threshold μΓ .

5 Conclusions

In this work, a statistical analysis including Uncertainty Quantification (UQ) and
Sensitivity Analysis is applied to the relevant problem of fault stability. The tools are
applied to a realistic case study with a coupled fluid flow and geomechanical model
of fluid injection in the Val D’Agri oilfield with a time range of about 8.5 years.
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Simulations with three different settings for the damage zone permeability have been
run, with the aim of testing how the fault stability is impacted.

The UQ algorithm inspects the stability of the fault through the Slip Tendency (ST)
analysis and the evaluation of a newparameter, the Probability of Slip (PS), obtained by
weighting the ST output with a statistical distribution depending on the average value
and variance of the friction coefficient. Even if the value of PS and ST are small and far
from critical, the method is able to show areas of higher instability which include the
area where the microseismicity has been observed in reality. The analysis of variance
on the permeability is able to discriminate, for values in the selected interval, where
the permeability of the damage zone is dominating.

As a result of the UQ and sensitivity analysis, it is furthermore possible to state with
a good amount of confidence that the mechanism causing the instability of the fault
is still not evident from the model. This suggests future investigation with different
initial/boundary stresses or including previously neglected effects, like a dependence
of damage zone permeability on fluid pressure. To conclude, even with the evident
limits deriving from its application as a post-processing tool, this statistical analysis
can be used to drive the development of a dynamical model more compliant with
reality.
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