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Abstract Play is a common activity, providing not only pleasure but also
physical and cognitive development. In the quest for new playing experiences,
there is an increasing tendency to develop robots playing with people. Making
believable playing robots able to keep human players engaged and satisfied by
the playing experience is the main challenge.

In this work, we investigate the possibilities of a playful interaction be-
tween a human player and a mobile robot. In particular, this paper focuses on
the applicability of deception as a means to support engagement and the at-
tribution of rationality to playing robotic agents. By analyzing the interaction
situation between the human and robot players, by identifying the need for
deception, and by deciding whether and how to deceive, we aim at increasing
self-reported engagement and fun, which are also related to the perception of
the robotic opponent as smart enough to compete at an appropriate level.

Experiments were conducted on a sample of 78 subjects facing two dif-
ferent deceptive behaviors and a basic behavior without any deception. All
participants responded to a post-interaction questionnaire from which it was
possible to observe a positive acceptance of the perception of the robot as a
rational agent aimed at winning. In general, deception was perceived by most
of the players as one of the robot’s abilities, when actuated, and contributed
to the reported fun.
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1 Introduction

Play is a basic need for people that supports the development of abilities and
provides reward and amusement [10,34,42]. Recent technological developments
make it possible to include robots as players also in games that require phys-
ical engagement. This opens interesting research opportunities in the field of
human-robot interaction.

Robotic toys and animated plushes enter our homes at a rate of millions
every year [1,2]. In most cases, the interaction is limited to stimulus-response
reactions, but the introduction of low-cost sensors and computer power have
made it possible to introduce a richer interaction and games specifically de-
signed for autonomous robots. Robogames are expected to be one of the next
robotic products for the mass technological market [14], but, in order to re-
spond to demands about engagement support [48–50], we still need to explore
how to enable autonomy, intelligence, and adaptive behavior in such a highly
dynamical activity.

The present work focuses on a challenging type of games, where human
players are involved in a physical and quite demanding activity with robots.
This type of games has been introduced as Physically Interactive RoboGames
(PIRG [29]), and also as a possibility for Phygital play [27]. In PIRG, physical,
autonomous, (often moving) robotic agents are actively engaged with people in
a game based on physical interaction, while acting in the physical world. The
task is quite challenging for the robot, since, by using data collected in real-
time on the field, in addition to the usual tasks for a mobile robot (navigation,
self-localization, data fusion, etc.), it must comply to the game rules, play a
convincing role, and, at the same time, preserve the player’s physical integrity.

In our research, we are focusing on adversarial PIRG games, where the
human player and the robot are opponents pursuing contrasting goals. An
important aspect that supports engagement in this type of games is the per-
ception of the robotic opponent as a rational agent, an entity that aims at
achieving its goal, i.e., win the game. This goes over the simple concept of
animacy [30], since the robot should not only be perceived as animated, but
also as purposeful. A competitive game is an ideal situation to study the per-
ception of rational behavior in a robot, since interaction is needed, and goals
are clearly defined by shared rules.

A general requirement for enjoyable games is to maintain an even possi-
bility to win for both players, thus making the game interesting and engaging
at the right level [15]. This can be made possible by generating and properly
managing a player model good enough to adapt the robot’s behavior to the
specific player, while playing the game.

In general, a human player has expectations that should be matched by
a clear exhibition of intention of the robot, in particular, the one related to
its aim to win the game [29]. The equilibrium between the exhibition of a
rational behavior and the covert aim of playing an even game are goals for a
good PIRG design.
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In the study presented in this paper, we focus on deception and we propose
a framework for deciding and communicating deception in PIRG applications.

Possible issues about the opportunity for a robot to deceive a human might
be raised. However, in this type of playful situation, a deceptive behavior is
part of the game, as well as an obvious expectation from players, and public.
Most adversarial games based on ability, from soccer to boxing, are defined by
rules that limit the type of acceptable deception, but also leave space to the
possibility to exploit abilities to trick the opponent’s senses. This is also an
intrinsic aspect of many games played by animals to learn to face real hazards.
Therefore, a robot trying to deceive a human in a PIRG is actually playing its
role as expected, and will not be blamed for this. The experiments reported
in this paper show that the interaction with a deceptive robot in a PIRG can
improve the perception of animacy in the robot, as this is the way interaction
is expected to occur. This is on the line of designing interaction to enhance
the perception of animacy [4, 18]. In other games, not involving physical in-
teraction, deception has been recognized as a way to increase attributions of
mental states to the robot [38].

This paper is organized as follows. Section 2 introduces related works, sec-
tion 3 explains in details the game we are considering to evaluate our approach,
in section 4 the method for detecting the need of deception and how to trans-
late it into motion commands are described; experiments and validation of
the proposed method are presented in section 5, and, finally, discussions and
conclusions follow in sections 6 and 7.

2 Related Works

2.1 Physically Interactive Robogames

One of the critical aspects in a PIRG concerns adaptation to the players’
abilities, so to engage them in a situation that is challenging enough, but not
too demanding, as stated by the commonly accepted theory of flow [15]. Since
we would not like to ask the player to select a priori a degree of difficulty for the
game, which would reduce the credibility of the robot as a smart companion,
it is relevant to be able to model the player’s characteristics so to adapt the
robot’s behavior to obtain even possibilities to win the game. The research
activities supporting the video game industry produced several studies, most
of which use artificial intelligence and machine learning algorithms to achieve
this result. A general model is presented in [51].

There have been attempts for presenting robots as toys over the years,
where, in most cases, the robot acts more or less like a mobile pet (e.g., [9,17]).
In these cases, interaction is often seen as limited to almost static positions,
not exploiting rich movement, nor high level of autonomy; the credibility of
these toys to lively engage people, such as kids, are said to be constrained [29].
The lack of engagement actually lead, in some recent, significant cases, to
commercial failures [19].
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Some PIRGs have been reported over the last few years. Jedi Trainer [29]
was a PIRG mimicking the light-saber training situation included in the first
Star Wars saga movie “Episode IV - A New Hope”: it was able to show some
apparent adaptation to the player’s playing style as well as some realism of the
drone’s behavior, which could be perceived by the human players as a kind of
rational behavior.

Many robots are used with people with disability, in particular autistic
children, for which engagement is critical. Some of them have been explicitly
designed to play physical games. Queball [37] and LEKA [21] are robotic,
mobile balls proposed to engage autistic children in different games that require
also movement. IROMEC [7,24] was another mobile robot that included play
activities involving movements. Teo [8] is a huggable, mobile robot designed to
play games with autistic children, and to provide the possibility to implement
free play [6], as well as structured play experiences.

Despite being examples of successful applications, none of the mentioned
examples includes any online player modeling activity, and the abilities and
behaviors of the robots are pre-defined.

RoboTower [31–33], is a game where human players physically interact
with an omni-directional robot by trying to conquer towers while preventing
the robot to push them down. A player model is maintained and used to adapt
the game to the performance of the player.

An approach based on genetic algorithms for capturing and modeling indi-
vidual entertainment is described in [50], where the main goal is to construct
a model of a child playing a Playware game. “Playware is the use of intelligent
technology to create the kind of leisure activity we normally label play” [26].
The system can predict the answers to a question asking which variants of
the game are more or less “fun”. The model is built from physiological signals
measured during play.

In summary, pretty much all the related works agree that being able to
classify the player’s behavior in a game may enable the robotic agent to mod-
ify its interaction and playing style in order to adapt to the skills of its human
counterpart. This is a general statement shared with most human-robot inter-
action applications. With the present work, we go further and investigate the
introduction of deceptive behavior as an additional factor to support engage-
ment, and to increase the opinion about the robot as a smart device against
which it is nice to play.

2.2 Deception and robots

Models to describe how people adjust their interactive behavior as consequence
of their perception of a social situation have been proposed in Sociology. We
selected the interdependence theory [23] as a suitable framework for our pur-
poses. The adjustment of interaction depends on rewards and costs related to
each action choice. Every situation can be expressed as a matrix of rewards
associated to each choice, called outcome matrix. This model can be seen as
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an equivalent of a normal form game in Game Theory. Furthermore, the au-
thors introduced a four dimensional space where mapping of social situations
is supported by outcome matrices that can be defined from the analysis of the
opportunities. Interdependence, correspondence, control, and symmetry are the
four dimensions that define this space. We use the first two dimensions to de-
cide when to apply deception, as described in Section 4. The interdependence
dimension measures the extent to which each individual’s outcome is influ-
enced by the other’s actions in a given situation. Correspondence describes
the extent to which the outcomes of an individual in a situation are consistent
with the outcomes of the other individual [43]; this happens when the selected
actions bring similar outcomes to both individuals, for example when they act
to collaborate to achieve the same goal. In our case, we apply this concept
to make the robot selecting actions that bring it towards the common goal of
obtaining a game with even possibilities to win.

In [44] an algorithm based on the interdependence theory for detecting
when and whether a robot should deceive was proposed; the decision is based
on the mapping of the outcome matrix to the interdependence-correspondence
space. This algorithm has been used in [45], where the analysis of the social
situation is performed to provide robots with the capacity of determining
whether deception is needed. The works reported in [23, 43–45] have laid the
foundation for many research activities in social aspects involving humans and
robots, in particular on the aspect of deception.

The method we propose takes inspiration from [23] as well, but in oppo-
sition to [43], revisits the interdependence space and the way of mapping the
outcome matrices, as it will be discussed in Section 4.

Deceiving a human is not trivial. Studies about a robot able to deceive
a human have been reported in [40], where the authors discuss whether the
feeling of being deceived by a robot would be an indicator that the human
treats the robot as an intentional entity. Further experiments about increas-
ing engagement in a game due to a robot able to deceive, have been conducted
in [39]. In this work, a cheating robot plays “rock-paper-scissors”, and takes
advantage of the deception for its own benefit. The authors found a notice-
ably increased level of engagement by the participants when the robot cheats.
Many could be the motivations for this, including increased attention to catch
cheating. However, a robot that does not follow the rules of a game cannot be
accepted in real applications: for the same reasons a cheating human player
would be excluded from the game. Differently from the above mentioned sit-
uation, the robot presented in [41] was programmed to follow a multi-player,
reaction-time, conflict game, where its main role was to establish who was win-
ning. The robot did not play, but it sometimes changed the wins in order to
make the game more socially engaging when the players discover the cheating
behavior of the robot.

The most important part in a deceiving algorithm is to properly transmit
to the deceived the false communication. This is a delicate aspect, because the
deceived should not perceive to be deceived.
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In [16] the authors propose a way to study the communication of false infor-
mation (deception) using a robotic arm. The authors reinforced the application
of robot deception, thus making games against the robot more engaging. The
paper focuses on robot deception in goal-directed motion, by learning decep-
tive trajectories in which the robot is concealing its actual goal. Our proposal
is similar to this, since it explores goal-directed motion, but differs from it by
using a mobile robot in a real game scenario, and by the decision mechanism.

3 The game environment

In this section we describe the experimental setting adopted to evaluate our
hypotheses: Robotower2.01.

3.1 Playground and game rules

The playground is a rectangular area of 4 m × 4 m. On each corner, 1 meter
high props, representing towers, are placed.

The robot and the human player have conflicting goals: the robot should
hit a tower and make it fall, while the human player should secure all the
existing towers without letting a single tower be torn down by the robot. Each
tower is equipped with a button and four LEDs. When the player presses the
button for at least 2.5 seconds continuously, a new LED is turned on. When
all the four LEDs have been turned on, the tower is captured by the human
player and cannot be considered by the robot any longer. Such LEDs are a
representation of the progress of the human player in the attempt of capturing
a specific tower. The activity of pushing the button can be distributed in
different moments, so that the players will not lose their progress if they leave
the button before a tower is captured, for instance to defend another tower
attacked by the robot. Tower information such as tower status (whether active,
fallen, or captured) and button pressing activity are transmitted to the robot
via wireless communication, so to inform it about the game status.

If, at anytime, a tower falls (because of the robot or the player), the game
ends, and the human player loses.

In figure 1 we can see a picture taken from a game.

3.2 Robotic agent

The robot is a holonomic platform, 115 cm high, with a triangular base which
can be inscribed in a circle of 50 cm in diameter. The robot can run at a speed
of up to 1 m/sec. It is capable of navigating autonomously in the environment,

1 A video illustrating the basic game scenario and its rules is available at
https://www.youtube.com/watch?v=3azXf8V64iM
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Fig. 1: Human-Robot interaction scene from our experiments.

using nodes developed in the ROS2 framework. The robot localization is per-
formed by using Monte Carlo localization algorithms through the AMCL3

node, using laser range scans. For the management of sensor information we
have implemented custom ROS nodes. By relying on its laser scanners, the
robot can also perceive the human players during the game, so to track them,
and avoid hitting them while moving. For the player, a possibility to defend a
tower is to stay between the robot and the tower.

Since the robot is holonomic, it is able to move across the entire playground
in a way similar to the human player, and its goal of tearing down towers is
constrained by the fact that an already captured tower, or one whose button
is currently being pushed by the player, cannot be attacked. Moreover, the
players can also block the robot path by staying on it, since the robot would
avoid them. Notice that, while the player is trying to capture a given tower,
the robot can change its target and try to tear down another one, so that
the human player has to run to defend the new target abandoning the tower
she/he was trying to capture.

4 Method

In this section, we describe how to decide when to deceive and the differ-
ent strategies to implement deception. The presented approach relies on the
definition of outcome matrices for both players and the computation of in-
terdependence and correspondence [44]. First, the way to decide whether to
deceive is presented, then how deceptive behaviors have been implemented.

2 http://www.ros.org
3 http://wiki.ros.org/amcl.
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4.1 Deciding to deceive

During the game, the robot continuously (re)calculates the payoff estimates for
each of its possible goals in a process that depends on the specific game. In our
game, the payoff for attacking a given tower is considered. At each time, the
goal with higher expected payoff is selected. Given the set of tower coordinates
T = {τi}N=4

i=1 , and the vectors lr ∈ R2 and lp ∈ R2 representing, respectively,
the robot’s and human player’s spatial position, and δ(a, b), computing the
Euclidean distance between the two vectors given as arguments, it is possible
to define two vectors used to compute the estimated payoff for the robot (ρr)
and the human player (ρp). In this specific game, both payoffs are defined
by spatial relations. ρr estimates the robot’s payoff as a difference between
the distance to each tower, respectively from the human player and from the
robot: the higher this difference is for a tower, the higher the potential payoff.
ρp estimates the player’s payoff as the sum of the inverse of the respective
distances: the higher this sum the closer are the two players, situation that
is desirable by the human since it makes her/him controlling the robot. The
formal definition of the payoff vectors is reported below.

ρr =


δ(τ1, lp)− δ(τ1, lr)
δ(τ2, lp)− δ(τ2, lr)
δ(τ3, lp)− δ(τ3, lr)
δ(τ4, lp)− δ(τ4, lr)

 (1)

ρp =


δ(τ1, lr)−1 + δ(τ1, lp)−1

δ(τ2, lr)−1 + δ(τ2, lp)−1

δ(τ3, lr)−1 + δ(τ3, lp)−1

δ(τ4, lr)−1 + δ(τ4, lp)−1

 (2)

Note that ρr ∈ R4 and ρp ∈ R4, since the cardinality n(T ) of the set of
towers T is equal to four.

The robot’s target tower τ?r is selected by detecting the maximum value in
the array ρr:

τ?r = arg max
i

ρr
(i), (3)

where i refers to the vector component index. In other terms, the robot would
aim at the tower that is closer to it and farther away from the player.

The robot calculates in an analogous way also the expected target prefer-
ence for the player, assuming the player is a rational agent that would select
the best move.

τ?p = arg max
i

ρp
(i) (4)

To decide when it is the case to deceive, a set of outcome matrices that
model the in-game interaction have been defined. Such matrices quantify the
payoff, also referred to as utility, associated to each player’s action. As actions,
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the possibility for the players to move towards any of the four towers are
considered.

Notice that, despite the fact that the presented implementation of the two
outcome matrices reflects the specific goals of the players in this game, simi-
lar matrices can be defined for any conflicting situation, not only for games,
following the approach typical of Game Theory. The basic aspects of the pro-
posed approach are not tied to the specific shape of the outcome matrices, and
could be applied to any other conflicting situation.

We report below how the outcome matrices are computed in this specific
game, as an example of the general approach. These matrices include, respec-
tively on rows and columns, the possible actions each of the two players can
take, and the corresponding values are the payoffs for the respective choices.

As in any conflicting game, each of the two players gains benefit from the
loss of the other. For this reason, the robot earns more when itself and the
opponent choose a different target. From a matrix point of view, this is seen
as lower values on the diagonal, because this area represents when the two
opponents choose the same action. On the other hand, the player’s outcome
matrix is built considering that the human player earns more when her/his
choice is the same as the robot’s one. For this reason, the values on the diagonal
of the player’s outcome matrix are greater than the non-diagonal ones.

The elements of the robot’s outcome matrix Or are periodically computed
as described below.

– Non-diagonal Elements:

γr ·
ρr

(i)∑
i ρr

(i)
· δ(τi, lp)∑

i δ(τi, lp)
, (5)

where ρr
(i) refers to the component i of the vector ρr, and γr is a tuning

constant.
– Diagonal Elements:

δ(τi, lr) (6)

In Or, γr is used to weight the non-diagonal values, produced by equa-
tion 5, while in the player’s matrix, another tuning constant has been used
for the diagonal values. Tuning the values of the outcome matrices is needed
because the two players tend to win in two different situations, corresponding
to opposite actions: the robot would like to run “alone” to the tower, while
the players prefer to have the robot next to them, so that the robot cannot
run and take another tower. Giving the right values to the tuning constants is
necessary to balance the interdependence-correspondence values.

The second term in equation 5 is used to give a weight to the payoff:
the more an individual is interested in a given target (supposed that this
is a consequence of rational/maximizer thinking), the higher the payoff that
is obtained when he can achieve it. The third and last term in equation 5
expresses how much advantage (spatial distance) the player has on the other
one.
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Fig. 2: Example of outcome matrix. The columns represent the robot’s payoff
to attack one of the four towers. The rows represent the player’s payoff. Each
element is a couple of values, respectively the player’s payoff (below) and the
robot’s payoff (above).

Similarly, the human player’s outcome matrix Op is computed as described
below.

– Non-diagonal Elements:

ρp
(i)∑

i ρp
(i)
· δ(τi, lr)∑

i δ(τi, lr)
(7)

– Diagonal Elements:

γp · δ(τi, lr)−1 (8)

An example of outcome matrix is reported in Figure 2
Using these equations, the utility of both the players is periodically recom-

puted and then incorporated into the interdependence-correspondence space [45],
as described below.

For our purposes, the interdependence dimension represents how much in-
fluential the outcome of a player is on the other one, while correspondence
quantifies how much conflict exists between the payoffs of the actions selected
by the two players. These two values are calculated by considering three as-
pects: the variation of the robot’s outcome matrix resulting from its own deci-
sions, the variation of the player’s outcome matrix resulting from the player’s
decisions, the variance in outcome matrices resulting from both, joint, inter-
active decisions.
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Algorithm 1 computes interdependence, where the output α ∈ [−1; 0] rep-
resents the level of interdependence of the considered situation at that specific
time, and ∆ is the maximum variation the player can obtain with respect to
the current situation on the robot’s outcome matrix, by taking the given ac-
tion, i.e. deciding to go to tower i. The variable K represents the range, used
for normalization, and n(T ) the number of towers.

input : Robot’s outcome matrix On(T )×n(T )

output: α (Interdependence value)

for i ∈ range(1, n(T )) do
∆ = |max(Or(:, i))−min(Or(:, i))|
K = max(Or(:, i)) +min(Or(:, i))

α += ρr
(i)∑

i ρr
(i) ·

∆
K

end

Algorithm 1: Interdependence algorithm.

Algorithm 2 computes the correspondence value, represented by β ∈ [0; 1].

input : Outcome matrices Or,Op
output: β (Correspondence value)

Avg(outcome ∀ Robot’s action)
Avg(outcome ∀ Player’s action)
for i ∈ range(1, n(T )) do

amr = tower index that maximizes robot’s outcome
amp = tower index that maximizes player’s outcome
∆r = Or(amr, i)−Or(amp, i)
∆p = Op(amr, i)−Op(amp, i)
Kr = Or(amr, i) +Or(amp, i)
Kp = Op(amr, i) +Op(amp, i)

β += 0.5× Avgr∑
Avgr

× ∆r
Kr
× ∆p

Kp

end
for i ∈ range(1, n(T )) do

amr = tower index that maximizes robot’s outcome
amp = tower index that maximizes player’s outcome
∆r = Or(i, amr)−Or(i, amp)
∆p = Op(i, amr)−Op(i, amp)
Kr = Or(i, amr) +Or(i, amp)
Kp = Op(i, amr) +Op(i, amp)

β += 0.5× Avgp∑
Avgp

× ∆r
Kr
× ∆p

Kp

end

Algorithm 2: Correspondence algorithm.

The procedure works by going through every action the players can take.
For example, if the robot considers taking action 1 (i.e., go to tower 1), it tem-
porarily ignores all the other columns of the outcome matrix (corresponding to
its other possible actions) and checks what are the indexes (corresponding to
the actions of the player) that maximize both its outcome and the player’s one.
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It then calculates the difference, ∆, between the outcomes corresponding to
the two indexes for both robot and player. These ∆ are then normalized with
respect to the best outcomes respectively for the robot and the player, and
then multiplied by a factor that expresses how likely, in terms of the average
of outcomes, the action would be taken.

Once an extremely dependent and conflicting situation is detected, decep-
tion is triggered: in our scenario, we identified the critical condition to trigger
deception to be α > 0.6 and β < −0.6. These values have been empirically
tuned as the most suitable for average players.

When deception is decided, the algorithm calculates the fake target to be
communicated to the player through an appropriate action. The fake target is
chosen by the following steps: the robot calculates the two actions that would
provide itself the highest reward, and calculates which of the two maximizes
the player’s payoff. This last step is aimed at identifying the fake target that
would motivate more the player to aim at it, so to be deceived. The robot will
select as its real target the other one of the selected two. The control flow of
the complete algorithm is detailed in Figure 3.

Fig. 3: The procedure to select deception.

4.2 Communicating false goals

In general, deception should be implemented by considering the possible goals
the human subject could attribute to the robotic player, and the ways to
communicate the false goal. It is part of the deception process to delay as much
as possible the discovery of the true goal. A posteriori, the human player should
perceive to have been deceived, so to attribute to the robot some intention to
deceive.

Having presented how to trigger deception, in this section we present the
two different methods developed to implement deceptive behaviors in the test
setting: the first keeping the speed of the robot constant and changing the
trajectory at a late moment, the last reaching a point and then suddenly
changing speed and direction. The aim for these behaviors is to communicate
false targets, i.e., false attempts to attack a tower.

We decided to implement two different deception behaviors, both to explore
what could actually be perceived as a deception by the player, and, possibly,
whether diversity of trajectories could increase the appeal of the game by
making the robot movements less predictable. These can be taken as examples,
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specific to this setting, of possible implementations of ways to communicate a
fake goal.

4.2.1 Static trajectory approach

In this first method, the trajectories are generated when the navigation node
receives the fake and the real targets. Based on the actual position of the
robot, this algorithm calculates the series of points the robot has to reach in
order to communicate the deception.

The algorithm can select one of two different types of trajectories. The
trajectories are implemented by deciding a series of points to be followed.
These points are spatially distributed along the desired trajectory. A visual
description of both trajectories is presented in Figure 4.

(a) (b)

Fig. 4: The two types of deception when using the static trajectory approach.
a) Moving forward and then changing the direction; b) Moving toward the
false target and then changing direction.

The first one is activated when the robot is close to a point in the middle
between the two targets. The robot will then move forward on the mid line,
without letting the player know which tower it is going to aim to, leaving 50%
of chance of guessing. Only when “close”, within a predefined threshold, to
the midpoint of a virtual line connecting the two towers (true and fake target,
respectively), the robot takes a straight trajectory towards the true target.
The second type of deception aims to communicate from the beginning the
fake target in order to induce the player to run to a particular tower, thus
taking spatial advantage to reach the real target.
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In this proposal, deception is implemented as a complete path to follow,
which starts when the robot receives the deception information (true and false
targets) and lasts until the robot hits the tower. Since no look-ahead for de-
termining the player position in the future is considered, it may happen that
the player understands the deception and can block the robot, so preventing
it to finish the deception procedure coherently. For this reason, the algorithm
calculates the time required to produce the full deceptive path and, when
something goes wrong (for example, the player blocks the robot), the esti-
mated time expires, and the deception procedure is aborted. Once it happens,
the main controller selects a real target with the usual method, until a new
need for deception is detected.

4.2.2 Dynamic steering behavior approach

The second approach we propose to implement a deceiving trajectory is based
on steering behaviors [36]. The paper by Reynolds proposes a force-based
approach to guide an actor in a life-like and improvisational manner. Given
a target, it will generate a force, either attractive or repulsive, based on its
position with respect to the robot: by applying this force on the robot, it will
be driven either towards or away from the target following a smooth path.

Being our robot holonomic, it has been represented as a point mass to
calculate the results of the application of the forces generated by the steering
behavior. This approach gives the possibility to dynamically change the robot
response to forces by changing the kinematic properties of the representation
during the calculation process.

Instead of planning the complete trajectory, only the point where we want
to change the motion parameters of the robot and reveal the true target is
computed, and set as a temporary target. The steering behavior framework
drives the robot to reach this target following a trajectory depending on its
initial velocity and position. The robot’s dexterity is dynamically increased
when it finally aims at its real target: when the way point is reached the
virtual mass of the robot is lowered and the virtual force applied to it is
increased, along with a slight increase of its maximum velocity, then the real
target is set as the target to be reached. This procedure generates a sharp turn
and an acceleration of the robot towards the real goal. A visualization of the
parameter update effect is reported in Figure 5.

5 Evaluation

In this section, an evaluation of the proposed strategy in the mentioned game
scenario is presented. The experimental setup is first introduced, stating the
hypotheses and presenting the post-match survey used to evaluate them. The
analysis and related discussion follow next.
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Fig. 5: Once reached the way point the robot virtual mass is reduced and the
virtual force exerted on is increased: this will produce an increment in robot
velocity as well as a smooth bend in the real target direction.

5.1 Experimental setup

5.1.1 Hypotheses

The performed trials were aimed at evaluating the following hypotheses.

– Hyp1: The subjects consider the robot as a rational agent that aims at
winning.

– Hyp2: Deception improves the amusement.
– Hyp3: Both the trajectory approaches can create a recognizable level of

deception.
– Hyp4: The dynamic steering approach is more appealing than the static

one.

5.1.2 Independent variables

Two parameters could be considered to control the general game difficulty:
maximum speed and maximum acceleration of the robot. They have been
fixed, respectively, to 0.7m/sec and 0.5m/sec2 for all the trials, so that they
cannot influence the evaluation of the effect of deception. These specific values
have been selected mainly to guarantee safety of the player.

The robot’s behavior is described by a nominal variable, factor Behavior,
with three levels: basic, for the behavior without any deception, static, and
dynamic, corresponding to the two different implementations of deceptive be-
haviors.
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5.2 Participants

We recruited 78 participants among the visitors of a science fair and students.
Most of the experiments were conducted with young people, spanning from 18
to 33 years old. We aimed at allocating the number of people evenly among
the three different versions of the game.

One third of subjects were asked to play a version of the game where
the deceptive mechanism was disabled: in the next paragraphs this sample
will be labelled as Basic. The remaining two thirds of subjects were assigned
to the other two levels of the Behavior factor. Therefore, these samples will
be respectively labelled as Static and Dynamic. We randomly assigned the
participants to batches, and none of them was made aware of this allocation.
Moreover, they were not informed about the possibility of deceptive behavior,
although subjects might have seen other players from the same batch playing
before them.

The distribution of subjects is described in table 1.

Table 1: Demographic characteristics of the recruited sample, stratified by
deception strategy.

Version
Age Age Gender

Total
Mean variance Male Female

Basic 23.1 3.2 23 3 26
Static 23.8 4.9 17 9 26

Dynamic 21.9 7.6 18 8 26

A brief about the game rules was given to each participant before the
game, and then she/he was introduced in the field, facing the robot at the
center of the area; the game was started when ready. Each game lasted about
90 seconds, with a large variability, from even less than one minute to more
than two minutes.

After each match, a questionnaire was self-administered to each player.
It included a demographic section about the subject and thirteen statements
about the game. In this paper, we present results about only three of them,
relevant to evaluate the specific hypotheses that we focus on. In particular, here
we consider the level of agreement on a Likert scale from “Strongly disagree”
to “Strongly agree” to the following statements: “The robot wanted to win”, “I
had fun”, “The robot did some feints”. We used the other questions to evaluate
features of the game design, ranging from its duration to its safety, and we
will report about them in other papers. Notice that, given the high dynamicity
of the game, we could not evaluate fun with psycho-physiological measures,
such as heart-rate variability or skin conductance, which are also affected, in
much larger measure, by muscular activity. Moreover, it was not possible to
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analyze emotional expressions on the face of the subjects, which could hardly
be detected during the play activity, given that they were running.

5.3 Statistical tools

In order to evaluate our hypotheses, the first step is to evaluate whether the
three samples come actually from the same population. Addressing the warn-
ings raised by Kruskal and Wallis themselves in their seminal paper [25] with
respect to the presence of tied data and the difference in the empirical distri-
butions of our results, we used a dense ranking approach (as implemented in
the R [35] package dplyr [47]) and performed a k-sample permutational test
as implemented in the R package coin [20]. Thus, we tested whether the dis-
tribution of the level of agreement expressed by participants differs among the
three deception groups using a χ2 statistic, the Asymptotic General Indepen-
dence Test, hereafter χ2 AGIT . For the post-hoc analysis, we also performed
permutational pairwise comparisons on ranked data using a Z test statistic
(Asymptotic General Independence Test, herafter Z AGIT ) as implemented
in the R package rcompanion [28]. We also used the False Discovery Rate
approach in order to adjust p-values for multiple comparisons. The level of
significance was set to alpha=0.05.

To assess the effect size for the three groups analysis, we adopted the
Freemans θ [5] as implemented in the R package rcompanion. This is a measure
of association which ranges from 0 to 1 and enables to assess the strength of
the relation between a nominal character (in our case the deception strategy,
three levels: Basic, Static, and Dynamic) and an ordinal one (here, the level
of agreement, five levels: strongly disagree, disagree, indifferent, agree, strongly
agree). Beside the point estimation, we report also 95% confidence interval for
θ, as computed using a bootstrap procedure (R package boot [11]).

We also present a descriptive analysis considering joint frequencies related
to selected item pairs in the administered questionnaire.

5.4 Experimental results

5.4.1 Win shares

In figure 6, we report the win rate for the games played. As we can see, the
Basic version did not offer an appropriate level of challenge, as most of the
players won. On the other hand, the Dynamic version resulted in an unbal-
anced experience in favour of the robot, as most people could not match its
ability. The Static version succeeded in providing an even game, with an equal
share of wins between the robot and the players, which is one of the main
goals for a game in order to keep the player engaged, enjoying playing.
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Fig. 6: Distribution of wins for each version of the game4.

5.4.2 Evaluating robot’s rationality

In order to evaluate whether the participants perceived the robot as a rational
agent aiming at winning the game (hypothesis Hyp1 ), it is possible to consider
the agreement to the statement The robot wanted to win for the subjects facing
the three different situations, reported in figure 7.

The result of the χ2 AGIT gives χ2
2 = 7.5257, p-value = 0.02322, thus

we can reject the null hypothesis that the three samples come from the same
population.

When we consider the effect size, we find Freeman’s θ = 0.238 (95%ci
= 0.0876 - 0.444) This is not very high, and the confidence interval is quite
wide, so the association between membership to one the three groups and
level of agreement expressed to the statement The robot wanted to win is not
particularly strong.

It seems that most of the subjects agreed with the statement The robot
wanted to win for both versions implementing deception, while for the basic
version some subjects disagreed. A possible cause for this might be the fact that
this version did not offer an adequate level of competition, possibly resulting
in a game too easy for some people.

The statistical analysis about the pairwise differences among the groups,
as reported in Table 2, shows that there is a statistically significant difference
between the group facing static deception and the one facing the basic version,
while the difference between dynamic and basic is not statistically significant,
although the adjusted p-value is close to 0.05. Moreover, the difference between
the two approaches to deception is not statistically significant.

4 This and the following plots have been realized with ggplot [46], and the R packages:
grid [35], fontcm [13] and extrafont [12,28]
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Fig. 7: Agreement level to the statement The robot wanted to win for the three
groups.

The robot wanted to win
Z AGIT Adjusted p-value

Dynamic vs Static -0.3436 0.7312
Basic vs Static 2.09 0.04794

Basic vs Dynamic 2.409 0.05493

Table 2: Results for pairwise comparison on the agreement to the statement
The robot wanted to win, between the Basic, Static, and Dynamic versions,
respectively.

5.4.3 Evaluating the impact of deception on amusement

To evaluate hypothesis Hyp2, it is possible to compare the distributions of
the agreement level to the statement I had fun of subjects playing the Basic
version, i.e. without deception, with the same for subjects playing either the
Static or Dynamic versions of the game, reported in Figure 8.

The result of the χ2 AGIT gives χ2
2 = 9.0854, p-value = 0.01064, thus the

three samples come from different populations.

When we consider the effect size, we find Freeman’s θ = 0.22 (95%ci =
0.0611 - 0.438). This is again not very high, and the confidence interval is
quite wide, so the association between membership to one the three groups
and level of agreement expressed to the statement I had fun is not particularly
strong.
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Fig. 8: Agreement level to the statement I had fun for the three groups.

The statistical analysis about the pairwise differences among the groups,
as reported in Table 3, shows that there is a statistically significant difference
between each of the groups with deception and the basic version, while the
difference between static and dynamic is not statistically significant.

I had fun
Z AGIT Adjusted p-value

Dynamic vs Static -0.2425 0.80840
Basic vs Static 2.266 0.03519

Basic vs Dynamic 2.445 0.03519

Table 3: Results for pairwise comparison on the agreement to the statement
“I had fun”, between the Basic, Static, and Dynamic versions, respectively.

Results reported in Table 3 indicate that the groups receiving the two
deceptive behaviors show a similar distribution for the level of agreement to
the statement “I had fun”, whereas they both differ from the group receiving
the basic behavior.

5.4.4 Evaluating the recognition of a deceiving strategy

In order to evaluate hypothesis Hyp3, that is to test whether our approach
was able to provide a recognizable level of deception, we performed the statis-
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tical analysis comparing the agreement level of subjects that played with the
Basic version and subjects that played either the Static or Dynamic version
on the The robot did some feints statement, whose distributions are reported
in figure 9.

Fig. 9: Agreement level to the statement The robot did some feints for the
three groups.

The result of the χ2 AGIT gives χ2
2 = 33.144, p-value = 6.351×10−8, thus

the three samples come from different populations.

When we consider the effect size, we find Freeman’s θ = 0.509 (95%ci
= 0.418 - 0.6830). This is higher than that in the previous cases, and the
confidence interval is not as wide, so the association between membership to
one the three groups and level of agreement expressed to the statement “The
robot did some feints” can be considered as stronger than in the previous
cases, although still not too high. The results presented in table 4 show that,
for both deceptive approaches, it is possible to reject the null hypothesis that
the two groups, the one playing with deception and the other playing without
it, provide the same perception of deceiving behavior, while the difference
between the two types of deception w.r.t. this statement is not significant. In
both cases, deception was perceived.
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The robot did some feints
Z AGIT Adjusted p-value

Dynamic vs Static −0.5391 0.5898
Basic vs Static 4.487 1.085× 10−5

Basic vs Dynamic 5.078 1.142× 10−6

Table 4: Results for pairwise comparison on the agreement to the statement
The robot did some feints, between the Basic, Static, and Dynamic versions,
respectively.

5.4.5 Comparing Dynamic trajectory with Static

To validate Hypothesis Hyp4 (Is the dynamic approach better than the static
one), we considered agreement levels to the statements I had fun and The
robot did some feints. As mentioned above, there is no significant difference
between the two approaches, both in the fun level and in deception perception,
so Hypothesis 4 has to be rejected.

5.5 Joint frequencies

We report in Figure 10 bubble plots of the joint frequencies of the agreement
level of pairs of sentences, and discuss the interactions between the level of
agreement between two statements. In the plots, the size of each bubble is
proportional to the absolute joint frequency, reported in its center. Absolute
frequencies, instead than relative frequencies, are reported to improve plot
readability, given that each group has the same sample size, namely N=26.

From Figure 10 it is possible to notice that for subjects facing one or
the other deception behaviors (on the two top rows), the ones that tended
to recognize the presence of deception also declared to have had more fun.
Moreover, these subjects perceived that the robot aimed at winning, with
higher degree with respect to subjects that faced the behavior where deception
was not present (lower row).

From Figure 11, focusing on the first column, it is possible to observe that
subjects not facing a deceiving robot tended to expect to have more fun if
deception was present, but also people facing, and detecting, static deception
had liked to have some more. Considering the second column of Figure 11
we may notice that subjects facing a non-deceptive robot tended to recognize
what the robot was about to do more than the other subjects, which tended
to distribute their agreement around the middle range.

6 Discussion

Following the proposed approach to decide when and how produce deceptive
behaviors in an interactive game, we designed a game that obtained a good
acceptance by all the participants, most of which queued for participating and
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Fig. 10: Joint frequencies of level of agreement to the sentences I had fun, The
robot wanted to win The robot did some feints for the three groups. The color
code is the same used in the previous figures: blue for Basic, green for Static
and orange for Dynamic.

were pleased after the game. Most of the participants perceived the robot as a
rational agent aiming at winning, as reported in Figure 7, although for some
of them it was not offering an adequate level of competition, possibly due to
relatively low ability, mostly for the basic version.

Although a kind of Hawthorne effect [22] could be expected in all the
subjects, since they knew that they were participating to a test concerning
their playing activity, hypothesis Hyp1 is satisfied. In this paper, we are mostly
interested in the difference between subjects facing the different behaviors of
the robot to evaluate the effect of deception, and all the subjects might have
suffered in similar measure from the Hawthorne effect, which can be considered
as irrelevant for what reported this paper.

From the statistical analysis, it appears that the agreement to the state-
ment The robot wanted to win is different with statistical significance only
between the group facing the static deception and the basic behavior. This
may seem to attribute to the static approach a preference a little bit higher
with respect to the dynamic approach.
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Fig. 11: Joint frequencies of level of agreement to the sentences I would enjoy
more if it did some feints, It was easy to understand what the robot would have
done, and The robot did some feints for the three groups.

Deception had a positive impact on the amusement level, with a statisti-
cally significant difference between both the deceptive behaviors and the basic
one. We can state that hypothesis Hyp2 is satisfied, although the magnitude of
the improvement due to deception was possibly limited by the quite engaging
nature of the game even without it.

Statistical results support well the hypothesis Hyp3, since both the deceiv-
ing behaviors were recognized as producing feints, differently from the basic
behavior.

Hypothesis Hyp4 that the dynamic trajectory would be a better charac-
terization of deception, so producing a more enjoyable interaction, has to be
rejected since for the statement I had fun there is no significant difference
between the two types of deceptive behaviors. This may be due to their very
basic nature. Actually, they implement different trajectories, but both can be
classified by the subjects as belonging to the same conceptual category, i.e. as
producing feints, and they played a similar role for producing fun.
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6.1 Limitations

Among the limiting conditions of this work is the lack of a player model that
can be used to tailor to the specific player the deceptive motion on line. For in-
stance, Machine Learning algorithms can be used to model the player’s actions
and try to maximize the level of surprise [3] regarding tower attack.

Another limitation comes from constraints that prevent quick changes in
motion direction, imposed for safety reasons, which, in turn, may produce
negative impacts on the perception of deceptive movements.

7 Conclusion and Future Works

This paper shows as deception can play a relevant role in supporting the
perception of a robot as a rational agent, at least in a setting, like a physically
interactive game, where deception is expected as a feature characteristic of
playful interaction.

We implemented a lively, enjoyable, physically interactive robogame, where
the robot was perceived by the majority of the participants as a rational agent
aiming at winning the game, even if its capabilities were strongly reduced
with respect to its possible top performance. This is an example where ef-
fective human-robot interaction is obtained by implementing robots that are
not behaving optimally, in the sense of minimizing some performance param-
eter, but that can match the expectation of interacting people to attribute
rationality to the robot companion, which is one of the aims of human-robot
interaction.

This result has been obtained thanks to two different deception algorithms,
together with the system that triggers them by analyzing the game situation.
These deceptive trajectories are not optimal to win, but obtain the desired
effect of communicating a fake target to the player. The triggering mechanism
activates deception only when this is functional to try to make the game even,
which is another important aspect to ensure interest and engagement in the
player [15].

The mechanism to decide whether and when applying a deception is based
on general models, derived from Game Theory, that could be implemented for
any competitive game, and, in general, for any interactive situation where it is
possible to estimate the values of possible goals for the interacting agents, and
the utility of a, possibly deceptive, action. In our case, the utility was oriented
to produce similar rewards for the two interacting agents, in other cases the
same framework could be adopted to obtain other effects, e.g., to maximize
the reward of one of the two agents. Moreover, this model can be applied in
any situation where deception is expected by a rational agent to support the
perception of intelligent behavior.

In the next future, we plan to finalize a system to adapt the behavior
and strategy of the robot to the perceived behavior, ability, and strategies
of the human players, in real time, so to optimize their satisfaction and fun.



26 Ewerton de Oliveira et al.

The need for this adaptation is highlighted by the lack of competitiveness
some people reported in the questionnaire, mainly for the basic version of the
game, and also by the different results obtained by the two implementations of
deceptive strategies, selected by sound algorithms, but then run in open loop.
By performing an online performance analysis it will be possible to adapt the
parameters of the robot so to aim at playing in an even situation, with or
without deception. Moreover, by performing a detailed analysis of the player’s
behavior and single actions, it would be possible to adapt the detailed way
of playing and specific actions of the robot, so to give it a sort of character
that would even more support the perception of the robot as a rational agent,
personalized on the specific user.
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