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Abstract

Kirigami, the Japanese art of paper cutting, has recently enabled the design of stretch-
able mechanical metamaterials that can be easily realized by embedding arrays of periodic
cuts into an elastic sheet. Here, we exploit kirigami principles to design inflatables that
can mimic target shapes upon pressurization. Our system comprises a kirigami sheet em-
bedded into an unstructured elastomeric membrane. First, we show that the inflated shape
can be controlled by tuning the geometric parameters of the kirigami pattern. Then, by
applying a simple optimization algorithm, we identify the best parameters that enable the
kirigami inflatables to transform into a family of target shapes at a given pressure. Fur-
thermore, thanks to the tessellated nature of the kirigami, we show that we can selectively
manipulate the parameters of the single units to allow the reproduction of features at dif-
ferent scales and ultimately enable a more accurate mimicking of the target.

Keywords: kirigami, programmable inflatables, mechanical metamaterials, shape
shifting, inverse design

Very popular among children in the form of party balloons, inflatables have also been
employed in science and engineering to enable the design of a variety of systems, including
temporary shelters [1, 2, 3], airbags [4, 5], soft robots [6, 7, 8, 9, 10, 11] and shape-
morphing structures [12, 13, 14, 15]. To design shape changing inflatable structures, two
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main strategies have been pursued. On the one hand, load-bearing inflatable structures
have been realized using inextensible membranes [1, 2, 3, 16]. On the other hand, complex
shape changes have been achieved by exploiting the flexibility of stretchable membranes
with either optimized initial deflated geometry [15, 17, 18, 19] or embedded reinforced
components [8, 9, 20, 21, 22, 23, 24].

Here, we use kirigami as a powerful tool to realize shape-shifting structures that can
mimic target shapes upon inflation. Kirigami metamaterials, realized by embedding ar-
rays of cuts in elastic sheets, have recently shown great promise as design platform for
flexible devices [25, 26, 27, 28, 29, 30, 31] and morphing structures [32, 33, 34, 35, 36].
Their interesting behaviors have been activated using a variety of strategies, including me-
chanical forces [27, 37, 38], magnetic fields [39], light [40], heat [41, 42], pre-stressed
substrates [43, 44] and external pneumatic actuators [29, 30]. Differently, here we intro-
duce a kirigami membrane metamaterial that can be used to create airtight inflatables (i.e.
kirigami balloons). This membrane comprises a kirigami sheet (Figure 1a) embedded
into a thin layer of elastomer (Figure 1b) and can be activated via inflation. We show that
the deformation of such balloons can be guided towards a target shape upon inflation by
optimizing the geometry of the kirigami cuts. Remarkably, since we have control of the
geometric features for each unit cell, the deformation of the inflatable can be programmed
at the ”pixel” level. This enables the realization of inflatables that mimic the target shape at
different scales when guided by robust algorithms to optimize their design. Although a few
strategies have been recently proposed for the optimization of kirigami-inspired metama-
terials [45, 46, 47], these all focused purely on geometry and did not consider elasticity in
the systems. Differently, in our approach we fully account for the elasticity of the material
and demonstrate how this results in an enlarged design space.

To fabricate our kirigami balloons, we first embed a computationally-designed array
of cuts into a polyester plastic sheet (Artus Corporation, NJ, with thickness t ∼ 76.2µm,
Young’s modulus E = 4.33 GPa and Poisson’s ratio ν = 0.4). We consider a pattern of mu-
tually orthogonal slits of width b (Figure 2d) since this particular pattern provides a wide
range of tunability for the unit cell’s Poisson’s ratio (Figure S17, Supplementary Informa-
tion), although our approach can be applied to any kirigami geometry. The selected unit
cell has width L and height H and comprises four rectangular domains connected by hinges
of width δ1 and δ2 (in the horizontal and vertical direction, respectively). Throughout the
study we consider L=12 mm and δ2/L = 0.03 as fixed parameters and tune the mechanical
response of the unit cells by varying H/L ∈ [0.5 ∼ 2.0] and δ1/L ∈ [0.02 ∼ 0.18]. To
turn the kirigami sheet into an inflatable, we firstly roll it into a cylindrical shell and glue
acrylic caps to both ends. Then we slowly rotate the kirigami shell in a bath of uncured
silicone rubber (EcoflexT M 00-50, Smooth-On, with initial shear modulus µ = 40.5 kPa)
for 20 minutes. This forms a uniform coating with thickness t ∼ 0.5 mm that embeds the
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kirigami sheet completely (Figure 1c; Section S1 and Movie S1, Supporting Information).
Once the elastomer is fully cured, we inflate the system by providing pressurized air and
record the deformation with a digital camera (SONY EX100V).

To demonstrate the potentials of inflatable kirigami in Figures 1e-g we report experi-
mental snapshots for three kirigami balloons comprising nz = 20 and nφ = 8 unit cells in
the axial and circumferential direction, respectively. In the first design, all unit cells are
identical and characterized by δ1/L = 0.03 and H/L = 0.5. As one would expect, upon
inflation, this structure deforms homogeneously along its soft axis and mostly elongates
(Figure 1e). However, by increasing δ1/L to 0.18 for a single column of unit cells, we
transform the deformation mode from extension to bending and obtain a curved profile
upon inflation (Figure 1f). Further, thanks to the tessellated nature of the kirigami, we can
choose to distribute the unit cells with δ1/L= 0.18 on different columns within the struc-
ture and achieve a complex coupled bending-twisting deformation (Figure 1g; Movie S2,
Supporting Information).The variation of the structures’ deformation over multiple load-
ing cycles has also been tested and found negligible (Figure S6, Supporting Information).
As such, these results highlight not only the flexibility and potential of our approach, but
also the richness of the design space. In the remainder of this paper, we combine Fi-
nite Element (FE) analyses and optimization to efficiently explore the myriad of possible
designs and identify spatially varying distributions of geometric parameters resulting in
target shape changes upon inflation.

We start by focusing on the design of kirigami balloons that mimic target axisymmetric
profiles upon inflation, such as the jar shown in Figure 2b. First, we use FE simulations to
characterize how local changes in hinge width δ1 and unit cell height H affect the macro-
scopic deformation of the system. Since the deformation of our axisymmetric inflatables
(for which all unit cells in each row are identical) can be obtained by superimposing the re-
sponses of the individual rows (Figure S10, Supporting Information), we simulate a single
unit cell with suitable boundary conditions applied on its edges (Section S3.1, Supporting
Information). In Figure 2a we report the numerical evolution of the homogenized axial
(εz) and circumferential (εφ) strains as a function of H/L and δ1/L for unit cells with ini-
tial curvature κ = 2π/(nφL) = π/(4L) subjected to a pressure P = 20 kPa. The contour
plots indicate that εz is inversely proportional to both δ1/L and H/L, whereas εφ is mainly
affected by H/L and increases monotonically as H/L becomes larger. It is worth notic-
ing that although these results were obtained with a fixed number of unit cells along the
circumference, we can show that they also describe the deformation of unit cells with ar-
bitrary curvature κ subjected to a normalized pressure P = P/κ which equals to P=305.6
kPa·mm for our selected parameters. In fact, unit cells with same δ1 and H but different
curvature κ experience the same state of deformation if subjected to the same normalized
pressure P (Section S3.3, Supporting Information).
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Once we understand how the geometrical features affect the deformation of the unit
cells upon inflation, we can search for arrangements that minimize the mismatch between
the shape of the kirigami balloon inflated at a normalized pressure P = 305.6 kPa·mm and
a target surface of revolution defined by a profile A (Figure 2b). To identify the optimal
height of the i-th row of unit cells, Hi, and the corresponding ligament width, δi

1, we
minimize

Z = arg min
δi

1,H
i

{
|znz − HA| +

nz∑
i

d
[
(ri, zi), A

] }
, (1)

where HA is the total height of the target profile and d [x, A] represents the distance be-
tween a point with coordinates x and the closest point on the target profile [48]. Moreover,
ri and zi denote the radial and axial coordinates of the center point of the i-th row of unit
cells in the inflated configuration, which are given by

ri =
nφL
2π

(1 + εi
φ), (2)

and

zi =
Hi(1 + εi

z)
2

+

i−1∑
j=1

H j(1 + ε j
z). (3)

Note that εi
φ and εi

z are the homogenized circumferential and axial strain the unit cells
undergo in the i-th row upon inflation, which, for each evaluation of the objective func-
tion, are obtained by linearly interpolating the FE results of Figure 2a. Finally, we solve
the optimization problem described by Eqs. (1)-(3) using a Matlab implementation of
the Nelder-Mead simplex algorithm with bounds applied to all variables (i.e. we impose
Hi/L ∈ [0.5 ∼ 2.0] and δi

1/L ∈ [0.02 ∼ 0.18]) [49].
In Figure 2c we show an inflatable kirigami designed with nz = 10 and nφ = 25

that mimics the jar of Figure 2b when subjected to a pressure P = 6.4 kPa (resulting
in P = 305.6 kPa·mm). Note that the parameters nz and nφ define the resolution of the
programmed deformed shape. We explore different combinations of nz and nφ (Figure
S11, Supporting Information), and choose the one that provide a small mismatch from
the target shape without complicating the fabrication process. As shown in Figures 2d, the
solution identified by the algorithm for nz = 10 and nφ = 25 comprises unit cells with large
height H between the third and sixth rows (to maximize the radial expansion) and with
large δ1 in the seventh, eighth and ninth row (to minimize both axial and circumferential
strains). We find that, using the optimized set of parameters, both the FE simulations
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and the physical samples closely mimic the target shape upon inflation (Figures 2e and f;
Movie S3, Supporting Information), confirming the validity of our approach.

Next, we demonstrate how to design kirigami balloons that mimic a planar curvilinear
path P upon inflation. A bending deformation requires unit cells with different geometric
features to be arranged in the same row of the kirigami pattern. Therefore, guided by
the results of Figures 1f and 2a, we design the i-th row of the kirigami to include one
unit cell with H/L = 0.5 and δ1/L=0.18 (shown in purple in Figure 3a) and (nφ − 1)
unit cells with the same height (i.e. with H/L = 0.5) and variable δi

1/L (shown in green
in Figure 3a). However, since the coexistence of different unit cells on the same row
of the kirigami causes non-negligible coupling between these units in the circumferential
direction, we cannot directly use the results of Figure 2a to predict the effect of δi

1 on the
bending deformation (Figure S12, Supporting Information). Instead, we simulate a full
ring with nφ = 8 when subjected to P=20 kPa (Section S3.2, Supporting Information) and
extract the axial strain εz and the bending angle ∆θ (Figure 3a). In Figure 3b we show
the evolution for both εz and the ∆θ as a function of δ1/L. The results indicate that, as
the hinge width δ1 increases, both εz and ∆θ monotonically decrease (i.e. the bending
deformation become smaller).

To identify the design of a kirigami balloon that mimics a prescribed planar curvi-
linear path P upon inflation (Figure 2c), we assume that the final shape of the inflated
kirigami structure can be captured by linearly combining the response of nz rings. We
then determine both the optimal δi

1 for the i-th row and the location of the stiffer unit cell
(with δ1/L = 0.18) in the ring by using the Melder-Nelson algorithm with bounds [49].
Specifically, we minimize

Z = arg min
δi

1

{∣∣∣∣ nz∑
i=1

hi − LP
∣∣∣∣ +

nz∑
i

d
[
(xi, zi), P

] }
, (4)

where hi = Hi(1 + εi
z) and LP is the total length of the curve P. Further, xi and zi denote

the position of the center line at the bottom of the i-th ring which can be expressed as

xi =

i∑
j=1

h j sin θ j, and zi =

i∑
j=1

h j cos θ j (5)

where

θ j =
cos φ j∆θ j

2
+

j−1∑
k=1

cos φk∆θk. (6)

Note that the angle φi points at the location of the stiffer cell within the i-th ring (Figure
3a). It is worth noticing that in the case of 2D curvilinear paths (as those considered here),
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this angle can only assume two values: φi = 0 or φi = π. In fact, our model outputs
φi = 0 if, for the i-th ring, the bending angle ∆θ defines a positive curvature (e.g. the third
segment in Figure 3d) and φi = π if defines a negative curvature (like the first and second
segments in Figure 3d).

In Figure 3e we consider an inflatable design with nz = 50 and nφ = 8 that mimics the
shape of the hook shown in Figure 3c when subjected to a pressure P = 20 kPa (resulting
in P̄ = 305.6 kPa·mm). As shown in Figures 3f and g, using the optimized design, both
the FE simulation and the experimental model morph from a cylinder to the target hook
path upon inflation (Movie S4, Supporting Information).

While in Figures 2 and 3 we focused on inflatable that purely expand or bend, the
combination of these two classes of deformations enables the mimicking of a multitude
of shapes. As an example, let us consider the squash shown in Figure 4a as target shape.
Firstly, we focus on top portion of the fruit, which predominantly bends, and use Eq. (4)
to identify the optimal geometric parameters for the corresponding part of the kirigami
balloon (Figure 4b - top). Secondly, we consider the bottom part of the squash, which
follows an axisymmetric profile, and use Eq. (1) to design the corresponding kirigami
pattern (Figure 4b - bottom). However, the resulting optimized design does not closely
match the target shape (Figure 4c). Specifically, while the top part of the fruit is success-
fully reproduced by the optimized inflatable, this fails to mimic the localized bulges near
the tip. Moreover, the expansion of the optimized balloon in the lower part is physically
limited in the radial direction, resulting in an unsatisfactory transformation.

Nevertheless, we can overcome both limitations by manipulating the geometrical fea-
tures of the unit cells even more. For example, by removing entire unit cells from the
top part of the kirigami pattern (see region highlighted in blue in Figure 4d), we are able
to obtain localized regions that bulge upon inflation, mimicking the real features of the
fruit (Figure 4d - top). Following the same strategy, we can also improve the circumfer-
ential stretchability of the bottom part of the structure by selectively removing strips from
the kirigami sheet. To determine the width of these sacrificial portions, we first quantify
the circumferential strain that a strip of elastomeric material undergoes at a pressure of
P = 10 kPa (resulting in P̄ = 305.6 kPa·mm, since in our design nφ = 16). We assume that
such strip behaves as an inflated thin elastomeric cylindrical balloon with axial expansion
constrained by the kirigami and obtain its circumferential strain, εe

φ, by solving [50, 51]
(Section S4, Supporting Information)

P =
t
r

(λe
φ(1 + εz))−1∂Ŵe

∂λe
φ

, (7)

where λe
φ = εe

φ + 1 and εz is the axial strain of the kirigami (which is provided in Figure
2a). Moreover, t and r denote the thickness and radius of the strip in the undeformed
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configuration (for our design r = nφL/(2π) = 30.56 mm and t = 0.5 mm) and Ŵe is the
strain energy function used to captured the response of the rubber (in this study we use a
Gent model [52]). Once εe

φ is obtained, the circumferential strain εtot
φ of a kirigami unit

cell with a removed elastomeric strip of width we can be estimated as

εtot
φ =

(L − we)εφ + weε
e
φ

L
, (8)

where εφ is the circumferential strain of the kirigami unit cell, also provided in Figure 2a.
To find the optimum we for our balloon, we focus on the kirigami row that is closest

to the squash’s maximum circumference (row 7th with H = 24mm and δ1/L = 0.03). For
this specific unit εz = 0.054 and εφ = 0.428, which results in εe

φ = 3.59 according to Eq.
(7). Further, since we must reach εtot

φ = 1.094 in the 7th row upon inflation, we obtain
we = 2.53 mm from Eq. (8). Guided by these calculations, we use FE simulations to
predict how the response of a kirigami unit cell is affected by the removal of a kirigami
strip of width we = 2.53 mm. We find that the deformation of the inflatable in the axial
direction is strictly coupled with the location of the removal within the unit cell (Figure
S14a, Supporting Information). Since our objective is to achieve the target εtot

φ without
compromising εz, we next consider two neighboring unit cells and remove a strip of width
2we from one, while leaving the other intact. The results for this case improve considerably
(Figure S14b, Supporting Information). However, if the width of the elastomeric strip is
kept constant in all rows, the inflated balloon fails to match the squash profile as the radial
expansion is almost constant along the length (Figure S15c, Supporting Information). To
further improve the response of our balloon, we choose we to vary in each row. Specifically,
we assume that 2wi

e = L/2 − 2δi
1 (note that w7

e = 2.64mm, which is very close to the
analytically calculated value), since this enables us to incorporate the information from
our optimization algorithm and fabricate the inflatable by simply removing the hinges
highlighted in grey in Figure 4c. Results for this final design are shown in Figure 4d and
e and show that our design nicely mimic the target shape upon inflation – including the
localized bulges on the top part of the bending balloon – in both the FE model and the
physical prototype (Movie S5, Supporting Information). Further, to demonstrate that our
approach is general and can be used to mimic a range of shapes, we report an optimized
design for a cylindrical structure that morphs into a calabash in the supporting information
(Figure S19).

To summarize, in the present work we introduced the concept of inflatable kirigami,
shape morphing systems that combine a kirigami shell and an elastomeric membrane. We
showed that the kirigami shell drives the global deformation of the inflatable and that we
can control this deformation by carefully designing its geometric features. We demon-
strated this by creating inflatable kirigami balloons that can mimic a variety of axisym-
metric shapes and curvilinear trajectories and also capture local features such as bulges.
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This multiscale mimicking is enabled by the tessellation nature of the kirigami metama-
terial, which allows to easily tweak the local parameters – or even remove parts of the
design – to boost the deformation locally. Although our approach enable us to reproduce a
variety of targets, there are limitation to the shapes one can mimic. Firstly, the maximum
radial expansion of the kirigami balloons upon inflation is limited to 1.43 times the initial
radius, using the data set shown in Figure 2a. This limitation can be enlarged by using the
removal approach through the semi-analytical model. Additionally, the maximum axial
extension upon inflation is 1.46 times of the initial length. It is worth noticing that a bend-
ing kirigami balloon present a upper limit on the maximum achievable curvature (e.g. 14.4
1/m for rings with 8 unit cells with L = 12 mm). However, increasing the number of unit
cells per unit length of the target provides more feasibility to mimic curvilinear path with
larger curvature. Furthermore, the kirigami structure can not mimic convex surfaces in
the circumferential direction (e.g. the ridges on the squash). In principle, inflatable struc-
tures are not able to form ridges upon inflation without additional constraints (e.g.internal
strings or braces). Lastly, it should be noticed that we only used cylinders as starting de-
flated shape for our structures. This limits our approach to the mimicking of shapes within
the same “family”, compatibly with the mechanical limitations of the structures. However,
the approach is expandable to other initial shapes, conditionally to the re-running of the
database of solution for the new unit cells and super-cells. As such, our work provides
a new platform for shape morphing devices that could support the design of innovative
medical tools, actuators and reconfigurable structures.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.
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Figure 1: Inflatable kirigami. a) A kirigami sheet exhibits large deformation when stretched. b) Deformation
of an elastomeric balloon upon inflation. c) Fabrication process. A kirigami shell is rotated in an uncured
elastomer bath. Then, the uniformly coated kirigami shell is kept rotating until the elastomer is fully cured.
d) Schematic of the kirigami pattern used in this study. e-g) Deformation of kirigami balloons with 20 × 8
unit cells when subjected to P = 20 kPa. Three design are considered with e) all identical unit cells (with
δ1/L = 0.03 and H = L/2); f) a single column of unit cells with δ1/L = 0.18; g) unit cells with δ1/L = 0.18
distributed on different columns. Scale bars = 30 mm.

12



Figure 2: Targeting axisymmetric profiles. a) Evolution of the axial strain, εz, and the circumferential strain,
εθ, as a function of δ1/L and H/L for unit cells with initial curvature κ = 2π/(nφL) = π/(4L) subjected to a
pressure P = 20 kPa. b) A jar is selected as target profile. c) Schematic of axisymmetric profile optimization
model. d) Optimal design for an inflatable with nz = 10 and nφ = 25 that mimics the jar when subjected
to a pressure P = 6.4 kPa (Table S1, Supporting Information). e-f) Snapshots of the optimized design after
pressurization. The orange line indicates the target profile. Both e) FE and f) experimental results are shown.
Scale bars = 30mm.
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Figure 3: Targeting curvilinear paths. a) Schematic of a kirigami ring comprising one unit cell with H/L =

0.5 and δ1/L = 0.18 (shown in purple) and nφ-1 = 7 unit cells with H/L = 0.5 and δ1/L < 0.18 (shown in
green). The deformation of the ring can be characterized by the axial strain εz and the bending angle ∆θ. b)
Evolution of axial strain εz and bending angle ∆θ as a function of the normalized hinge width δ1/L for a ring
with initial curvature κ = π/(4L) subjected to a pressure P = 20 kPa. c) A hook is chosen as target shape. d)
Schematic of curvilinear path optimization model. e) Optimized design for an inflatable with nz = 50 and nφ
= 8 that mimics the hook when subjected to a pressure P = 20 kPa (Table S2, Supporting Information). f-g)
FE and experimental snapshots of the optimized inflatable kirigami structure when subjected to a pressure P
= 20 kPa. Scale bar = 30mm.
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Figure 4: Targeting complex shapes. a) A squash is chosen as target shape. The flowchart instructs on
the steps to follow in order to optimize for both non-axisymmetric and axisymmetric parts. b) Optimized
design for an inflatable with nz=39 and nφ=16 that mimics the squash when subjected to a pressure P=10
kPa (Table S3 and S4, Supporting Information). The geometric parameters for the top 23 rows are identified
using Eq. (1), while those for the bottom 16 rows are obtained using Eq. (4). c) Numerical snapshot of the
optimized design after pressurization. The shape of the fruit is not fully captured. d-e) To improve the design
we further manipulate the unit cell and remove portions of the kirigami pattern. The bulges can be obtained
by removing entire unit cells at the desired location and the circumferential strain in the bottom part can
be increased by removing strips. Both d) FE and e) experimental snapshots of the kirigami inflatable show
improved mimicking of the target. Scale bar = 30 mm.
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S1. Fabrication

Our kirigami balloons comprise a thin kirigami sheet embedded into an
elastomeric cylindrical shell.

S1.1. Kirigami sheets

The kirigami sheets are fabricated by laser cutting an array of cuts into
polyester plastic sheets (Artus Corporation, NJ) with thickness ∼ 76.2µm,
Young’s modulus E = 4.33 GPa and Poisson’s ratio ν = 0.4. In this study we
consider a pattern of orthogonal rectangular cuts which introduces a network
of rectangular domains connected by hinges of width δ1 and δ2 (see Fig. S17).
In all our analyses and experiments, we consider a unit cell with width L = 12
mm, vertical hinges with width δ2 = 0.03L and cuts with width b = 1.5 mm.
We tune the mechanical response of the system by varying the height of the
unit cell (we consider H ∈ [0.5 ∼ 2.0]L) and the width of the horizontal
hinges (we consider δ1 ∈ [0.02 ∼ 0.18]L). Note that in our design the cuts
are considerably wider than in classic kirigami cuts. This is necessary in
order to allow the elastomer to infiltrate in the slits and thereby generate a
membrane that can support large deformations during inflation.

Figure S1: Kirigami unit. Schematic of our kirigami pattern with geometric parameters.

S1.2. Kirigami balloons

To make our kirigami cylinders inflatable, we embedd them into an elas-
tomeric shell made out of Ecoflex (EcoflexTM 00-50, Smooth-On, PA) pre-
pared by mixing the two components provided in the package in a 1:1 weight
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ratio with a centrifugal mixer (ARE 310, Thinky, CA). In this Section, we
first describe our method for fabricating balloons with kirigami sheets that
are fully connected and then focus on the case of kirigami sheets with dis-
connected islands.

Balloon based on fully connected kirigami sheets. To fabricate a
balloon based on a fully connected kirigami sheet we start by rolling the
kirigami sheet to form a cylinder and use needles to facilitate the alignment
of the two opposite edges (Figures S2a and b). The edges are then glued
together using ethyl 2-cyanoacrylate glue (Krazy Glue, NC, Figure S2c).
Once the shell is ready, two acrylic caps are glued to the cylindrical ends
using the same glue (Figure S2d). Finally, the elastomer is poured in a tray
to form a shallow bath in which the kirigami shell is manually rotated in the
elastomeric for 20 mins in order to assure a uniform coating of the plastic
surface ( Figure S2e). The kirigami balloon is kept on constant rotation for
∼ 4 hours until the elastomer is completely cured (Figure S2f). Note that
the entire fabrication process is shown in Supporting Movie S1.

Figure S2: Fabrication of inflatables based on fully connected kirigami sheets.
(a) The kirigami pattern is laser cut into the polyester sheet. (b) The two edges of the
sheet are brought together using needles to facilitate alignment. (c) The two edges are
glued together using ethyl 2-cyanoacrylate glue. (d) Two acrylic caps are glued to the
cylinder ends. (e) The kirigami shell is manually rotated in a elastomeric bath for 20
mins. (f) The kirigami shell is mechanically rotated until cured.

Balloon based on kirigami sheets with disconnected islands. To
fabricate a balloon based on a disconnected kirigami sheet with islands, we
start by casting an elastomeric layer with thickness of about 0.3 mm. In
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Figure S3: Fabrication of inflatables based on disconnected kirigami with is-
lands. (a) The first elastomer layer is created. (b) The kirigami pattern is laser cut
into the polyester sheet positioned on top of the elastomer layer. (c) The cut-out pieces
are removed. (d) The second plastic frame is applied and the second elastomer layer is
added. (e) After the curing process is completed, the kirigami membranes is obtained. (f)
The two edges of the sheet are brought together using needles to facilitate alignment and
glued together using ethyl 2-cyanoacrylateglue. (g) A layer of elastomer is deposited on
the inside of the cylindrical shell at the connection between the two edges. (h) The same
is repeated on the outside of the cylindrical shell. (i) Two acrylic caps are glued to the
cylinder ends and sealed with a layer of elastomer.
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order to achieve this, a plastic frame (0.4 mm thick) is clamped on a thicker
acrylic sheet (6.35 mm thick) and it’s positioned on a flat surface. The
elastomer is then poured inside the plastic frame and it equally distributes
under gravity filling the frame up to the border (Figure S3a). After the
elastomer has cured, the frame is placed in the laser cutter and a polyester
plastic sheet is positioned on top of it. At this point an array of cuts is
laser-cut into the plastic sheet to form the kirigami structure (Figure S3b).
Note that the laser does not cut through the elastomer and that, since the
polyester sheet adheres to the elastomer, all the kirigami cells stay in place
once cut. For this reason, the cut-out pieces have to be removed by hand
after the cutting (Figure S3c). Afterwards, a second plastic frame (0.4 mm
thick) is clamped on top of the previous one (locking the kirigami sheet in
place) and a second layer of elastomer is casted on top of the kirigami sheet
(Figure S3d). After the second layer is cured and the kirigami plastic sheet is
completely embedded in the elastomer, the framing is removed (Figure S3e).
The composite sheet is then rolled into a cylindrical shell using needles to
facilitate the alignment of the two opposite edges. The edges are then glued
together using ethyl 2-cyanoacrylate glue (Krazy Glue, NC, Figure S3f). This
is possible since no elastomer is present on the two edges, since the edges of
the kirigami sheet got clamped between the two plastic frames to prevent
deposition of elastomer on them. Once the gluing process is completed a
layer of elastomer is deposited on the inside of the cylindrical shell where
the two edges are connected (Figure S3g). To assure a uniform thickness in
this area, the elastomer is levelled by scraping off the superfluous material
that overflows outside the groove created by the previously cured elastomer.
The same process is repeated on the outside of the cylindrical shell (Figure
S3h). Once the shell is ready, two acrylic caps are glued to the cylindrical
ends Figure S3i). The two ends are also covered by an additional layer of
elastomer to assure that they are air-tight.

S2. Experiments

In our experiments we use both air and water to inflate the kirigami
balloons. Specifically, the shape mimicking experimental results reported in
Figures 1e-g, 2f, 3g and 4e are obtained by inflating the structures with air,
whereas the experimental validations shown in Figure S4 are obtained by
inflating them with water to avoid compressibility of air.
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Inflation with air. For the shape morphing mimicking, we use air to in-
flate the kirigami structure to a target pressure. Specifically, we connect
our inflatable system to an air line through a tube and use a pressure reg-
ulator (B74G-4AK-AD3-RMN, IMI Norgren Inc) to regulate the air pres-
sure. The pressure inside the structure is monitored by a pressure sensor
(MPXV7025DP, Freescale Semiconductor Inc) and slowly increased until the
target pressure is reached. During the tests the deformation of the structures
is recorded by a high-resolution camera (SONY EX100V) at a frame rate of
30 fps.

Inflation with water. When using water to inflate the balloon, we sub-
merge the entire structure in a water tank to eliminate the influence of gravity
and compressibility of air. We first fill the balloons with the amount of wa-
ter corresponding to the initial volume of the cavity. Then, we use a syringe
pump (Pump 33DS, Harvard Apparatus) to displace an additional volume of
water ∆V into the balloons at 20 mL/min and record the pressure using a
pressure sensor (MPXV7025DP, Freescale Semiconductor Inc). During these
tests we record the motion of the structures using a high-resolution camera
(SONY RX100V) at a frame rate of 30 fps and extract their local defor-
mation using an open-source digital image correlation and tracking package
[1]. Specifically, we track the position of 9 markers uniformly placed along
the length of the cylindical balloons (Figure S4a and e) and use these data
to characterize both the evolution of the axial strain and the curvature as a
function of ∆V. Focusing on the i-th and (i+1)-th markers (with i = 1, ..., 8),
the axial strain εz (of the central line) is calculated as

εz =
zi+1 − zi
Zi+1 − Zi

− 1, (S1)

where zi and Zi denote the coordinate in z-direction of the i-th marker in the
deformed and undeformed configuration, respectively. As for the curvature
of the structures, we obtain it by fitting a circle to the (xi, zi) data points
(with i = 1, ..., 9 - xi denoting the coordinate in x-direction of the i-th marker
in the deformed configuration) via a direct least-square algorithm[2].

In Figure S4 we show experimental results for two kirigami balloons. In
the first design, all unit cells are identical and characterized by δ1/L = 0.03
and H/L = 0.5. As one would expect, this structure deforms homogeneously
upon inflation and mostly elongates. In particular, we find that the axial
strain linearly increase with the applied pressure (see Figure S4d). However,
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by increasing δ1/L to 0.18 for a single column of unit cells (purple unit
cell in Figure S4e), we transform the deformation mode from extension to
bending and obtain a curved profile upon inflation (Figure S4f). Further,
by monitoring the deformation of the actuator, we find that the curvature
increases almost linearly with the applied pressure (see Figure S4h).

Figure S4: Deformation of kirigami balloons. a-d) Axisymmetric deformation of a
structure that consists of identical unit cells (H = 0.5L, δ1 = 0.03L and nφ = 8). e-h)
Non-axisymmetric deformation of a structure that consists of 7 columns of unit cells with
H = 0.5L and δ1 = 0.036L and 1 column of unit cells with H = 0.5L and δ1 = 0.18L. The
plots in d) and h) report the axial strain and the curvature against pressure, respectively,
for the experiments, the unit cell/super-cell simulations and the full structure simulations.
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Figure S5: Ecoflex 00-50. From left to right: Experimental and numerical snapshots
of the uniaxial test conducted to characterize the mechanical response of Ecoflex 00-
50. Comparison between the force - strain curves measured in our experiments (solid
line) and predicted by our FE simulations when using a Gent model with µ = 40.5 kPa
and Jm = 20.5 (dashed line). The material parameters are derived by fitting the force-
displacement curves of experiments and FE simulations via the least square method.
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The variation of the structures’ deformation over multiple loading cycles
has also been tested in Figure S6. The results show the resilience of the
kirigami balloons to multiple cycles. We cyclically inflated an extending
actuator and tracked the axial strain over different cycles. We noticed a
negligible change in the strain value when P = 20 kPa, from 0.43 in the
first cycle to 0.47 after 70 cycles. We also cyclically inflated the structure in
Figure 2a (main manuscript) and show that the profile variation over multiple
cycles is negligible (with P = 6.4 kPa).

Figure S6: Examples of cycling tests on kirigami balloon. a) Cycling testing of
an extending kirigami balloon with nz = 20, nφ = 8, H/L=0.5 and δ1/L=0.03. The
axial strain εz at P = 20 kPa is reported per number of cycles. b) Cyclic testing of the
optimal design for an inflatable with nz= 10 and nφ = 25 that mimics a chosen jar when
subjected to a pressure P = 6.4 kPa. Experimental snapshots and profiles of the structure
are reported for different cycles at P = 6.4 kPa.
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S3. Finite Element analyses

To get a better understanding of how the inflatable kirigami actuators
deform upon inflation, we conduct finite element (FE) simulations using the
commercial package ABAQUS 6.14/Standard [3]. In all our analyses, we
model the inflatable kirigami as a cylindrical shell and discretize the portion
of the shell on which there is the plastic sheet (used to realize the kirigami
sheet) with four-node general-purpose shell elements with reduced integra-
tion and hourglass control (S4R element type) and that where there is only
elastomer (i.e. the gaps of the kirigami) with three-dimensional, four-node
membrane elements (M3D4 element type). Guided by experiemntal mear-
ments, the thickness of the shell and membrane elements are set as 76.2µm
and 0.5mm, respectively. Moreover, since the plasticity of the sheet has little
effect on the behavior of kirigami balloon, the response of the kirigami sheet
is captured using a linear elastic material model (with E = 4.33GPa and
ν = 0.4). For the elastomer instead we use an incompressible Gent material
model [4] with strain energy density function W given by

W = −µJlim
2

ln

(
1− I1 − 3

Jlim

)
, (S2)

where µ and Jlim represent the small strain shear modulus and a material
parameter related to the limiting stretch, respectively, and I1 = tr(FTF),
F being the deformation gradient. We find that the response of Ecoflex is
accurately captured using µ = 40.5 kPa and Jlim = 20.5 (Figure S5). An in-
house ABAQUS user subroutine (UHYPER) is used to define the hyperelastic
material behavior given by Eq. [S2] in the FE simulations.

The response of the structures is simulated conducting non-linear static
simulations (*STATIC module in ABAQUS with NLGEOM on). To facilitate
convergence we also add volume-proportional damping to the model (using
the option STABILIZE in ABAQUS) and set the dissipated energy fraction
equal to 2e-4 and the maximum ratio of stabilization to strain energy equal
to 0.05.

We start by conducting full 3D FE simulations of our inflatable kirigami.
To remove rigid body translations and rotations, we fix all nodes located
on the top surface. Further, since all the kirigami inflatables considered
in this work (except the one reported in Figure 1g of the main text) are
symmetric with respect to the x-z plane, we only simulate half structure
and apply symmetric boundary conditions to all node on the two vertical
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edges (i.e. we impose U2 = UR1 = UR3 = 0, where U2 is the displacement
in y direction and UR1 and UR3 denote the rotational degrees of freedom
in x and z directions, respectively). All 3D models are inflated via a fluid
cavity interaction with an hydraulic fluid (of density ρ = 1000 kg/m3 and
bulk modulus B = 2.2 GPa). The volume-controlled inflation is driven by a
fictitious thermal expansion of the hydraulic fluid, relating to the change in
volume ∆V in the cavity through

∆V

V cav
0

= 3αT∆T, (S3)

where ∆T is the change in temperature, αT is the coefficient of thermal
expansion of the fluid and V cav

0 is the initial volume of the cavity. In the
simulations, we set αT = 1 [1/K] and gradually increase the temperature
∆T until 0.1.

To validate the FE models we simulate the two designs shown in Figure
S4a and e, and compare the predicted axial strain-pressure (Figure S4e) and
curvature-pressure relations (Figure S4e) with those measured in our exper-
iments. The great agreements between experiments and simulations confirm
the accuracy of our model. However, since the full structure simulations are
computationally expensive, to characterize the design space we use simula-
tions based on unit cells and super-cells. The details of these simulations are
presented below.

S3.1. Inflatable kirigami that mimic axisymmetric profiles

In this Section we provide details for the simulations that we conduct to
facilitate the design of inflatable kirigami that mimic axisymmetric profiles.

Unit cell analysis. To reduce the computational cost, we consider a curved
unit cell (see Figure S7) and apply the following periodic boundary conditions
on its four edges

uLi
α = uRi

α ,

θLi
α = θRi

α ,

uTiα = uBi
α + uOα ,

θTiα = θBi
α , i = 1, 2, ...N (S4)

where ujα and θjα (α = ρ, φ, z and j = Li, Ri , Ti, Bi) are respectively the
displacement and rotational degrees of freedom in the radial (ρ), circumferen-
tial (φ) and axial (z) directions of the i-th pair of nodes periodically located
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Figure S7: Schematic of the unit cell.

on the right (R), left (L), top (T) and bottom (B) edges of the unit cell.
Moreover, uOα denotes the displacement in α-direction of a reference point
O that is used to apply the loading and N is the number of pairs of nodes
periodically located on the boundary of the unit cell.

The unit cell is loaded by applying a pressure P (with P ∈ [0, 20] kPa)
directly on its inner surface. Moreover, to account for the pressure acting on
the two caps of the balloons, a concentrated force in axial direction is applied
to the reference point O with magnitude

Fz = AP, (S5)

where A is the cross-sectional area of the circular sector defined by the unit
cell in the deformed configuration (note that A is calculated at each time step
using the coordinates of the nodes on the top/bottom edges and updated
through a user subroutine UAMP).

In Figure S4d we compare the predictions of our unit cell analyses (for
a unit cell with H = L/2 and δ1/L = 0.03) with the corresponding results
obtained when simulating the entire structure. The great agreement between
the two sets of data confirm the validity of our unit cell analyses.

Super-cells comprising nz × 1 unit cells. To validate the results of our
optimization algorithm, we consider super-cells comprising nz × 1 unit cells
and apply the following periodic boundary conditions to their left and right
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edges

uLi
α = uRi

α ,

θLi
α = θRi

α , i = 1, 2, ...N (S6)

where N denotes the number of pairs of nodes periodically located on the
boundary of the unit cell and ujα and θjα (α = ρ, φ, z and j = Li, Ri) are
respectively the displacement and rotational degrees of freedom in the radial
(ρ), circumferential (φ) and axial (z) directions of the i-th pair of nodes
periodically located on the right (R) and left (L) edges of the strip. Further,
we completely fix the bottom edge of the super-cell, whereas we allow the
top edge to move uniformly in axial direction (this is achieved by coupling all
degrees of freedom to a reference point O through a multi-point constraint).

As for our unit cell simulations, the super-cells are loaded by applying a
pressure P (with P ∈ [0, 20] kPa) directly on their inner surface. Moreover, to
account for the pressure acting on the two caps of the balloons, a concentrated
force in axial direction is applied to the reference point O with magnitude

Fz = AP, (S7)

where A is the cross-sectional area of the circular sector defined by the super-
cell in the deformed configuration (note that A is calculated at each time step
using the coordinates of the nodes on the top/bottom edges and updated
through a user subroutine UAMP).

S3.2. Inflatable kirigami that mimic curvilinear paths

In this Section we provide details for the simulations that we conduct
to facilitate the design of inflatable kirigami that mimic target curvilinear
paths.

Super-cells comprising 2 × nφ/2 unit cells. Since the coexistence of
different unit cells on the same row of the kirigami causes non-negligible cou-
pling between these units in the circumferential direction, we cannot directly
use our unit cell FE results to predict the effect of the kirigami geometry
on the bending deformation. Instead, we simulate a substructure compris-
ing 2 × nφ/2 unit cells (Figure S8) and a rigid cap connected to the top
(highlighted in blue in Figure S8). Note that the rigid cap is introduced in
order to capture the axial extension introduced by the applied pressure and
that we use two rings to minimize boundary effects (we extract the bending
deformation from the bottom ring).
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Figure S8: Schematic of our super-cells comprising 2 × nφ/2unitcells. Each ring
comprises two types of unit cell: cell I (shown in green - with H/L = 0.5 and δ1/L = 0.03)
and cell II (shown in purple - with H/L = 0.5 and δ1/L = 0.18). a) Schematic of our
model. b) Definition of the bending angle θ. c) Schematic of path B from which we extract
the curvature κb.

We define symmetric boundary conditions on all edges of the structure
(i.e. we impose U2=UR1=UR3=0 on the vertical edges and U3=UR1=UR2=0
on the bottom ones). To pressurize the super-cell, we apply a pressure load
P (0-20 kPa) directly on the inner surface of the structure.

Finally, from each simulation we focus on the bottom unit cell and extract
the axial strain, εz, and curvature, κb, of the central axis of the cylinder.
However, since we cannot extract the deformation of the central axis directly,
instead we focus on the path B defined as the intersection between the ring
and the bending symmetry plane plane y-z (see Figure S8c). We extract the
x and z coordinates of the path B before and after inflation and use them
to calculate its length in the deformed (h) and initial (H) states. We then
obtain the nominal axial strain εz as

εz =
h−H
H

. (S8)

Finally, to obtain the bending curvature κb upon inflation we fit the deformed
path B to a circle using the Pratt method [2]. Afterwards, the bending angle
of each ring is calculated as (see Figure S8b)

∆θ = (1 + εz)Hκb. (S9)

In Figure S4h we compare the predictions of our super-cell analyses (ring
with H = L/2, comprised by one unit cell with δ1/L = 0.18 and all other unit
cells with δ1/L = 0.03, nφ = 8) with the results obtained when simulating
the entire structure. The agreement between the two sets of data confirms
the validity of our super-cell analyses.
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S3.3. Effect of curvature on the results reported in Figures 2a and 3b

In all our parametric studies (whose results are reported in Figures 2a
and 3b of the main text) we consider nφ = 8 unit cells arranged along the
circumference of the cylinder. However, it is important to note that they
also describe the deformation of kirigami balloons with arbitrary curvature
κ subjected to a normalized pressure P̄ = P/κ = 4PL/π.

To demonstrate this important point, we first focus on kirigami balloons
that deform axisymmetrically. According to the theory of thin-walled pres-
sure vessels [5] the average stresses of these structures in axial (σ̄z) and
circumferential (σ̄φ) direction are given by

σ̄z =
πr2P

2πrt
=
P

κ

1

2t
,

σ̄φ =
2rHP

2Ht
=
P

κ

1

t
, (S10)

where t and r are the thickness and radius of the kirigami balloon, respec-
tively, and κ = 1/r denotes its curvature. Eqs. (S10) clearly indicate that
two inflatables with identical thickness t but different curvature κ experience
the same state of deformation if subjected to the same normalized pressure
P = P/κ. In Figure S9 we report the evolution of the axial strain (Figure
S9b) and circumferential strain (Figure S9c) as a function of the normal-
ized pressure P for kirigami balloons with H = 0.5L, L, 2L, δ1=0.03L and
nφ = 8, 12, 16. The results confirms the validity of our analysis since the me-
chanical responses of structures with the same kirigami pattern but different
curvature overlap.

Next, we focus on kirigami balloons that bends upon inflation. In Figure
S10 we report the evolution for both κb/κ and εz for actuators with nφ = 8
and 16 unit cells arranged along the circumference. Note that the cylinder
with nφ = 8 comprises one unit cell with H/L = 0.5 and δ1/L = 0.18 and
(nφ − 1) unit cells with the same height and variable δ1/L = (we consider
δ1/L = 0.03, 0.05 and 0.07) along the circumference. Differently, the struc-
ture with nφ = 16 comprises two neighbouring unit cells with H/L = 0.5 and
δ1/L = 0.18 and (nφ − 2) unit cells with the same height and variable δ1/L
(i.e. δ1 = 0.03, 0.05 and 0.07). Also in this case we find that the inflatables
with different curvatures κ (i.e. with different nφ) deform almost identically
for any given values of normalized pressure P̄ . Such good agreement indi-
cates that the results provided in Figure 3b of the main text provides a good
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Figure S9: Effect of curvature on kirigami balloons that deform axisymmetri-
cally. a) Schematic showing the average stresses in axial (σ̄z) and circumferential (σ̄φ)
direction.. b) Axial strain εz and c) circumferential strain εθ of unit cells with δ1/L = 0.03
and different curvatures κb = 2π/(nφL) as a function of the normalized pressure (P̄ ) for
H/L =0.5, 1 and 2.
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approximation to guide the design of structure with different number of cells
in the circumferential direction.

Figure S10: Effect of curvature on kirigami balloons that bend). Evolution for
a) κb/κ and b) εz as a function of the normalized pressure P̄ for actuators with nφ = 8
and 16 unit cells arranged along the circumference. Note that the cylinder with nφ = 8
comprises one unit cell with H/L = 0.5 and δ1/L = 0.18 and (nφ − 1) unit cells with
the same height and variable δ1/L = (we consider δ1/L = 0.03, 0.05 and 0.07) along the
circumference. Differently, the structure with nφ = 16 comprises two neighbouring unit
cells with H/L = 0.5 and δ1/L = 0.18 and (nφ − 2) unit cells with the same height and
variable δ1/L (i.e. δ1 = 0.03, 0.05 and 0.07).
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S4. Analytical model to estimate εeφ

In Figure 4d of the main text we show that to improve the circumferential
stretchability of our inflatables we can selectively removing strips from the
kirigami shell. To determine the circumferential strain of these sacrificial
portions, εeφ, we assume that such strips behave as inflated thin elastomeric
cylindrical balloons with axial expansion constrained by the kirigami and
derive an analytical solution. For such a membrane

rc = λeφr, tc = λert. (S11)

where r and t are the radius and thickness of the membrane in the unde-
formed/reference configuration and rc and tc denote the radius and thickness
of the membrane in the deformed/current configuration. Moreover, λer and
λeφ = 1 + εeφ denote the radial and circumferential stretches, respectively.
Further, if the membrane is made of an incompressible elastomeric material

λerλ
e
φλ

e
z = 1, (S12)

and the Cauchy stress can be derived as

σrr = λer
∂W e

∂λer
− p,

σφφ = λeφ
∂W e

∂λeφ
− p,

σzz = λez
∂W e

∂λez
− p,

(S13)

where λez is the axial stretch, W e(λer, λ
e
φ, λ

e
z) denotes the strain energy function

used to captured the response of the rubber (in this study we use a Gent
model - see Eqn. (S2)) and p is the hydrostatic pressure. Since the thickness
of kirigami balloon is very small compared to the radius of the structure, we
then assume that a vanishing stress in radial direction (i.e. σrr = 0), so that

p = λer
∂W e

∂λer
. (S14)

Further, equilibrium in circumferential direction requires

P =
tc
rc
σφφ, (S15)
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where P is the internal applied pressure. Substitution of Eqns. (S13) and
(S14) into Eqns. (S15) yields [6]

P =
tc
rc

(
λeφ
∂W e

∂λeφ
− λer

∂W e

∂λer

)
, (S16)

which taking account of the incompressibility constraint reduces to

P =
tc
rc
λeφ
∂Ŵ e

∂λeφ
, (S17)

with Ŵ e(λez, λ
e
φ) = W e(λez, λ

e
φ, (λ

e
zλ

e
φ)−1) (so that λer∂Ŵ

e/∂λer = 0). Further,
by making use of Eqns. (S11) and (S12), Eq. (S17) can be rewritten as

P =
t

r
λer
∂Ŵ e

∂λeφ
=
t

r
(λezλ

e
φ)−1∂Ŵ

e

∂λeφ
, (S18)

Finally, since we assume that the axial expansion of the elastomeric strip is
constrained by the kirigami (i.e. λez = 1 + εz, where εz denotes the axial
strain of the kirigami sheet, which is provided in Figure 2a of the main text
as a function of geometric parameters), εeφ can be found by solving

P =
t

r
((1 + εeφ)(1 + εz))

−1∂Ŵ
e

∂λeφ
. (S19)

In particular, for the Gent material model used in this study

Ŵ e = −µJlim
2

ln

(
1−

(λeφ)2 + (λez)
2 + (λeφλ

e
z)

−2 − 3

Jlim

)
, (S20)

and Eq. (S19) specializes to

P =
Jlimµt

(
(1 + εz)

2(1 + εeφ)4 − 1
)

(1 + εz)
−1(1 + εeφ)−2

r
(
(1 + εz)2(1 + εeφ)2

(
Jlim − (1 + εeφ)2 + 3

)
− (1 + εz)4(1 + εeφ)2 − 1

) .
(S21)

which we solve to obtain εeφ. To validate our assumptions, in Figure S18, we
compare the predictions of εeφ and εez with δ1/L = 0.03 and different H/L
with the average strain of the strip obtained by simulating two neighboring
unit cells.
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S5. Additional numerical results

Figure S11: Axial coupling of unit cells in axisymmetric inflatables. a) We consider
an axisymmetric design (for which all unit cells in each row are identical) comprising 14×8
unit cells. All unit cells have δ1/L = 0.03 and normalized height H/L = 1.0, 1.5, 2.0, 1.5,
1.0, 0.67, 0.5, 0.5, 0.67, 1.0, 1.5, 2.0, 1.5, 1.0 (from bottom to top). b) Numerical snapshot
of the kirigami balloon when subjected to a pressure P = 20 kPa as predicted by our
super-cell simulations. c) Numerical snapshots of the unit cells used as building blocks
in the kirigami balloon when subjected to a pressure P = 20 kPa. d) Deformation of
the inflatable obtained by superimposing the responses of the individual unit cells. e)
Comparison between the profile of the inflated structure as predicted by our super-cell
(dashed orange line) and unit cells (black line) simulations.

S20



Parameters of the jar
i-th row 1 2 3 4 5 6 7 8 9 10
δi1(mm) 0.4 0.48 0.37 0.41 0.36 0.36 0.84 0.84 0.74 0.36
H i(mm) 6.0 7.6 11.6 15.8 20.0 13.0 6.0 6.1 6.3 6.0

Table S1: Geometric parameters defining the kirigami balloon that best mimic
the jar shown in Figure 2b of the main text. Parameters identified by our optimiza-
tion algorithm to minimize the target function Z defined in Eq. (1) of the main text when
considering a design with 10× 25 unit cells. The total height and radius of the inflatable
kirigami before inflation are 98.4 mm and 47.7 mm, respectively. Note that the row are
counted starting from bottom.
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Figure S12: Optimal designs for inflatables with nz×nφ uni cells that mimic the
jar when subjected to a pressure P = 6.4 kPa. In each panel we report the target
profile (orange line) and the position of the center of each row of unit cells when inflated
(green markers). Moreover, we show the minimum value of the target function Z as well
as the optimal values for δ1 and H in each row. We present results for (nz, nφ)= a) (5,
25), b) (10, 25), c) (15, 25), d) (10, 20) and e) (10, 30). The kirigami balloon best matches
the jar when nz = 10 and nφ = 25.
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Figure S13: Coupling of unit cells in bending inflatables. We consider a kirigami
balloon comprising 20×8 unit cells with H/L = 0.5. Each row of the kirigami includes
one unit cell with δ1/L=0.18 and (nφ − 1) = 7 unit cells with δ1/L=0.03. Experimental
snapshopt of the structure when subjected to P=20 kPa. The blue and orange lines
correspond to the reconstruction of the center line as predicted by our FE simulations
when modeling the structure as a linear combination of 1×nφ (ring) super-cells and single
unit cells, respectively. Note that the bending deformation of a ring super-cell can be
calculated using the axial strain, εz, and bending angle, ∆θ, reported in Figure 3b of
the main text. Differently, to estimate the bending deformation from the unit cells we
calculate the axial strain and bending angle of a ring as

εz =
ε
(o)
z + ε

(i)
z

2
, ∆θ =

h(i) − h(o)

r(i) − r(o)
, (S26)

where
h(i) = (1 + ε(i)z )H, h(o) = (1 + ε(o)z )H. (S27)

denote the height in the inflated configuration of the two types of unit cells that form

the ring and ε
(i)
z and ε

(o)
z are the corresponding axial strain (reported in Figure 2a of the

main text). Moreover, r(i) − r(o) denotes the diameter of the deformed ring which can be
estimated as

r(o) − r(i) =
(nφ − 1)(1 + ε

(o)
φ )L+ (1 + ε

(i)
φ )L

π
, (S28)

where ε
(i)
φ and ε

(o)
φ are the circumferential strain of the two types of unit cells that form

the ring (reported in Figure 2a of the main text). Substitution of Eqs. (S27) and (S28)
into Eq. (S26)b yields

∆θ =
(ε

(o)
z − ε(i)z )Hπ

(nφ − 1)(1 + ε
(o)
φ )L+ (1 + ε

(i)
φ )L

. (S29)
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Parameters of the hook
i-th row 1 2 3 4 5 6 7 8 9 10
δi1(mm) 2.04 0.55 0.36 0.62 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0 0 0

i-th row 11 12 13 14 15 16 17 18 19 20
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0 0 0

i-th row 21 22 23 24 25 26 27 28 29 30
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0 0 0

i-th row 31 32 33 34 35 36 37 38 39 40
δi1(mm) 0.36 0.36 0.36 0.37 0.36 0.43 0.36 1.45 1.46 0.37
φi 0 0 0 0 0 0 0 π π π

i-th row 41 42 43 44 45 46 47 48 49 50
δi1(mm) 0.37 0.55 2.04 0.37 0.37 0.36 0.45 0.93 0.53 1.02
φi π π π π π π π π π 0

Table S2: Geometric parameters defining the kirigami balloon that best mimic
the hook shown in Figure 3c of the main text. Parameters identified by our op-
timization algorithm to minimize the target function Z defined in Eq. (4) of the main
text when considering a design with 50× 8 unit cells. The total height and radius of the
inflatable kirigami before inflation are 300 mm and 15.3 mm, respectively. Note that the
row are counted starting from bottom.
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Figure S14: Optimal designs for inflatables with nz×nφ uni cells that mimic the
hook when subjected to a pressure P = 20 kPa. In each panel we report the target
profile (orange line) and the position of the center of each super-cell when inflated (green
markers). Moreover, we show the minimum value of the target function Z as well as the
optimal values for δ1 and φ in each row. We present results for (nz, nφ)= a) (45, 8), b)
(50, 8) and c) (55, 8). The kirigami balloon best matches the hook when nz = 50 and
nφ = 8.

Geometries of the squash (top part)
i-th row 1 2 3 4 5 6 7 8
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0

i-th row 9 10 11 12 13 14 15 16
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0

i-th row 17 18 19 20 21 22 23
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0

Table S3: Geometric parameters defining the kirigami balloon that best mimic
the top part of the squash shown in Figure 4a of the main text. Parameters
identified by our optimization algorithm to minimize the target function Z defined in Eq.
(4) of the main text when considering a design with 23 × 16 unit cells. The total height
and radius of the bending part before inflation are 138 mm and 30.6 mm, respectively.
Note that the row are counted starting from bottom.
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Geometries of the squash (bottom part)
i-th row 1 2 3 4 5 6 7 8
δi1(mm) 1.87 2.0 1.88 0.58 0.42 0.42 0.36 0.37
H i(mm) 6 6 6 14 24 24 24 24

i-th row 9 10 11 12 13 14 15 16
δi1(mm) 0.53 1.23 1.94 1.78 2.02 2.0 2.0 1.53
H i(mm) 24 21.2 16 6 6 6 6 6

Table S4: Geometric parameters defining the kirigami balloon that best mimic
the bottom part of the squash shown in Figure 4a of the main text. Parameters
identified by our optimization algorithm to minimize the target function Z defined in Eq.
(1) of the main text when considering a design with 16 × 16 unit cells. The total height
and radius of the bending part before inflation are 219.2 mm and 30.6 mm, respectively.
Note that the row are counted starting from bottom.
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Figure S15: Effect on deformation of the the removal of a kirigami strip. a)
We consider a unit cell with H/L=2 and δ1/L=0.03 and use FE simulations to predict
how its response is affected by the removal of a kirigami strip of width we = 2.53 mm.
We report the circumferential and axial strain for three different locations of the removal
(highlighted in blue in the schematics on the left). b) We consider two neighboring unit
cells with H/L=2 and δ1/L=0.03 and use FE simulations to predict how its response
is affected by the removal of a kirigami strip of width 2we = 5.06 mm. We report the
circumferential and axial strain for three different locations of the removal (highlighted in
blue in the schematics on the right).
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Figure S16: Effect on deformation of the the removal of a kirigami strip. a) FE
snapshot of the bottom part of the kirigami balloon when we remove a kirigami strip with
constant width 2we in axial direction from two neighboring unit cells. b) FE snapshot
of the bottom part of the kirigami balloon when we remove a kirigami strip with width
2wie = L/2 − 2δi1 from two neighboring unit cells. c) Comparison between the profile
of the squash and that predicted by our FE simulations when removing a kirigami strip
with constant width 2we = 5.06 mm (orange line) and 2wie = L/2 − 2δi1 (black dashed
line). The results indicate our design nicely mimics the target shape upon inflation when
2wie = L/2− 2δi1.
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Figure S17: Evaluations of axial and circumferential strain as a function of ap-
plied pressure for different kirigami patterns. a) Triangular cut patterns with length
L = 12 mm and different height (left: H = 0.258L, right: H = L), the circumferential
strain εφ is small for both cases. b) Linear cut patterns with length L = 12 mm and
different height (left: H = 0.25L, right: H = L), the height of the unit cell has remark-
able effect on axial strain εz but little effect on circumferential strain εφ. c) Orthogonal
cut patterns with L = 12 mm, δ1/L = 0.03 and different height (left: H = 0.5L, right:
H = 2L), one can tune the axial and circumferential strain easily by changing the height
of unit cells. nφ = 8 for all patterns.

S29



Figure S18: Evolutions of a) εeφ and b) εez as a function of H/L for unit cells
with δ1/L = 0.03. The results of solid lines are derived from Equation (S21) with the
assumption εez = εz and the results of dashed lines are the average strain of the elastomeric
strip obtained by simulating two neighboring unit cells.

Figure S19: Shape mimicking of a calabash. a) The target calabash has a axisymmet-
ric feature. b) Optimized geometries of the kirigami structure are identified using Equation
(1) in main text. c) Numerical snapshot of the optimized design after pressurization. The
shape of the target is not fully captured. d) Numerical snapshot of the structure with
further kirigami removed: width of the removed strip we = 2.17mm (from 3rd row to 7th
row), which is calculated from Equation (8) with εφ = 0.428, εeφ = 3.59 and εtot = 1.0.
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S6. Description of Supporting Movies

Movie S1

Fabrication of a balloon based on a fully connected kirigami sheet. Firstly,
the kirigami design is laser-cut from a polyester plastic sheet with thickness
∼ 76.2. Afterwards the kirigami is rolled into a cylindrical shell and the two
opposite edges are glued together. Two acrylic caps are also glued to the
kirigami cylinder. Afterwards the kirigami shell is rotated in a elastomeric
bath until the curing process is complete. Fabrication of balloons based on
disconnected kirigami with islands. Firstly the elastomer layer is created.
Then, the kirigami pattern is laser cut into the polyester sheet positioned on
top of the elastomer layer and the cut-out pieces are removed. Afterwards,
the second plastic frame is applied and a the second elastomer layer is added.
Once the curing process is completed, the kirigami membranes is obtained.
The two edges of the sheet are brought together using needles to facilitate
alignment and glued together using ethyl 2-cyanoacrylateglue. A layer of
elastomer is deposited on the outside and inside of the cylindrical shell at
the connection between the two edges. Finally two acrylic caps are glued to
the cylinder ends and sealed with a layer of elastomer.

Movie S2

Inflation of three kirigami balloons comprising nz = 20 and nφ = 8 unit cells
in the axial and circumferential direction, respectively. In the first design, all
unit cells are identical and characterized by δ1/L = 0.03 and H/L = 0.5, and
the structure deforms homogeneously upon inflation and mostly elongates.
However, by increasing δ1/L to 0.18 for a single column of unit cells, the
deformation mode changes from extension to bending. Further, distributing
the unit cells with δ1/L = 0.18 on different columns within the structure one
can achieve more complex coupled bending-twisting deformations.

Movie S3

Mimicking of axisymmetric profiles. The profile of a jar is targeted. Proceed-
ing by row, the morphological algorithm selects from the computed database
the unit cells that minimize the mismatch between the targeted profile and
the final deformation of the kirigami balloon at a given pressure. Once the
optimization process is completed the algorithm instructs on the geometrical
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parameters for each row so that both an FE model and a physical kirigami
balloon can be build. The final shape from the FE model and the balloon
are compared against the targeted initial profile.

Movie S4

Mimicking of curvilinear paths. The morphological algorithm is used for a
hook shaped object, but because of the coupling between the units cells in
the ring arrangement, in this case a super-cell has to be considered as the
minimum building block. The algorithm selects the super-cells from a second
database and concatenate them together in order to minimize the mismatch
between the targeted shape and the predicted deformation. Once the op-
timization process is completed the algorithm instructs on the geometrical
parameters for each ring so that both an FE model and a physical kirigami
balloon can be build. The final shape from the FE model and the balloon
are compared against the targeted initial curvilinear path.

Movie S5

Mimicking of complex shapes, squash example. The axisymmetric and curvi-
linear paths morphological algorithms are used in combination with an an-
alytical model in order to mimic the target. In this video we report the
inflation of the final design.
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S1. Fabrication

Our kirigami balloons comprise a thin kirigami sheet embedded into an
elastomeric cylindrical shell.

S1.1. Kirigami sheets

The kirigami sheets are fabricated by laser cutting an array of cuts into
polyester plastic sheets (Artus Corporation, NJ) with thickness ∼ 76.2µm,
Young’s modulus E = 4.33 GPa and Poisson’s ratio ν = 0.4. In this study we
consider a pattern of orthogonal rectangular cuts which introduces a network
of rectangular domains connected by hinges of width δ1 and δ2 (see Fig. S17).
In all our analyses and experiments, we consider a unit cell with width L = 12
mm, vertical hinges with width δ2 = 0.03L and cuts with width b = 1.5 mm.
We tune the mechanical response of the system by varying the height of the
unit cell (we consider H ∈ [0.5 ∼ 2.0]L) and the width of the horizontal
hinges (we consider δ1 ∈ [0.02 ∼ 0.18]L). Note that in our design the cuts
are considerably wider than in classic kirigami cuts. This is necessary in
order to allow the elastomer to infiltrate in the slits and thereby generate a
membrane that can support large deformations during inflation.

Figure S1: Kirigami unit. Schematic of our kirigami pattern with geometric parameters.

S1.2. Kirigami balloons

To make our kirigami cylinders inflatable, we embedd them into an elas-
tomeric shell made out of Ecoflex (EcoflexTM 00-50, Smooth-On, PA) pre-
pared by mixing the two components provided in the package in a 1:1 weight
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ratio with a centrifugal mixer (ARE 310, Thinky, CA). In this Section, we
first describe our method for fabricating balloons with kirigami sheets that
are fully connected and then focus on the case of kirigami sheets with dis-
connected islands.

Balloon based on fully connected kirigami sheets. To fabricate a
balloon based on a fully connected kirigami sheet we start by rolling the
kirigami sheet to form a cylinder and use needles to facilitate the alignment
of the two opposite edges (Figures S2a and b). The edges are then glued
together using ethyl 2-cyanoacrylate glue (Krazy Glue, NC, Figure S2c).
Once the shell is ready, two acrylic caps are glued to the cylindrical ends
using the same glue (Figure S2d). Finally, the elastomer is poured in a tray
to form a shallow bath in which the kirigami shell is manually rotated in the
elastomeric for 20 mins in order to assure a uniform coating of the plastic
surface ( Figure S2e). The kirigami balloon is kept on constant rotation for
∼ 4 hours until the elastomer is completely cured (Figure S2f). Note that
the entire fabrication process is shown in Supporting Movie S1.

Figure S2: Fabrication of inflatables based on fully connected kirigami sheets.
(a) The kirigami pattern is laser cut into the polyester sheet. (b) The two edges of the
sheet are brought together using needles to facilitate alignment. (c) The two edges are
glued together using ethyl 2-cyanoacrylate glue. (d) Two acrylic caps are glued to the
cylinder ends. (e) The kirigami shell is manually rotated in a elastomeric bath for 20
mins. (f) The kirigami shell is mechanically rotated until cured.

Balloon based on kirigami sheets with disconnected islands. To
fabricate a balloon based on a disconnected kirigami sheet with islands, we
start by casting an elastomeric layer with thickness of about 0.3 mm. In
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Figure S3: Fabrication of inflatables based on disconnected kirigami with is-
lands. (a) The first elastomer layer is created. (b) The kirigami pattern is laser cut
into the polyester sheet positioned on top of the elastomer layer. (c) The cut-out pieces
are removed. (d) The second plastic frame is applied and the second elastomer layer is
added. (e) After the curing process is completed, the kirigami membranes is obtained. (f)
The two edges of the sheet are brought together using needles to facilitate alignment and
glued together using ethyl 2-cyanoacrylateglue. (g) A layer of elastomer is deposited on
the inside of the cylindrical shell at the connection between the two edges. (h) The same
is repeated on the outside of the cylindrical shell. (i) Two acrylic caps are glued to the
cylinder ends and sealed with a layer of elastomer.
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order to achieve this, a plastic frame (0.4 mm thick) is clamped on a thicker
acrylic sheet (6.35 mm thick) and it’s positioned on a flat surface. The
elastomer is then poured inside the plastic frame and it equally distributes
under gravity filling the frame up to the border (Figure S3a). After the
elastomer has cured, the frame is placed in the laser cutter and a polyester
plastic sheet is positioned on top of it. At this point an array of cuts is
laser-cut into the plastic sheet to form the kirigami structure (Figure S3b).
Note that the laser does not cut through the elastomer and that, since the
polyester sheet adheres to the elastomer, all the kirigami cells stay in place
once cut. For this reason, the cut-out pieces have to be removed by hand
after the cutting (Figure S3c). Afterwards, a second plastic frame (0.4 mm
thick) is clamped on top of the previous one (locking the kirigami sheet in
place) and a second layer of elastomer is casted on top of the kirigami sheet
(Figure S3d). After the second layer is cured and the kirigami plastic sheet is
completely embedded in the elastomer, the framing is removed (Figure S3e).
The composite sheet is then rolled into a cylindrical shell using needles to
facilitate the alignment of the two opposite edges. The edges are then glued
together using ethyl 2-cyanoacrylate glue (Krazy Glue, NC, Figure S3f). This
is possible since no elastomer is present on the two edges, since the edges of
the kirigami sheet got clamped between the two plastic frames to prevent
deposition of elastomer on them. Once the gluing process is completed a
layer of elastomer is deposited on the inside of the cylindrical shell where
the two edges are connected (Figure S3g). To assure a uniform thickness in
this area, the elastomer is levelled by scraping off the superfluous material
that overflows outside the groove created by the previously cured elastomer.
The same process is repeated on the outside of the cylindrical shell (Figure
S3h). Once the shell is ready, two acrylic caps are glued to the cylindrical
ends Figure S3i). The two ends are also covered by an additional layer of
elastomer to assure that they are air-tight.

S2. Experiments

In our experiments we use both air and water to inflate the kirigami
balloons. Specifically, the shape mimicking experimental results reported in
Figures 1e-g, 2f, 3g and 4e are obtained by inflating the structures with air,
whereas the experimental validations shown in Figure S4 are obtained by
inflating them with water to avoid compressibility of air.
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Inflation with air. For the shape morphing mimicking, we use air to in-
flate the kirigami structure to a target pressure. Specifically, we connect
our inflatable system to an air line through a tube and use a pressure reg-
ulator (B74G-4AK-AD3-RMN, IMI Norgren Inc) to regulate the air pres-
sure. The pressure inside the structure is monitored by a pressure sensor
(MPXV7025DP, Freescale Semiconductor Inc) and slowly increased until the
target pressure is reached. During the tests the deformation of the structures
is recorded by a high-resolution camera (SONY EX100V) at a frame rate of
30 fps.

Inflation with water. When using water to inflate the balloon, we sub-
merge the entire structure in a water tank to eliminate the influence of gravity
and compressibility of air. We first fill the balloons with the amount of wa-
ter corresponding to the initial volume of the cavity. Then, we use a syringe
pump (Pump 33DS, Harvard Apparatus) to displace an additional volume of
water ∆V into the balloons at 20 mL/min and record the pressure using a
pressure sensor (MPXV7025DP, Freescale Semiconductor Inc). During these
tests we record the motion of the structures using a high-resolution camera
(SONY RX100V) at a frame rate of 30 fps and extract their local defor-
mation using an open-source digital image correlation and tracking package
[1]. Specifically, we track the position of 9 markers uniformly placed along
the length of the cylindical balloons (Figure S4a and e) and use these data
to characterize both the evolution of the axial strain and the curvature as a
function of ∆V. Focusing on the i-th and (i+1)-th markers (with i = 1, ..., 8),
the axial strain εz (of the central line) is calculated as

εz =
zi+1 − zi
Zi+1 − Zi

− 1, (S1)

where zi and Zi denote the coordinate in z-direction of the i-th marker in the
deformed and undeformed configuration, respectively. As for the curvature
of the structures, we obtain it by fitting a circle to the (xi, zi) data points
(with i = 1, ..., 9 - xi denoting the coordinate in x-direction of the i-th marker
in the deformed configuration) via a direct least-square algorithm[2].

In Figure S4 we show experimental results for two kirigami balloons. In
the first design, all unit cells are identical and characterized by δ1/L = 0.03
and H/L = 0.5. As one would expect, this structure deforms homogeneously
upon inflation and mostly elongates. In particular, we find that the axial
strain linearly increase with the applied pressure (see Figure S4d). However,
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by increasing δ1/L to 0.18 for a single column of unit cells (purple unit
cell in Figure S4e), we transform the deformation mode from extension to
bending and obtain a curved profile upon inflation (Figure S4f). Further,
by monitoring the deformation of the actuator, we find that the curvature
increases almost linearly with the applied pressure (see Figure S4h).

Figure S4: Deformation of kirigami balloons. a-d) Axisymmetric deformation of a
structure that consists of identical unit cells (H = 0.5L, δ1 = 0.03L and nφ = 8). e-h)
Non-axisymmetric deformation of a structure that consists of 7 columns of unit cells with
H = 0.5L and δ1 = 0.036L and 1 column of unit cells with H = 0.5L and δ1 = 0.18L. The
plots in d) and h) report the axial strain and the curvature against pressure, respectively,
for the experiments, the unit cell/super-cell simulations and the full structure simulations.
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Figure S5: Ecoflex 00-50. From left to right: Experimental and numerical snapshots
of the uniaxial test conducted to characterize the mechanical response of Ecoflex 00-
50. Comparison between the force - strain curves measured in our experiments (solid
line) and predicted by our FE simulations when using a Gent model with µ = 40.5 kPa
and Jm = 20.5 (dashed line). The material parameters are derived by fitting the force-
displacement curves of experiments and FE simulations via the least square method.
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The variation of the structures’ deformation over multiple loading cycles
has also been tested in Figure S6. The results show the resilience of the
kirigami balloons to multiple cycles. We cyclically inflated an extending
actuator and tracked the axial strain over different cycles. We noticed a
negligible change in the strain value when P = 20 kPa, from 0.43 in the
first cycle to 0.47 after 70 cycles. We also cyclically inflated the structure in
Figure 2a (main manuscript) and show that the profile variation over multiple
cycles is negligible (with P = 6.4 kPa).

Figure S6: Examples of cycling tests on kirigami balloon. a) Cycling testing of
an extending kirigami balloon with nz = 20, nφ = 8, H/L=0.5 and δ1/L=0.03. The
axial strain εz at P = 20 kPa is reported per number of cycles. b) Cyclic testing of the
optimal design for an inflatable with nz= 10 and nφ = 25 that mimics a chosen jar when
subjected to a pressure P = 6.4 kPa. Experimental snapshots and profiles of the structure
are reported for different cycles at P = 6.4 kPa.
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S3. Finite Element analyses

To get a better understanding of how the inflatable kirigami actuators
deform upon inflation, we conduct finite element (FE) simulations using the
commercial package ABAQUS 6.14/Standard [3]. In all our analyses, we
model the inflatable kirigami as a cylindrical shell and discretize the portion
of the shell on which there is the plastic sheet (used to realize the kirigami
sheet) with four-node general-purpose shell elements with reduced integra-
tion and hourglass control (S4R element type) and that where there is only
elastomer (i.e. the gaps of the kirigami) with three-dimensional, four-node
membrane elements (M3D4 element type). Guided by experiemntal mear-
ments, the thickness of the shell and membrane elements are set as 76.2µm
and 0.5mm, respectively. Moreover, since the plasticity of the sheet has little
effect on the behavior of kirigami balloon, the response of the kirigami sheet
is captured using a linear elastic material model (with E = 4.33GPa and
ν = 0.4). For the elastomer instead we use an incompressible Gent material
model [4] with strain energy density function W given by

W = −µJlim
2

ln

(
1− I1 − 3

Jlim

)
, (S2)

where µ and Jlim represent the small strain shear modulus and a material
parameter related to the limiting stretch, respectively, and I1 = tr(FTF),
F being the deformation gradient. We find that the response of Ecoflex is
accurately captured using µ = 40.5 kPa and Jlim = 20.5 (Figure S5). An in-
house ABAQUS user subroutine (UHYPER) is used to define the hyperelastic
material behavior given by Eq. [S2] in the FE simulations.

The response of the structures is simulated conducting non-linear static
simulations (*STATIC module in ABAQUS with NLGEOM on). To facilitate
convergence we also add volume-proportional damping to the model (using
the option STABILIZE in ABAQUS) and set the dissipated energy fraction
equal to 2e-4 and the maximum ratio of stabilization to strain energy equal
to 0.05.

We start by conducting full 3D FE simulations of our inflatable kirigami.
To remove rigid body translations and rotations, we fix all nodes located
on the top surface. Further, since all the kirigami inflatables considered
in this work (except the one reported in Figure 1g of the main text) are
symmetric with respect to the x-z plane, we only simulate half structure
and apply symmetric boundary conditions to all node on the two vertical
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edges (i.e. we impose U2 = UR1 = UR3 = 0, where U2 is the displacement
in y direction and UR1 and UR3 denote the rotational degrees of freedom
in x and z directions, respectively). All 3D models are inflated via a fluid
cavity interaction with an hydraulic fluid (of density ρ = 1000 kg/m3 and
bulk modulus B = 2.2 GPa). The volume-controlled inflation is driven by a
fictitious thermal expansion of the hydraulic fluid, relating to the change in
volume ∆V in the cavity through

∆V

V cav
0

= 3αT∆T, (S3)

where ∆T is the change in temperature, αT is the coefficient of thermal
expansion of the fluid and V cav

0 is the initial volume of the cavity. In the
simulations, we set αT = 1 [1/K] and gradually increase the temperature
∆T until 0.1.

To validate the FE models we simulate the two designs shown in Figure
S4a and e, and compare the predicted axial strain-pressure (Figure S4e) and
curvature-pressure relations (Figure S4e) with those measured in our exper-
iments. The great agreements between experiments and simulations confirm
the accuracy of our model. However, since the full structure simulations are
computationally expensive, to characterize the design space we use simula-
tions based on unit cells and super-cells. The details of these simulations are
presented below.

S3.1. Inflatable kirigami that mimic axisymmetric profiles

In this Section we provide details for the simulations that we conduct to
facilitate the design of inflatable kirigami that mimic axisymmetric profiles.

Unit cell analysis. To reduce the computational cost, we consider a curved
unit cell (see Figure S7) and apply the following periodic boundary conditions
on its four edges

uLi
α = uRi

α ,

θLi
α = θRi

α ,

uTiα = uBi
α + uOα ,

θTiα = θBi
α , i = 1, 2, ...N (S4)

where ujα and θjα (α = ρ, φ, z and j = Li, Ri , Ti, Bi) are respectively the
displacement and rotational degrees of freedom in the radial (ρ), circumferen-
tial (φ) and axial (z) directions of the i-th pair of nodes periodically located
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Figure S7: Schematic of the unit cell.

on the right (R), left (L), top (T) and bottom (B) edges of the unit cell.
Moreover, uOα denotes the displacement in α-direction of a reference point
O that is used to apply the loading and N is the number of pairs of nodes
periodically located on the boundary of the unit cell.

The unit cell is loaded by applying a pressure P (with P ∈ [0, 20] kPa)
directly on its inner surface. Moreover, to account for the pressure acting on
the two caps of the balloons, a concentrated force in axial direction is applied
to the reference point O with magnitude

Fz = AP, (S5)

where A is the cross-sectional area of the circular sector defined by the unit
cell in the deformed configuration (note that A is calculated at each time step
using the coordinates of the nodes on the top/bottom edges and updated
through a user subroutine UAMP).

In Figure S4d we compare the predictions of our unit cell analyses (for
a unit cell with H = L/2 and δ1/L = 0.03) with the corresponding results
obtained when simulating the entire structure. The great agreement between
the two sets of data confirm the validity of our unit cell analyses.

Super-cells comprising nz × 1 unit cells. To validate the results of our
optimization algorithm, we consider super-cells comprising nz × 1 unit cells
and apply the following periodic boundary conditions to their left and right
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edges

uLi
α = uRi

α ,

θLi
α = θRi

α , i = 1, 2, ...N (S6)

where N denotes the number of pairs of nodes periodically located on the
boundary of the unit cell and ujα and θjα (α = ρ, φ, z and j = Li, Ri) are
respectively the displacement and rotational degrees of freedom in the radial
(ρ), circumferential (φ) and axial (z) directions of the i-th pair of nodes
periodically located on the right (R) and left (L) edges of the strip. Further,
we completely fix the bottom edge of the super-cell, whereas we allow the
top edge to move uniformly in axial direction (this is achieved by coupling all
degrees of freedom to a reference point O through a multi-point constraint).

As for our unit cell simulations, the super-cells are loaded by applying a
pressure P (with P ∈ [0, 20] kPa) directly on their inner surface. Moreover, to
account for the pressure acting on the two caps of the balloons, a concentrated
force in axial direction is applied to the reference point O with magnitude

Fz = AP, (S7)

where A is the cross-sectional area of the circular sector defined by the super-
cell in the deformed configuration (note that A is calculated at each time step
using the coordinates of the nodes on the top/bottom edges and updated
through a user subroutine UAMP).

S3.2. Inflatable kirigami that mimic curvilinear paths

In this Section we provide details for the simulations that we conduct
to facilitate the design of inflatable kirigami that mimic target curvilinear
paths.

Super-cells comprising 2 × nφ/2 unit cells. Since the coexistence of
different unit cells on the same row of the kirigami causes non-negligible cou-
pling between these units in the circumferential direction, we cannot directly
use our unit cell FE results to predict the effect of the kirigami geometry
on the bending deformation. Instead, we simulate a substructure compris-
ing 2 × nφ/2 unit cells (Figure S8) and a rigid cap connected to the top
(highlighted in blue in Figure S8). Note that the rigid cap is introduced in
order to capture the axial extension introduced by the applied pressure and
that we use two rings to minimize boundary effects (we extract the bending
deformation from the bottom ring).
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Figure S8: Schematic of our super-cells comprising 2 × nφ/2unitcells. Each ring
comprises two types of unit cell: cell I (shown in green - with H/L = 0.5 and δ1/L = 0.03)
and cell II (shown in purple - with H/L = 0.5 and δ1/L = 0.18). a) Schematic of our
model. b) Definition of the bending angle θ. c) Schematic of path B from which we extract
the curvature κb.

We define symmetric boundary conditions on all edges of the structure
(i.e. we impose U2=UR1=UR3=0 on the vertical edges and U3=UR1=UR2=0
on the bottom ones). To pressurize the super-cell, we apply a pressure load
P (0-20 kPa) directly on the inner surface of the structure.

Finally, from each simulation we focus on the bottom unit cell and extract
the axial strain, εz, and curvature, κb, of the central axis of the cylinder.
However, since we cannot extract the deformation of the central axis directly,
instead we focus on the path B defined as the intersection between the ring
and the bending symmetry plane plane y-z (see Figure S8c). We extract the
x and z coordinates of the path B before and after inflation and use them
to calculate its length in the deformed (h) and initial (H) states. We then
obtain the nominal axial strain εz as

εz =
h−H
H

. (S8)

Finally, to obtain the bending curvature κb upon inflation we fit the deformed
path B to a circle using the Pratt method [2]. Afterwards, the bending angle
of each ring is calculated as (see Figure S8b)

∆θ = (1 + εz)Hκb. (S9)

In Figure S4h we compare the predictions of our super-cell analyses (ring
with H = L/2, comprised by one unit cell with δ1/L = 0.18 and all other unit
cells with δ1/L = 0.03, nφ = 8) with the results obtained when simulating
the entire structure. The agreement between the two sets of data confirms
the validity of our super-cell analyses.
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S3.3. Effect of curvature on the results reported in Figures 2a and 3b

In all our parametric studies (whose results are reported in Figures 2a
and 3b of the main text) we consider nφ = 8 unit cells arranged along the
circumference of the cylinder. However, it is important to note that they
also describe the deformation of kirigami balloons with arbitrary curvature
κ subjected to a normalized pressure P̄ = P/κ = 4PL/π.

To demonstrate this important point, we first focus on kirigami balloons
that deform axisymmetrically. According to the theory of thin-walled pres-
sure vessels [5] the average stresses of these structures in axial (σ̄z) and
circumferential (σ̄φ) direction are given by

σ̄z =
πr2P

2πrt
=
P

κ

1

2t
,

σ̄φ =
2rHP

2Ht
=
P

κ

1

t
, (S10)

where t and r are the thickness and radius of the kirigami balloon, respec-
tively, and κ = 1/r denotes its curvature. Eqs. (S10) clearly indicate that
two inflatables with identical thickness t but different curvature κ experience
the same state of deformation if subjected to the same normalized pressure
P = P/κ. In Figure S9 we report the evolution of the axial strain (Figure
S9b) and circumferential strain (Figure S9c) as a function of the normal-
ized pressure P for kirigami balloons with H = 0.5L, L, 2L, δ1=0.03L and
nφ = 8, 12, 16. The results confirms the validity of our analysis since the me-
chanical responses of structures with the same kirigami pattern but different
curvature overlap.

Next, we focus on kirigami balloons that bends upon inflation. In Figure
S10 we report the evolution for both κb/κ and εz for actuators with nφ = 8
and 16 unit cells arranged along the circumference. Note that the cylinder
with nφ = 8 comprises one unit cell with H/L = 0.5 and δ1/L = 0.18 and
(nφ − 1) unit cells with the same height and variable δ1/L = (we consider
δ1/L = 0.03, 0.05 and 0.07) along the circumference. Differently, the struc-
ture with nφ = 16 comprises two neighbouring unit cells with H/L = 0.5 and
δ1/L = 0.18 and (nφ − 2) unit cells with the same height and variable δ1/L
(i.e. δ1 = 0.03, 0.05 and 0.07). Also in this case we find that the inflatables
with different curvatures κ (i.e. with different nφ) deform almost identically
for any given values of normalized pressure P̄ . Such good agreement indi-
cates that the results provided in Figure 3b of the main text provides a good
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Figure S9: Effect of curvature on kirigami balloons that deform axisymmetri-
cally. a) Schematic showing the average stresses in axial (σ̄z) and circumferential (σ̄φ)
direction.. b) Axial strain εz and c) circumferential strain εθ of unit cells with δ1/L = 0.03
and different curvatures κb = 2π/(nφL) as a function of the normalized pressure (P̄ ) for
H/L =0.5, 1 and 2.
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approximation to guide the design of structure with different number of cells
in the circumferential direction.

Figure S10: Effect of curvature on kirigami balloons that bend). Evolution for
a) κb/κ and b) εz as a function of the normalized pressure P̄ for actuators with nφ = 8
and 16 unit cells arranged along the circumference. Note that the cylinder with nφ = 8
comprises one unit cell with H/L = 0.5 and δ1/L = 0.18 and (nφ − 1) unit cells with
the same height and variable δ1/L = (we consider δ1/L = 0.03, 0.05 and 0.07) along the
circumference. Differently, the structure with nφ = 16 comprises two neighbouring unit
cells with H/L = 0.5 and δ1/L = 0.18 and (nφ − 2) unit cells with the same height and
variable δ1/L (i.e. δ1 = 0.03, 0.05 and 0.07).
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S4. Analytical model to estimate εeφ

In Figure 4d of the main text we show that to improve the circumferential
stretchability of our inflatables we can selectively removing strips from the
kirigami shell. To determine the circumferential strain of these sacrificial
portions, εeφ, we assume that such strips behave as inflated thin elastomeric
cylindrical balloons with axial expansion constrained by the kirigami and
derive an analytical solution. For such a membrane

rc = λeφr, tc = λert. (S11)

where r and t are the radius and thickness of the membrane in the unde-
formed/reference configuration and rc and tc denote the radius and thickness
of the membrane in the deformed/current configuration. Moreover, λer and
λeφ = 1 + εeφ denote the radial and circumferential stretches, respectively.
Further, if the membrane is made of an incompressible elastomeric material

λerλ
e
φλ

e
z = 1, (S12)

and the Cauchy stress can be derived as

σrr = λer
∂W e

∂λer
− p,

σφφ = λeφ
∂W e

∂λeφ
− p,

σzz = λez
∂W e

∂λez
− p,

(S13)

where λez is the axial stretch, W e(λer, λ
e
φ, λ

e
z) denotes the strain energy function

used to captured the response of the rubber (in this study we use a Gent
model - see Eqn. (S2)) and p is the hydrostatic pressure. Since the thickness
of kirigami balloon is very small compared to the radius of the structure, we
then assume that a vanishing stress in radial direction (i.e. σrr = 0), so that

p = λer
∂W e

∂λer
. (S14)

Further, equilibrium in circumferential direction requires

P =
tc
rc
σφφ, (S15)
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where P is the internal applied pressure. Substitution of Eqns. (S13) and
(S14) into Eqns. (S15) yields [6]

P =
tc
rc

(
λeφ
∂W e

∂λeφ
− λer

∂W e

∂λer

)
, (S16)

which taking account of the incompressibility constraint reduces to

P =
tc
rc
λeφ
∂Ŵ e

∂λeφ
, (S17)

with Ŵ e(λez, λ
e
φ) = W e(λez, λ

e
φ, (λ

e
zλ

e
φ)−1) (so that λer∂Ŵ

e/∂λer = 0). Further,
by making use of Eqns. (S11) and (S12), Eq. (S17) can be rewritten as

P =
t

r
λer
∂Ŵ e

∂λeφ
=
t

r
(λezλ

e
φ)−1∂Ŵ

e

∂λeφ
, (S18)

Finally, since we assume that the axial expansion of the elastomeric strip is
constrained by the kirigami (i.e. λez = 1 + εz, where εz denotes the axial
strain of the kirigami sheet, which is provided in Figure 2a of the main text
as a function of geometric parameters), εeφ can be found by solving

P =
t

r
((1 + εeφ)(1 + εz))

−1∂Ŵ
e

∂λeφ
. (S19)

In particular, for the Gent material model used in this study

Ŵ e = −µJlim
2

ln

(
1−

(λeφ)2 + (λez)
2 + (λeφλ

e
z)

−2 − 3

Jlim

)
, (S20)

and Eq. (S19) specializes to

P =
Jlimµt

(
(1 + εz)

2(1 + εeφ)4 − 1
)

(1 + εz)
−1(1 + εeφ)−2

r
(
(1 + εz)2(1 + εeφ)2

(
Jlim − (1 + εeφ)2 + 3

)
− (1 + εz)4(1 + εeφ)2 − 1

) .
(S21)

which we solve to obtain εeφ. To validate our assumptions, in Figure S18, we
compare the predictions of εeφ and εez with δ1/L = 0.03 and different H/L
with the average strain of the strip obtained by simulating two neighboring
unit cells.
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S5. Additional numerical results

Figure S11: Axial coupling of unit cells in axisymmetric inflatables. a) We consider
an axisymmetric design (for which all unit cells in each row are identical) comprising 14×8
unit cells. All unit cells have δ1/L = 0.03 and normalized height H/L = 1.0, 1.5, 2.0, 1.5,
1.0, 0.67, 0.5, 0.5, 0.67, 1.0, 1.5, 2.0, 1.5, 1.0 (from bottom to top). b) Numerical snapshot
of the kirigami balloon when subjected to a pressure P = 20 kPa as predicted by our
super-cell simulations. c) Numerical snapshots of the unit cells used as building blocks
in the kirigami balloon when subjected to a pressure P = 20 kPa. d) Deformation of
the inflatable obtained by superimposing the responses of the individual unit cells. e)
Comparison between the profile of the inflated structure as predicted by our super-cell
(dashed orange line) and unit cells (black line) simulations.
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Parameters of the jar
i-th row 1 2 3 4 5 6 7 8 9 10
δi1(mm) 0.4 0.48 0.37 0.41 0.36 0.36 0.84 0.84 0.74 0.36
H i(mm) 6.0 7.6 11.6 15.8 20.0 13.0 6.0 6.1 6.3 6.0

Table S1: Geometric parameters defining the kirigami balloon that best mimic
the jar shown in Figure 2b of the main text. Parameters identified by our optimiza-
tion algorithm to minimize the target function Z defined in Eq. (1) of the main text when
considering a design with 10× 25 unit cells. The total height and radius of the inflatable
kirigami before inflation are 98.4 mm and 47.7 mm, respectively. Note that the row are
counted starting from bottom.
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Figure S12: Optimal designs for inflatables with nz×nφ uni cells that mimic the
jar when subjected to a pressure P = 6.4 kPa. In each panel we report the target
profile (orange line) and the position of the center of each row of unit cells when inflated
(green markers). Moreover, we show the minimum value of the target function Z as well
as the optimal values for δ1 and H in each row. We present results for (nz, nφ)= a) (5,
25), b) (10, 25), c) (15, 25), d) (10, 20) and e) (10, 30). The kirigami balloon best matches
the jar when nz = 10 and nφ = 25.
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Figure S13: Coupling of unit cells in bending inflatables. We consider a kirigami
balloon comprising 20×8 unit cells with H/L = 0.5. Each row of the kirigami includes
one unit cell with δ1/L=0.18 and (nφ − 1) = 7 unit cells with δ1/L=0.03. Experimental
snapshopt of the structure when subjected to P=20 kPa. The blue and orange lines
correspond to the reconstruction of the center line as predicted by our FE simulations
when modeling the structure as a linear combination of 1×nφ (ring) super-cells and single
unit cells, respectively. Note that the bending deformation of a ring super-cell can be
calculated using the axial strain, εz, and bending angle, ∆θ, reported in Figure 3b of
the main text. Differently, to estimate the bending deformation from the unit cells we
calculate the axial strain and bending angle of a ring as

εz =
ε
(o)
z + ε

(i)
z

2
, ∆θ =

h(i) − h(o)

r(i) − r(o)
, (S26)

where
h(i) = (1 + ε(i)z )H, h(o) = (1 + ε(o)z )H. (S27)

denote the height in the inflated configuration of the two types of unit cells that form

the ring and ε
(i)
z and ε

(o)
z are the corresponding axial strain (reported in Figure 2a of the

main text). Moreover, r(i) − r(o) denotes the diameter of the deformed ring which can be
estimated as

r(o) − r(i) =
(nφ − 1)(1 + ε

(o)
φ )L+ (1 + ε

(i)
φ )L

π
, (S28)

where ε
(i)
φ and ε

(o)
φ are the circumferential strain of the two types of unit cells that form

the ring (reported in Figure 2a of the main text). Substitution of Eqs. (S27) and (S28)
into Eq. (S26)b yields

∆θ =
(ε

(o)
z − ε(i)z )Hπ

(nφ − 1)(1 + ε
(o)
φ )L+ (1 + ε

(i)
φ )L

. (S29)
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Parameters of the hook
i-th row 1 2 3 4 5 6 7 8 9 10
δi1(mm) 2.04 0.55 0.36 0.62 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0 0 0

i-th row 11 12 13 14 15 16 17 18 19 20
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0 0 0

i-th row 21 22 23 24 25 26 27 28 29 30
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0 0 0

i-th row 31 32 33 34 35 36 37 38 39 40
δi1(mm) 0.36 0.36 0.36 0.37 0.36 0.43 0.36 1.45 1.46 0.37
φi 0 0 0 0 0 0 0 π π π

i-th row 41 42 43 44 45 46 47 48 49 50
δi1(mm) 0.37 0.55 2.04 0.37 0.37 0.36 0.45 0.93 0.53 1.02
φi π π π π π π π π π 0

Table S2: Geometric parameters defining the kirigami balloon that best mimic
the hook shown in Figure 3c of the main text. Parameters identified by our op-
timization algorithm to minimize the target function Z defined in Eq. (4) of the main
text when considering a design with 50× 8 unit cells. The total height and radius of the
inflatable kirigami before inflation are 300 mm and 15.3 mm, respectively. Note that the
row are counted starting from bottom.
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Figure S14: Optimal designs for inflatables with nz×nφ uni cells that mimic the
hook when subjected to a pressure P = 20 kPa. In each panel we report the target
profile (orange line) and the position of the center of each super-cell when inflated (green
markers). Moreover, we show the minimum value of the target function Z as well as the
optimal values for δ1 and φ in each row. We present results for (nz, nφ)= a) (45, 8), b)
(50, 8) and c) (55, 8). The kirigami balloon best matches the hook when nz = 50 and
nφ = 8.

Geometries of the squash (top part)
i-th row 1 2 3 4 5 6 7 8
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0

i-th row 9 10 11 12 13 14 15 16
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0 0

i-th row 17 18 19 20 21 22 23
δi1(mm) 0.36 0.36 0.36 0.36 0.36 0.36 0.36
φi 0 0 0 0 0 0 0

Table S3: Geometric parameters defining the kirigami balloon that best mimic
the top part of the squash shown in Figure 4a of the main text. Parameters
identified by our optimization algorithm to minimize the target function Z defined in Eq.
(4) of the main text when considering a design with 23 × 16 unit cells. The total height
and radius of the bending part before inflation are 138 mm and 30.6 mm, respectively.
Note that the row are counted starting from bottom.
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Geometries of the squash (bottom part)
i-th row 1 2 3 4 5 6 7 8
δi1(mm) 1.87 2.0 1.88 0.58 0.42 0.42 0.36 0.37
H i(mm) 6 6 6 14 24 24 24 24

i-th row 9 10 11 12 13 14 15 16
δi1(mm) 0.53 1.23 1.94 1.78 2.02 2.0 2.0 1.53
H i(mm) 24 21.2 16 6 6 6 6 6

Table S4: Geometric parameters defining the kirigami balloon that best mimic
the bottom part of the squash shown in Figure 4a of the main text. Parameters
identified by our optimization algorithm to minimize the target function Z defined in Eq.
(1) of the main text when considering a design with 16 × 16 unit cells. The total height
and radius of the bending part before inflation are 219.2 mm and 30.6 mm, respectively.
Note that the row are counted starting from bottom.
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Figure S15: Effect on deformation of the the removal of a kirigami strip. a)
We consider a unit cell with H/L=2 and δ1/L=0.03 and use FE simulations to predict
how its response is affected by the removal of a kirigami strip of width we = 2.53 mm.
We report the circumferential and axial strain for three different locations of the removal
(highlighted in blue in the schematics on the left). b) We consider two neighboring unit
cells with H/L=2 and δ1/L=0.03 and use FE simulations to predict how its response
is affected by the removal of a kirigami strip of width 2we = 5.06 mm. We report the
circumferential and axial strain for three different locations of the removal (highlighted in
blue in the schematics on the right).
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Figure S16: Effect on deformation of the the removal of a kirigami strip. a) FE
snapshot of the bottom part of the kirigami balloon when we remove a kirigami strip with
constant width 2we in axial direction from two neighboring unit cells. b) FE snapshot
of the bottom part of the kirigami balloon when we remove a kirigami strip with width
2wie = L/2 − 2δi1 from two neighboring unit cells. c) Comparison between the profile
of the squash and that predicted by our FE simulations when removing a kirigami strip
with constant width 2we = 5.06 mm (orange line) and 2wie = L/2 − 2δi1 (black dashed
line). The results indicate our design nicely mimics the target shape upon inflation when
2wie = L/2− 2δi1.
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Figure S17: Evaluations of axial and circumferential strain as a function of ap-
plied pressure for different kirigami patterns. a) Triangular cut patterns with length
L = 12 mm and different height (left: H = 0.258L, right: H = L), the circumferential
strain εφ is small for both cases. b) Linear cut patterns with length L = 12 mm and
different height (left: H = 0.25L, right: H = L), the height of the unit cell has remark-
able effect on axial strain εz but little effect on circumferential strain εφ. c) Orthogonal
cut patterns with L = 12 mm, δ1/L = 0.03 and different height (left: H = 0.5L, right:
H = 2L), one can tune the axial and circumferential strain easily by changing the height
of unit cells. nφ = 8 for all patterns.
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Figure S18: Evolutions of a) εeφ and b) εez as a function of H/L for unit cells
with δ1/L = 0.03. The results of solid lines are derived from Equation (S21) with the
assumption εez = εz and the results of dashed lines are the average strain of the elastomeric
strip obtained by simulating two neighboring unit cells.

Figure S19: Shape mimicking of a calabash. a) The target calabash has a axisymmet-
ric feature. b) Optimized geometries of the kirigami structure are identified using Equation
(1) in main text. c) Numerical snapshot of the optimized design after pressurization. The
shape of the target is not fully captured. d) Numerical snapshot of the structure with
further kirigami removed: width of the removed strip we = 2.17mm (from 3rd row to 7th
row), which is calculated from Equation (8) with εφ = 0.428, εeφ = 3.59 and εtot = 1.0.
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S6. Description of Supporting Movies

Movie S1

Fabrication of a balloon based on a fully connected kirigami sheet. Firstly,
the kirigami design is laser-cut from a polyester plastic sheet with thickness
∼ 76.2. Afterwards the kirigami is rolled into a cylindrical shell and the two
opposite edges are glued together. Two acrylic caps are also glued to the
kirigami cylinder. Afterwards the kirigami shell is rotated in a elastomeric
bath until the curing process is complete. Fabrication of balloons based on
disconnected kirigami with islands. Firstly the elastomer layer is created.
Then, the kirigami pattern is laser cut into the polyester sheet positioned on
top of the elastomer layer and the cut-out pieces are removed. Afterwards,
the second plastic frame is applied and a the second elastomer layer is added.
Once the curing process is completed, the kirigami membranes is obtained.
The two edges of the sheet are brought together using needles to facilitate
alignment and glued together using ethyl 2-cyanoacrylateglue. A layer of
elastomer is deposited on the outside and inside of the cylindrical shell at
the connection between the two edges. Finally two acrylic caps are glued to
the cylinder ends and sealed with a layer of elastomer.

Movie S2

Inflation of three kirigami balloons comprising nz = 20 and nφ = 8 unit cells
in the axial and circumferential direction, respectively. In the first design, all
unit cells are identical and characterized by δ1/L = 0.03 and H/L = 0.5, and
the structure deforms homogeneously upon inflation and mostly elongates.
However, by increasing δ1/L to 0.18 for a single column of unit cells, the
deformation mode changes from extension to bending. Further, distributing
the unit cells with δ1/L = 0.18 on different columns within the structure one
can achieve more complex coupled bending-twisting deformations.

Movie S3

Mimicking of axisymmetric profiles. The profile of a jar is targeted. Proceed-
ing by row, the morphological algorithm selects from the computed database
the unit cells that minimize the mismatch between the targeted profile and
the final deformation of the kirigami balloon at a given pressure. Once the
optimization process is completed the algorithm instructs on the geometrical
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parameters for each row so that both an FE model and a physical kirigami
balloon can be build. The final shape from the FE model and the balloon
are compared against the targeted initial profile.

Movie S4

Mimicking of curvilinear paths. The morphological algorithm is used for a
hook shaped object, but because of the coupling between the units cells in
the ring arrangement, in this case a super-cell has to be considered as the
minimum building block. The algorithm selects the super-cells from a second
database and concatenate them together in order to minimize the mismatch
between the targeted shape and the predicted deformation. Once the op-
timization process is completed the algorithm instructs on the geometrical
parameters for each ring so that both an FE model and a physical kirigami
balloon can be build. The final shape from the FE model and the balloon
are compared against the targeted initial curvilinear path.

Movie S5

Mimicking of complex shapes, squash example. The axisymmetric and curvi-
linear paths morphological algorithms are used in combination with an an-
alytical model in order to mimic the target. In this video we report the
inflation of the final design.
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