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H I G H L I G H T S

• A design procedure of the training
data for Machine Learning algorithms
is proposed.

• Accurate prediction with up to 80%
less datapoints than evenly distributed
grid.

• Proof-of-concept of multiscale simula-
tions based on kMC and microkinetic
modelling.
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A B S T R A C T

We propose a design procedure for the generation of the training set for Machine Learning algorithms with a
specific focus on the approximation of computationally-intensive first-principles kinetic models in catalysis. The
procedure is based on the function topology and behavior, by means of the calculation of the discrete gradient,
and on the relative importance of the independent variables. We apply the proposed methodology to the ta-
bulation and regression of mean-field and kinetic Monte Carlo models aiming at their coupling with reactor
simulations. Our tests – in the context both of mean-field kinetics and kinetic Monte Carlo simulations – show
that the procedure is able to design a dataset that requires between 60 and 80% fewer data points to achieve the
same approximation accuracy than the one obtained with an evenly distributed grid. This strong reduction in the
number of points results in a significant computational gain and a concomitant boost of the approximation
efficiency. The Machine Learning algorithms trained with the results of the procedure are then included in both
macroscopic reactor models and computational fluid dynamics (CFD) simulations. First, a Plug Flow Reactor is
employed to carry out a direct comparison with the solution of the full first-principles kinetic model. The results
show an excellent agreement within 0.2% between the models. Then, the CFD simulation of complex tridi-
mensional geometry is carried out by using a tabulated kMC model for CO oxidation on Ruthenium oxide, thus
providing a showcase of the capability of the approach in making possible the multiscale simulation of complex
chemical reactors.
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1. Introduction

In recent years, a large effort has been devoted to the integration of
mean-field microkinetic models and kinetic Monte Carlo (kMC) simu-
lations in continuum modeling (e.g., Computational Fluid Dynamics –
CFD) of chemical reactors [1–3]. This task is widely acknowledged to be
crucial in view of leveraging the fundamental insights of first-principles
computational catalysis to realistic and technologically relevant appli-
cations [4,5]. The coupling between reactors models and the hetero-
geneous chemistry intrinsically requires bridging phenomena spanning
from the atomistic to the reactor level. This covers orders of magnitude
of difference in both the time and length scales, thus making the direct
coupling impractical from a numerical point of view. The analytical
expression for the rates of the elementary steps and the closed form of
the differential equation governing the evolution of the system makes
possible their incorporation in reactor models. The strong non-linearity
and stiffness, however, require specific treatments of the operator re-
lated to the chemistry source terms in the governing equations at the
macroscale. For instance, as proposed by our group [6,7], the operator
splitting algorithm can be used to incorporate detailed mean-field mi-
crokinetic models in CFD simulations. The solution of the hetero-
geneous chemistry increases the computational costs associated with
the fluid dynamic accounting for 70–90% of the overall simulation time
[8], thus hindering the application to large scale systems. Several
methods have been proposed to reduce the computational burden, such
as on-the-fly tabulation techniques, e.g. in situ adaptive tabulation
(ISAT) [8] and cell agglomeration algorithms [9]. However, when the
computational cost of the calculation of the rates is very computa-
tionally demanding (as for the case of kMC simulations), this approach
becomes impractical, thus hindering the coupling of first-principles
kinetic models with continuum simulations. In this situation, a possible
strategy for the solution of the multiscale problem has been proposed
[10] through the adoption of pre-computed production rates properly
tabulated. This is based on the assumption that the catalyst surface
instantaneously adapts and relaxes to a new steady-state catalytic ac-
tivity when new local fluid phase conditions are experienced. This is a
consequence of the much shorter catalyst time scale relative to the
corresponding one at which the transport of momentum, energy, and
mass occurs. In this view, it is sufficient to compute beforehand the
steady-state turnover frequencies (or reaction rates) for the current gas-
phase conditions and to employ them as source terms into the gov-
erning equations at the macroscale. The approach has been demon-
strated in the context of the integration of kMC calculations into reactor
models [10,11] which are extremely challenging due to their stochastic
nature and to the significant computational cost of the calculations
preventing the direct coupling which is limited to specific reactor
geometries and operative conditions [12–14]. In principle, the ap-
proach can be extended also to mean-field microkinetics of large di-
mensions and, thus, it has a strong potential in increasing the efficiency
of the coupling between chemical kinetics and reactor models. How-
ever, two aspects have to be considered and addressed. On the one
hand, the pre-computed data need to be properly interpreted and ta-
bulated to move from discrete information to a continuous re-
presentation that is required for the coupling with the reactor models.
The tabulation algorithm is the enabling factor and it assumes a crucial
role for the overall computational efficiency of the approach. On the
other hand, the records in the pre-computed dataset can easily become
extremely numerous when dealing with large (e.g., number of in-
dependent variables) kinetic schemes. Hence, the design, generation
and management of the pre-computed data is a crucial task for the
computational efficiency and the accuracy of the algorithm predictions.
In terms of tabulation and interpretation of the precomputed data,

several methodologies have been introduced in the literature. For in-
stance, splines have been proposed in the context of mean-field ap-
proximation due to the capability in providing accurate predictions
through simple polynomial-like expressions initially by Votsmeier and

co-workers [15–18] and later by Dixon and co-workers [19,20]. The
application of spline-like methods to the tabulation of kMC data is,
however, challenging mainly due to the abrupt activity changes over a
narrow range of gas-phase conditions as shown by Matera et al. [10]. In
this view, a modified Sheppard interpolation method [10,11,21] has
been employed to improve prediction accuracy. All these methods
suffer from a loss in both accuracy of the approximation and compu-
tational efficiency as the number of variables increases. Votsmeier and
co-workers [15] showed that the number of spline coefficients reaches
such values which require a large amount of memory for the storage,
thus hampering the applicability even to simple systems. Hence, their
application is currently limited to schemes of reduced dimensions.
As an alternative, Machine Learning (ML) techniques can overcome

such limitations because they are specifically conceived to work with
highly dimensional datasets in terms of both numbers of records and
variables [22–31]. Among the several available methods, ensemble
learning methods and artificial neural networks (ANN) [32] have been
proposed for the effective tabulation and regression of reaction rates
and turnover frequencies (TOFs). In particular, ensemble learning
methods such as Random Forest (RF) [33] have been recently employed
by Dixon and co-workers [34] as an effective solution for the tabulation
of mean-field microkinetic models able to overcome the limitations
imposed the interpolation techniques.
Regardless of the specific method employed for the tabulation and

interpretation of the pre-computed rates, a crucial problem is related to
the generation of the dataset. A conventional approach in the context of
mean-field models is to consider evenly distributed points in each di-
rection of the space [16,34]. In doing so, the training points are posi-
tioned following a geometrical criterium without any information on
the actual behavior of the function. However, large datasets (i.e.,
hundreds of thousands of records) are required to achieve a sufficient
quality of the predictions of the models [35] with the consequential
non-trivial management of the data in terms of memory and storage
[15,19]. Moreover, the generation of such a dataset can be extremely
demanding, especially in the case of kMC calculations, thus resulting in
a very high computational burden for the build-up of the training set.
Another possibility for the generation of the multidimensional grid is
through the adaptive sparse grid method, widely used in the context of
the solution of partial differential equations. However, even this
method is affordable in moderately high-dimensional parameter spaces
[36,37]. As the number of independent variables increases, this aspect
can become a strong limitation to the applicability of the envisioned
approach.
In this work, we propose a methodology to generate the training

dataset by an iterative procedure able to minimize the number of data
points required to achieve a target level of accuracy. The procedure
combines the capability of the RF algorithm to quantify the importance
of each variable with an iterative addition of new training points based
on the discrete gradient of the TOF function. As such, only the relevant
variables are selected and employed for the generation of the training
set. Moreover, the composition space is sampled following the TOF
function trend. Consequently, the positions of the training points are
designed to gather where the approximation of the function is more
difficult (e.g., regions of sharp transitions of the activity). On the one
hand, the number of training points required to accurately approximate
the TOF function is minimized resulting in a consistent saving in the
computational cost associated with the RF training without any penalty
in the regression accuracy. On the other hand, the position of the
training points is defined by the function trend increasing the effec-
tiveness of the approximation and, in turn, of the accuracy of the
method. We exemplify the potential of the procedure by considering
two distinct kinetic models characterized by, on one side, a large
number of variables and, on the other side, a significant computational
cost. Then, the obtained RFs are assessed by comparing their perfor-
mances in reactor models against the solution of the full kinetic scheme.
Finally, an example of application to unsteady CFD simulation in
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complex geometry is reported to show the capabilities of the metho-
dology in the context of three-dimensional reactor modeling. As a
whole, the success of the ML approach to industrially relevant problems
relies on the capability of generating of training sets able to allow for
the learning of the complex features of the real function. Here, we have
presented and developed a procedure in the context of the tabulation of
first-principles kMC models. On a more general perspective, this pro-
blem of optimizing the generation of the training data of a Machine
Learning algorithm is very relevant for catalysis at large. Therefore, this
concept can be extended, for example, to the reduction of the compu-
tational cost connected to first-principles calculations for the screening
of new materials [27–29,38,39] or the generation of learning potentials
and forces for molecular dynamics [40,41].

2. Methods

2.1. Random forest and ExtraTrees

Machine learning methods have been conceived to perform efficient
and accurate inductive learning. This means that the algorithm seeks to
infer general trends based on a selected number of training data.
Random Forest (RF) [33] is an ensemble machine learning method
employed mainly for classification or regression problems. As a tabu-
lation/interpolation method, RF presents the capability to efficiently
handle large data sets with high numbers of input dimensions (i.e.,
independent variables), named descriptors. Here, we tabulate simula-
tion data from complex kinetic systems, e.g., mean-field or first-prin-
ciples kMC, which depend on several descriptors, such as the partial
pressure and the temperature. RF shows good tabulation and regression
performances even by dealing with relatively small training datasets
[42]. Furthermore, RF offers some unique features that make it suitable
for the tabulation of kinetic data. These include built-in estimation of
prediction accuracy and measures of descriptor importance, allowing
for ranking the input features according to their relevance for the
output. In principle, this enables the reduction of the size and of the
computational cost of the training set by excluding the dependence
from irrelevant variables. In this work, an improved version proposed
by Geurts et al. [42] of the Random Forest algorithm (named ExtraTrees
- acronym for ExTremely Randomised Trees) is employed to improve
both prediction accuracy and computational performances. ExtraTrees
has been shown to be effective in dealing with large multidimensional
complex problems providing less variance than conventional RF [42].
Moreover, it outperforms conventional decision trees when irrelevant
descriptors (i.e., ineffective on the prediction) are present [42]. These
two features help in dealing with the tabulation of first-principles ki-
netic schemes. They, in principle, depend on many variables, e.g. par-
tial pressure, adsorbed species, temperature; however, only few of them
are often important for the evaluation of the rates.
ExtraTrees consists of a multitude (n )dt of decision trees (T) gener-

ated at training time x xT T{ ( ), , ( )}n1 dt where =x x x{ , , q1 } is a q-di-
mensional vector of descriptors (i.e., variables or features) needed to
compute the output (y) of the model. Given a training set of np data
points x xy y{( , ), , ( , )}n n1 1 p p that each span over q + 1 dimensions
where x represents the descriptors, e.g., partial pressures of the species,
and y the output, i.e., the associated reaction rate or TOF, the genera-
tion of each decision tree proceeds as follows [43]. A subset is extracted
from the np data points by bootstrapping, i.e., randomly sampling with
replacement, and used to grow a tree. In doing so, the predictor space is
divided into N distinct regions through a recursive binary splitting
approach. The data is initially split into two regions R1 and R2 at the
split point s. In contrast with conventional decision trees, split points
are drawn fully at random for each of the q predictors in this approach.
Then, the cut-point s is defined by choosing among the possible split
points the one which minimizes the residual sum of square evaluated
between the system output and the average value computed in each
region. Then, each resulting region undergoes the same recursive

splitting procedure which is iterated until a termination rule is satisfied.
In regression problems, the termination rule corresponds to a certain
number of records in each terminal node. Once the ExtraTrees is grown,
it is possible to evaluate the output given by a certain query. A query is
a single data with q dimensions that is fed to each decision tree in the
forest. By starting at the tree root node, the query is compared with the
split criterion of each node descending the tree until a terminal node is
reached. The predictions obtained from each decision tree are then
aggregated using the arithmetic average, thus yielding to a prediction
value for the entire forest. In this work, we employ a fast and efficient
implementation of the algorithm provided within the scikit-learn Python
library [44]. Despite the original ExtraTrees algorithm does not use
bootstrapping, we employ a modified version of the ExtraTrees which
allows for it. The generation of the ensemble of decision tree by using
bootstrap aggregation reduces the correlation between the trees as they
are each built with different training sets and reduces the overall var-
iance of the final prediction improving the accuracy of the method [43].
The assessment of the accuracy of the predictions generated by the

algorithm is required to understand the performances of the tabulation.
Ideally, an independent and large dataset not used for the training
should be used to quantify the quality of the predictions. In practice, the
available amount of data is usually limited, and some type of cross-
validation has to be employed. RF performs such an assessment through
the Out-of-Bag (OOB) sample. Each tree is grown by using a bootstrap
sample where some of the data points are not used to generate the trees
and these left-out datapoints create the OOB sample. Since OOB data
are not used to grow the tree, they can be employed to estimate the
prediction performances as the mean square error (MSE):

=OOB
n n

y x y x1 1 (^ ( ) ( ))err
dt k

n

i

n

OOB
i k i,

2
dt OOB

(1)

where ndt is the number of tree in the forest, nOOB represents the number
of OOB samples. We devote ~30% of the entire training dataset to the
evaluation of the OOB [33].
Random Forest and ExtraTrees also show the capability of quanti-

fying the importance of the descriptors returning a measure of how
each variable contributes to the accuracy of the predictions. In other
words, a metric called variable importance is computed by the algo-
rithm providing the effect of each of the descriptors on the predictions.
Several methods have been proposed in the literature to describe the
variable importance such as decrease of node impurity [45], corrected
node impurity [46,47], and permutation importance [33]. Here, the
non-scaled permutation is employed as a measure of the effect of the
descriptors on the prediction since it is more robust in the presence of
correlated variables [48]. In particular, the decrease of node impurity
tends to be biased toward variables characterized by different scales or
number of categories [49]. Moreover, Strobl et al. [50] showed that the
permutation importance can clearly identify the irrelevant predictors
which is a very welcome feature for the selection and identification of
the important variables. In the permutation importance, the OOB error
is computed twice. First, the OOB error is computed according to Eq.
(1). Then, a modified OOB set is considered. Each descriptor in the OOB
data is randomly permuted one at a time leaving all other descriptors
unchanged and the modified set is predicted by the tree. The increment
of the OOB error between the permuted and original dataset is a
measure of the importance.

2.2. Kinetic Monte Carlo

We have performed kMC simulations within the graph-theoretical
(GT) kMC framework of Stamatakis and Vlachos [51], as implemented
in Zacros [52]. In this framework, the catalytic surface is represented as
a two-dimensional lattice graph where the vertices are surface sites and
the edges define the neighboring connectivity. The simulation input
consists of the reactor conditions (temperature and partial pressure of
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the species), the lattice structure that reproduces the catalytic surface,
an energetic model which accounts for both the binding energies of the
species and the adsorbate-adsorbate interactions and the reaction me-
chanism which describes the elementary events that might occur on the
catalyst.
The simulations are carried out by initially considering an empty

lattice to evaluate the turnover frequency of a generic molecule, i,
which is defined as the number of molecules i produced per active site,
per unit of time. To determine the TOF, the number of molecules i –
produced during the simulation and filtered out by the initial transients
– is fitted using linear regression. Then, the slope is divided by the
number of lattice sites to eventually evaluate the turnover frequency
(TOF). A simulation is deemed to be convergent when at least 5·104

molecules are produced and the slope is constant over time. The surface
coverages (θ) are obtained by time-averaging the site occupancies once
a steady-state is reached.

2.3. Reactor models

Two different reactor models are employed in this work to simulate
the reactive systems. On the one hand, a 1D heterogeneous model and,
on the other hand, a CFD model able to deal with arbitrary complex
three-dimensional geometries.

2.3.1. 1D heterogeneous model
The 1D heterogeneous model is derived under steady-state condi-

tions. The mass balance for the generic i-species can be expressed as
follows:

=u
d
dz

k S ( )i
MAT i v i i

S
, (2)

where u is the superficial velocity, i is the partial density of component
i in the bulk of the gas phase while i

S is on the catalytic surface, kMAT i,
is the mass transfer coefficient and Sv is the specific surface area of the
system.
The species mass balance on the catalytic surface is given by the

following expression.

=k S R( ) ( )MAT i v i i
S

i i
S

, (3)

where R ( )i i
S is the net consumption or production rate of component i.

In this work, we consider a honeycomb monolith with square
channels as an example of reactor geometry. Thus, the mass transfer
coefficient is computed through the asymptotic Sherwood numbers
( =Sh 3.087) [53].

2.3.2. Computational fluid dynamics
The description of the momentum, mass, and energy transport at the

reactor scale are evaluated by numerically solving the conservation
equation for momentum, mass, and energy for a multicomponent and
compressible gas phase.
The motion of the fluids is described by the Navier-Stokes equations.

In this regard, the continuity equation (conservation of mass) and the
momentum balance may be written as:

+ =d
dt

u· 0 (4)

+ = +d u
dt

uu g( ) · p · (5)

where the stress tensor (
_
) for Newtonian fluids is defined as:

= + +µ u u µ u I( ( ) ) 2
3

( · )T
(6)

In the equations above, t is the time, p is the pressure a, is the
density, µ is the dynamic viscosity, u is the velocity vector and g the
acceleration vector due to gravity.

The equation of conservation for the species is written as:

+ = +d
dt

u V R( ) · ·( )i
i i i i

hom
(7)

where the subscript i refers to the individual gas-phase component i,
and i is the mass fraction. Ri

hom is the formation rate of species i in the
gas-phase, and Vi is the diffusion velocity defined as:

=V xi
i

i
i (8)

To enforce mass conservation, the approach proposed by Coffee and
Heimer [54] is applied. This method is based on a correction diffusional
velocity, which replacesVi in Eqs. (7) and (8) withVi

C , which is defined
as:

= +V V Vi
C

i C (9)

where VC is a constant correction factor introduced to satisfy the mass
conservation and is evaluated as:

=
=

V VC
i

NG

i i
1 (10)

The conservation of energy reads as follows:

+ = +c dT
dt

c u c V T H R TT ·( )p p
i

N

pi i i
i

N

i i
hom

s s

(11)

where T is the temperature, and cp are the thermal conductivity and
the specific heat at a constant temperature of the gas phase mixture,
respectively; cpi is the specific heat at constant pressure for species i, and
Hi is the mass-specific enthalpy in the gas phase of species i. The density
of the mixture is calculated according to the approximation of ideal
gases.
The solution of the conservation equations requires to specify

proper boundary conditions for all the dependent fields, i.e. pressure,
velocity, temperature, and mass fractions. For chemical reactors, the
usual boundary conditions for the pressure is a fixed value at the outlet
and a zero-gradient at the reactor inlet and walls. The velocity profile is
assigned at the inlet whereas at the outlet a zero normal gradient is
imposed under the assumption of the fully developed flow field. The
boundary conditions for the gas-phase mass fraction and temperature
reproduce the feed at the conditions that are simulated. In doing so, the
temperature and the mass fractions are imposed at the inlet by a
Dirichlet condition (i.e., fixed value). The outlet section of the rector is
usually placed where the temperature and concentration gradients have
vanished allowing for a zero gradient boundary condition. At the inert
reactor wall, the mass flux is zero since no formation or consumption of
the specie is allowed corresponding to a zero-gradient condition. When
the inert walls are assumed adiabatic, a zero gradient condition is im-
posed. Otherwise, a fixed temperature or a fixed heat flux is imposed.
The surface chemistry as a boundary condition at the catalytic

surfaces where the mass flux of species i compensate for the formation/
consumption rate Ri

het due to the heterogeneous reactions:

= =V n R MWM·i i i
het

k

N

i k k
het

i,

R

(12)

where n is the inward-pointing normal vector, k
het are the net re-

action rates (measured as turnover-frequency per unit time and surface
area), i k, are the stoichiometric coefficients of species i in reaction k
and MMi is the molecular mass.
In analogy, the heat flux on the catalytic surface has to compensate

the heat released Qhet by heterogeneous reactions.

=T n Q· het (13)

The solution of these equations is carried out through the finite
volume method [55], implemented in OpenFOAM [56], through the
catalyticFOAM framework, proposed by Maestri and Cuoci [6], which
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can solve the Navier-Stokes equations for reacting flows at surfaces. In
particular, the compressible form of the Navier-Stokes equations is
coupled with the governing equations for the species which account for
the heterogeneous chemistry. In this work, a second-order upwind
scheme (linear upwind) is adopted for the discretization of the con-
vective terms, whereas a second-order scheme is employed for the
diffusion terms.

3. Adaptive design of training points

The quality of the predictions of every machine learning algorithm
strongly depends on the original dataset employed for the training
procedure. The design of the training points is a crucial task for a highly
accurate approximation of the real unknown function. A simplistic
approach is to evenly distribute the points in each direction of the
multi-dimensional space [34]. In doing this, the points are assigned to
every direction without accounting for the importance of the variable
on the predictions and the different shape and slope of the function.
Hence, the same number of points (np) are employed in each direction
for the description of the real model. When dealing with kMC simula-
tions, the evaluation of a single model (i.e., TOF) is computationally
expensive resulting in a large burden that can become impractical
especially when the dimensionality of the system is high. Therefore, an
effective generation of the dataset is the key to overcome the curse of
dimensionality. To solve this crucial issue, we propose an adaptive
procedure able to selectively add data points within the multi-dimen-
sional space in the regions where the approximation of the function is
more demanding.
The algorithmworks as follows. A flowchart of the procedure is reported

in Fig. 1. A limited number of evenly distributed points, i.e., three or four for
each space direction, are defined at the first iteration. The corresponding
function value at each point is computed and an ExtraTrees is trained using
this dataset. Then, the variable importances (vi

S) are computed by using the
non-scaled permutation method [33]. Hence, a quantitative measure of the
effect of each predictor on the real function is evaluated. The directions of
higher importance are then considered for the subsequent steps of further
point additions to the original training set. Such directions are defined as the
ones which have an importance higher than a user-defined threshold (vi

th).
In doing so, only the most important directions are considered with the
advantage of improving the quality of the ML response without the addition
of redundant points. Once the directions that need refinement are identified,
it is necessary to define the positions of the new points. This is done by
analyzing the slope of the function. Given one of the important directions,
the intervals between the existent training points are identified. Then, the
partial derivative (di j

S
, ) in each of the intervals with respect to the selected

direction is computed keeping the other directions fixed. The middle point
of each interval is a potential new point. To decide whether the point has to
be added or not to the training set, the maximum absolute value of the
derivative in the intervals is stored as a measure of the maximum rate of
variation of the system in the current intervals. As such, each interval is
classified according to the rate of variation of the function. The intervals
where the derivative is higher than a user-defined threshold (dth) are the
ones where additional training data are required to properly follow the
nature of the system. The model values in the new points are computed and
added to the training set which is used to compute a new ExtraTrees based
on the new dataset. The algorithm iteratively proceeds by adding points to
the dataset until the required level of accuracy is reached.
The most appropriate way to quantify the accuracy of the

ExtraTrees would be to compute many times the original model with
random input in the variable space to obtain a benchmark dataset. In
doing this, a set of data which has not been used during the learning
phase could be employed to assess the ML predictions. This approach
would involve the evaluation of the model many times with a sig-
nificant computational cost devoted just to the validation of the algo-
rithm with no additional benefits to the training of the ML. To over-
come such a limitation, we exploit two different strategies. On the one

hand, the OOB error is evaluated since it represents the accuracy of the
ExtraTrees with respect to the data points not used for the training. The
main concern related to the OOB is the low statistical significance for
very small datasets, which are the ones we employ at the beginning of
the procedure. In this view, the ExtraTrees is trained several times at
each iteration providing several OOB errors. The average and the
maximum among the OOBs are evaluated to quantify the accuracy of
the predictions. On the other hand, the second level of assessment is
achieved by comparing the predictions of the ExtraTrees trained with
the dataset obtained in the present and past iteration. In particular, the
new points added in this iteration are used as a query for both the
ExtraTrees trained at the past iteration and at the current one. The
mean relative error computed between the two results is defined as
relative approximation difference (RAD) and reveals the effect of the
new points computed at the current iteration on the algorithm predic-
tions. Hence, the smaller is the RAD, the lower is the effect and im-
portance of the newly added points because they have marginally

Fig. 1. Flowchart of the algorithm of the adaptive design procedure.
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improved the ExtraTrees predictions and indicates that the current
table is enough to describe the real model.
The OOB and the RAD are both used to end the procedure. In par-

ticular, the algorithm stops when the OOB normalized with respect to
the one evaluated, and the first iteration (OOB(1)) and the RAD are
below a certain threshold. The normalized OOB and RAD are employed
to control the performances of the procedure in terms of accuracy. Both
the OOB and the RAD are related to the quality of the approximation
since they represent an indicator of the deviations between the pre-
dictions from the ExtraTrees and the real function behavior. Moreover,
we observed that the OOB and RAD are strongly related and numeri-
cally close to the benchmark error evaluated on a cross-validation da-
taset, as shown in Section 4. In this work, different termination criteria
are employed in the examples of the application of the procedure to
demonstrate the control of the output accuracy provided by their dif-
ferent values.
The definition of their values is crucial for the accuracy of the ap-

proximation but also for the computational burden related to the gen-
eration of the dataset. More stringent termination criteria would in-
evitably result in a larger number of training points and hence in higher
computational cost spent in the construction of the ExtraTrees. As a
result of the procedure, an ExtraTrees table representing the behavior of
the real model is obtained by employing a dataset aimed at minimizing
the number of training points. Hence, an accurate description of the
multidimensional model is achieved minimizing the computational
costs related to the evaluation of the real model.
The definition of the parameters of both the algorithm has been

selected after a parametrical analysis to represent the best compromise
between accuracy and dataset size as reported in the Supplementary
Material (Section 1). Table 1 lists the algorithm parameters employed in
this work. In particular, the terminal leaf size is defined to be 1 because
the data employed in this work is not noisy, whereas the number of
splitting variables is assumed to be equal to the number of variables as
suggested by Geurts et al. [42]. The effect of the number of trees in the
forest has been tested and we obtained that a number ≥ 200 is suffi-
cient to achieve good results. The employed parameters are listed in
Table 1.

4. Results and discussion

In this section, we illustrate the capabilities of the methodology for
the generation of the training dataset for the ExtraForest algorithm
through a simple showcase. Then, the adaptive design procedure de-
scribed in Section 3 is employed for the tabulation of two different
systems. The first-principles kMC CO oxidation on RuO2(110) is con-
sidered to show the capabilities of the approach with respect to a
system characterized by sharp transitions in reactivity. CFD simulations
will be shown to demonstrate the possibility of introducing detailed
kMC simulation in 3D reactor models. Then, a Water Gas Shift model on
Rh computed through mean-field microkinetic model is considered to
show the capabilities of the procedure in dealing with a reaction system
characterized by high dimensionality. A PFR is employed to carry out a
direct comparison between the direct solution of the kinetic model and
the ExtraTrees predictions.

4.1. Showcase of the procedure

A mono-dimensional testing function is employed to elucidate the
capability of the adaptive design procedure. The function is conceived
to represents the trend of a typical kMC chemical model usually char-
acterized by abrupt changes in catalytic activity [10]. In this view, the
function reported in Eq. (14) is considered.

=
+

y
x x

1
·(1 exp( 150·( 0.5))) (14)

The function is able to show a sudden increase of the function value
around =x 0.5, followed by a reduction of the function magnitude as
shown in Fig. 2. The interval =x [0.001, 1] is considered for the
showcase. Moreover, a benchmark dataset consisting of 1000 points
randomly distributed is evaluated to quantitatively assess the perfor-
mances of the procedure. In this case, the termination criteria are the
following OOB/OOB(1) = 0.015 and RAD = 15%.
The adaptive design procedure starts with 4 points equally dis-

tributed in the considered interval. An ExtraTrees is trained using these
initial points, as shown in Fig. 2(a), and the OOB is computed. In the
next iterations, the variable importance is evaluated, and the important
directions are considered for the refinement. By evaluating the local
derivative based on the actual function values, the intervals between
consecutive points that require to be refined are selected. All the in-
tervals are refined at the second iteration since the description of the
function is poor by using the initial dataset. On the contrary, the in-
tervals selected for the refinement in the next iterations are the one
characterized by the rapid change of the slope of the function. The OOB
and RAD termination criteria are reached after 7 iterations resulting in
a training set of 24 points. The data points are amassed in the region of
the composition space where the function shows the abrupt change in
slope, as shown in Fig. 2(b).
The assessment of the accuracy of the predictions is carried out by

direct comparison with the analytical function values (Eq. (14)). The
approximation error is computed as the relative error between the real
function value and the predictions of the ExtraTrees evaluated for each
record in the benchmark dataset. The average and maximum errors are
evaluated as reported in Eqs. (15) and (16).
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where xq i, is the query point from the benchmark dataset, y x( )q i, is the
actual function in the query point, y x( )ET q i, is the function value pre-
dicted by the ExtraTrees in the query point and NQ is the size of the
benchmark set.
A direct comparison with the benchmark dataset reveals the im-

provement of the error by introducing additional points according to
the envisioned procedure, as shown in Fig. 2(a-b). The first set of points
makes it possible to achieve a rough description of the real function due
to the insufficient number of information provided to train the Extra-
Trees. By the iterative addition of new points, the agreement improves
since the ExtraTrees predictions move closer to the analytical function
values. At the end of the procedure, the predictions of the ExtraTrees
table are superimposed to the actual function values evaluated in the
benchmark dataset, as shown in Fig. 2(b).
Fig. 3 shows the evolution of the benchmark error bench with the

iterations. The error decreases with the iterations due to the higher
number of training points. At the final iteration, the average deviation
is below 1% while the maximum one is< 10% and located in the re-
gion of the abrupt change in slope.
It is worth comparing the accuracy achieved through the design

procedure against an evenly-distribute dataset. Fig. 3 reveals that the

Table 1
Adaptive design procedure and ExtraTree parameters.

Algorithm parameters ExtraTree parameters

Param Value Param Value

vi
th 0.15 Number of trees 200

Training fraction 0.7
dth 0.5 Terminal leaf size 1

Splitting variables Number of variables
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performances of the dataset obtained by the adaptive design procedure
always outperform the ones obtained with an evenly distributed grid as
shown by the higher average benchmark error. This proves the effec-
tiveness of the procedure in the choice of the position of the training
points. Indeed, the addition of new data points in the proper positions
selected by the algorithm enables a rapid reduction of the benchmark
error with a significantly higher rate with respect to the equally spaced
cases. In particular, a uniform grid with 24 points (i.e. the same ob-
tained by the iterative procedure) achieves a bench equal to 2.1% and a
maximum deviation around 25%. The average and maximum bench-
mark errors are 2 and 2.5 times, respectively, larger than the one ob-
tained with the training set generated by the adaptive procedure. Fig. 2
(c) shows the ExtraTress predictions for the 24 evenly distributed
points. The rapid variation of the function values around x = 0.5 is
poorly described despite the significant number of training points. This
is ascribed to the positions of the data points which are mainly used to
describe the quasi-flat region before x = 0.5 and the smooth decrement
after x = 0.6. The region of the sharp variation of the function value is
described by only 4 points whereas the adaptive procedure employs 7
points in this region. Fig. 2(d) also shows that the same average

accuracy is reached by employing more than the double the number of
evenly distributed points (i.e., 54) but with still a higher maximum
error (18 vs 10%), since the region around x = 0.5, characterized by a
sharp change in the function slope, is still poorly described.

4.2. Application of the procedure to the tabulation of first-principles kMC
data

The procedure for the generation of the training points has been
assessed by using a simple first-principles kMC model to showcase the
capability of the approach in dealing with such systems. The CO oxi-
dation on RuO2(110) proposed by Reuter and Scheffler [57] has been
employed. The model employs a lattice representation of the active
surface considering different site types, i.e. bridge and cus. In these
simulations, a lattice consisting of 20x20 surface sites (200 bridge and
200 cus sites) and periodic boundary conditions are employed as pro-
posed by Reuter and Scheffler [57]. The kMC model accounts for all the
elementary events that can occur on the lattice: dissociative O ad-
sorption, associative O desorption, unimolecular CO adsorption, and
desorption along with Langmuir-Hinshelwood CO + O surface

Fig. 2. ExtraTrees (ET) predictions (red dots) compared with the real function values (black continuous line) obtained at the first (a) and last (b) iteration of the
advanced design procedure and for evenly distributed grids with the same number of datapoints obtained at the end of the adaptive procedure (c) and with the
number of training points required to achieve the same approximation accuracy of the design procedure (d). The training points are also shown in each panel: black
circles correspond to the adaptive procedure whereas grey diamonds to equally spaced grids. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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reactions. The CO2 re-adsorption is neglected along with the superficial
diffusion of CO and O due to the high partial pressure of the species
considered [57]. The first-principles kMC model has been implemented
in the Zacros package. For a given set of operating conditions (i.e.,
partial pressures of CO, O2 and temperature), the outcome of a first-
principles kMC simulation is the steady-state catalytic TOF and the
corresponding coverage distribution. The range of operating conditions
investigated is reported in Table 2, while the temperature is assumed to
be constant and equal to 600 K. In the case of the first-principles kMC
data, the TOF and the corresponding coverages are tabulated through
the ExtraTrees. In doing this, the coupling between the chemistry and
the numerical simulations at the reactor scale is possible without losing
the relevant information of the status of the catalytic surface provided
by the Monte-Carlo simulations. The termination criteria employed in
this case are the following: OOB/OOB(1) = 0.1 and RAD = 10%.
First, the procedure is employed for the tabulation of the TOF re-

sulting from the kMC simulations. Fig. 4 depicts the three-dimensional
representation of the actual TOF obtained from the 250 benchmark
simulations. The net production rate shows a low value of the TOF
(< 1 s−1) in a large region of the composition space. This is due to the
poisoning of the surface, which is fully covered by a single species,
resulting in an inhibition of the catalytic activity. However, the system
has an abrupt change in reactivity in the region characterized by a ratio
between the partial pressure of CO and O2 between 10 and 100 where
the TOF reaches values higher than 104 s−1 [10,57]. A good approx-
imation of the function requires an effective distribution of the training
points rather than an evenly distributed grid. The initial training set
consists of 3 equally spaced points for each direction sampled on a
logarithmic scale for the partial pressures as shown by the blue circle in
Fig. 4(a). It is worth emphasizing that the actual TOF trend is generally
not known during the generation of the training dataset. Despite the
poor description of the function, the initial data points are sufficient to

evaluate the discrete gradient. In doing this, it is possible to discover
the regions of the composition space where the steeper variations of the
function are present. Fig. 4(b) shows the distribution at the second
iteration, where the red circles represent the additional points, which
are still insufficient to provide an accurate approximation of the func-
tion. In the next iterations, additional points are added based on the
gradient of the function. Hence, they are positioned around the peak of
the TOF, thus providing an additional improvement with respect to a
blind addition. By proceeding with the iterations, the procedure ex-
pands the dataset, thus gathering the points in the region of the com-
position space corresponding to the steeper variation of the TOF.
Fig. 4(d) represents the situation at the final iteration when the ter-
mination criteria are satisfied. The final dataset corresponds to 140
points distributed in 10 and 14 for CO and O2, respectively.
The accuracy of the resulting ExtraTrees is assessed by considering a

benchmark dataset generated by considering 250 randomly generated
points in the range of partial pressure of interest. The average bench-
mark error ( bench ) computed in the case of the adaptive procedure
grid is equal to 12%. Then, we evaluated the accuracy of two evenly
distributed grids. First, we considered 144 (i.e., 12 for CO and 12 for
O2) equally spaced points that correspond to the same amount of data
obtained by the adaptive procedure. In this case, we observed an
average benchmark error of 14%. Hence, the adaptive procedure can
provide a superior approximation with respect to evenly distributed
grid even in a simple system characterized by two variables. The same
level of accuracy is obtained by considering a uniform grid consisting of
20 points in each direction (400 training data) which reaches a

= 11%bench , analogous at that of the design procedure. The same
level of accuracy is achieved by the design procedure by considering
65% points less than the evenly distributed grid, resulting in a con-
sistent saving in computational time. Moreover, the computational gain
is expected to be more significant by moving to systems either with a
higher number of species and/or more complex chemical reactivity.
We have also carried out a more detailed comparison of the per-

formances of the two training sets on the model predictions by con-
sidering the outcome of every single query. Fig. 5 shows a parity plot
where the TOFs evaluated through the ExtraTrees are compared to the
actual values resulting from kMC simulations. The TOF values are in
good agreement with deviations generally below 15% in a broad range
of operating conditions. However, Fig. 5 reveals that the predictions
obtained using the ExtraTrees corresponding to the 144 evenly dis-
tributed dataset are generally more scattered. It can be noticed that the
largest deviations are observed for low values of the TOF (< 10−2 s−1).
Despite the error in this region can be relevant (> 70%), the error on
the TOF results in an insignificant error in the reactor output con-
centrations. Fig. 5 (b) reports a zoom in the region of high TOF
(> 103 s−1)). Hereby, the predictions of the adaptive design procedure
are close to the ones of an evenly distributed grid with 400 points and
generally fall between the ± 15% range. Conversely, the grid with 144
points is characterized by larger deviations from the parity line due to
the worse description in particular of the region of high reactivity. Most
of the points are outside the 15% of the kMC values and the predictions
are generally more distant from the parity line than the ones of the
forest trained with the same number of points positioned by the
adaptive design procedure.
It can be noticed that the ExtraTrees suffers from the problem of

generally underestimating the peak of the TOF. This is ascribed by the
fact the ExtraTrees is able to predict at best an average of the data
employed in the training. The peak values of the TOF are not guaran-
teed to be included in the training data, thus those sharp function peaks
require extrapolation to be properly described since their value is
outside the range withing the ExtraTrees is trained. ExtraTrees is not
able to extrapolate outside the training set neither in the independent
variable domain nor in the dependent variable domain resulting in an
inaccurate description in this region. As such, the design of the training
points reveals to be even more crucial since an accurate definition of

Fig. 3. Average benchmark error for the showcase system as a function of the
training points for each iteration of the procedure (black circle) along with the
error achieved by means of evenly distributed sets of points (grey diamond).
The dotted line highlights the target accuracy of the procedure.

Table 2
Range of partial pressures and temperature employed
for the tabulation of the CO2 net production rate in the
first-principles kMC CO oxidation on RuO2(110).

Variable Range

CO 1·10−6−1·10−1 bar
O2 1·10−6−1·10−1 bar
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the training set positions is also able to boost accuracy.
In principle, ExtraTrees can learn and regress whatsoever function.

In this view, it is possible to tabulate also other outputs of the kMC
simulations, such as the coverages (θ) or even the coverage speciation
on the different active sites. To show the potential of the approach, we
have also evaluated the performances of the ExtraTrees in tabulating
the site coverages coming from the kMC simulations. To do this, we
post-processed the kMC simulations and we computed the time-aver-
aged site occupancies once steady-state conditions are reached.

According to the kinetic scheme hereby considered, the adsorbed spe-
cies are the CO, named CO*, and the atomic oxygen, named O*.
Fig. 6 shows the parity plot of the coverages (θ) between the Ex-

traTrees predictions and the kinetic Monte Carlo simulations. The vast
majority of the coverages computed with the advanced design proce-
dure are within 15% of the values evaluated with kMC and comparable
results are achieved through the evenly distributed grid with 400
points. By considering the ExtraTrees trained with the dataset from the
adaptive design procedure, a benchmark error around 15% and 1.5%

Fig. 4. Evolution of the dataset employed for the training of the ExtraTrees in the case of the CO oxidation over RuO2 along with the iterations necessary to reach the
target accuracy from the first iteration (a) to the final iteration (d).

Fig. 5. Parity plot comparing the TOF from kMC simulations with the predictions of the ExtraTrees (ET) trained with the dataset generated by the adaptive design
procedure (grey squares) and by evenly distributed grids with 144 (blue diamonds) and 400 training points (red circles) (a) along with a zoom in the region of high
TOF (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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are evaluated for CO* and O*, respectively. At the same time, the
evenly distributed grid with 144 points is characterized by bench equal
to 23% and 1.7% for CO* and O*, respectively. This reveals the superior
accuracy achieved employing the advanced design procedure with re-
spect to an equally spaced grid even in this simple system. A similar
level accuracy is achieved by considering the 400 equally spaced points
( bench equal to 10% and 1.4% for CO* and O*, respectively) corre-
sponding to a significant increment of the computational cost. Thus,
both CO* and O* are well predicted by the ExtraTrees trained with the
adaptive procedure elucidating the capability of the ExtraTrees of ta-
bulating not just the TOF but also other relevant chemical important
properties such as the coverages.
In doing this, the relevant information provided by kMC is not lost

in the coupling with reactor scale simulations since they are properly
provided by a dedicated tabulation procedure. Moreover, the adaptive
design procedure could be also employed leveraging from the current
grid obtained for the description of the TOF to be eventually refined to
improve the prediction of the other quantities of interest, such as the
coverages.
Finally, the analysis of the computational cost related to the eva-

luation of the TOF through the ExtraTrees is compared to the compu-
tational cost required by the solution of the kMC simulations. The effort
for a kMC simulation strongly depends on the operating conditions. On
average, the computational cost required by a kMC simulation of CO
oxidation over RuO2(110) is around 900 s on an Intel(R) Xeon(R) Gold
6148 2.40 GHz. On the contrary, ExtraTrees is able to provide the es-
timation of the TOF in about 10 ms on the same machine resulting in a
significant speed-up. As a result, the adaptive training procedure is able
to reduce the computational cost related to the generation of the
training set, whereas the ExtraTrees is capable of dramatically reducing
the burden related to the prediction of the TOF, thus enabling the
coupling of kMC simulation in macroscopic reactor models.

4.3. CFD simulation of kMC CO oxidation on RuO2(110) in a complex
geometry.

We integrate first-principles kMC based heterogeneous chemistry
models in 3D real reactor models by coupling CFD and ML methods. In
this view, complex and tri-dimensional geometry of an open-cell foam
has been considered to elucidate the capability of the envisioned ap-
proach to enable the accounting for the the transport phenomena along
with the accurate description of the surface reactivity. Moreover, we
emphasize how the intrinsic catalytic activity can be captured through
first-principles kMC simulations carried resulting in non-intuitive

effects at the reactor level. In doing this, the RuO2 model catalyst sur-
face previously precomputed and tabulated in an ExtraTrees (trained
with the proposed adaptive procedure) is employed.
The geometry considered for this showcase is a 9 mm tubular re-

actor filled with a catalytic open-cell foam. The structure is 1.0 cm
length and it is placed 2 mm downstream of the inlet. The open-cell
foam surface is assumed to be catalytically active. Due to the symmetry
of the system, a quarter of the reactor tube is simulated. The open-cell
foams geometry shows a void fraction of the 90% and a cell size of
3.2 mm and it has been generated according to the procedure reported
by Bracconi et al. [58]. The mesh has been generated through the
snappyHexMesh utility of the OpenFOAM framework [56]. A back-
ground mesh with a resolution of 0.16 mm has been employed and the
region of the mesh close to the foam surface has been refined up to the
three levels obtaining a cell size equal to 0.02 mm. In doing so, the
computational domain is refined in the region of the mass and tem-
perature gradients within the boundary layer according to the mesh
convergence results already reported in literature [59]. The simulation
is carried out in isothermal conditions. The feed conditions correspond
to =x x/ 5CO O2 , =p bar1 , =T K600 and a flowrate of NL min0.95 1.
The simulation is carried out for 0.2 s (equal to 5 residence times) with
a constant time step of 1.5·10 6 s resulting in a Courant number below
0.08.
The precomputed ExtraTrees table enables us to provide the TOF

required by the CFD simulations to accurately describe the hetero-
geneous chemistry in a reasonable computational time. The solution of
the surface reactivity in each computational cell requires the evaluation
of the TOF a large number of times (i.e., 102-103). The fast and accurate
estimates provided by the ExtraTrees strongly reduces the computa-
tional costs associated with the evaluation of the reaction rates by or-
ders of magnitude if compared to actual kMC simulations. Hence, an
effective coupling between CFD and kMC is achieved with a reasonable
computational burden.
As an example of the performances of the coupling, the steady-state

simulations results are reported in Fig. 7. The reacting mixture enters
into the reactor and once approaches the catalyst the CO and O2 are
consumed to produce CO2, as shown in Fig. 7(a). The CFD simulations
can catch the spatial variations of the gas and adsorbed species.
Moreover, the complex interplay between the transport properties and
the chemistry results in reaction rates which might be different even by
an order of magnitude for adjacent foam surface regions, as shown in
Fig. 7(b).
The CO* and O* site fractions at the catalytic surface are reported in

Fig. 8. The envisioned approach is also able to provide an insight into

Fig. 6. Parity plot comparing the coverages (θ) from kMC simulations with the predictions of the ExtraTrees (ET) trained with the dataset generated by the adaptive
design procedure (grey squares) and by evenly distributed grids with 144 (blue diamonds) and 400 training points (red circles) for CO* (a) and O* (b). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

M. Bracconi and M. Maestri Chemical Engineering Journal 400 (2020) 125469

10



the status of the catalytic surface during the simulation revealing the
different adsorbed species and their amount. In particular, O* is the
most abundant adsorbed species at the beginning of the reactor where
molecular oxygen is present in the gas phase consistently with the re-
sults by Reuter and Scheffler [57] for this operating condition. Where
oxygen tends to be highly depleted, the catalytic surface begins to be
partially covered by CO* as shown on the left-hand side of Fig. 8. As a
whole, the adaptive design procedure and ExtraTrees are capable of
enabling the coupling between first-principles kinetic schemes and
complex tridimensional CFD simulations paving the way for the de-
tailed description of the mutual interaction between the catalytic
chemistry and the transport.

4.4. Application of the procedure to a large dimension system

Machine Learning methods and the adaptive design procedure allow
for the tabulation of the computationally expensive first-principles ki-
netic models shown in Section 4.2. Furthermore, they enable the facile
management of a system characterized by a high number of variables.
To this scope, here we test the adaptive procedure by using a mean-field
water gas shift (WGS) microkinetic model on Rh [60], as an example of
a reactive system of high dimensionality. This test makes it also possible
to assess a direct comparison between the microkinetic model and the
trained Machine Learning algorithm (ExtraTrees) in reactor simula-
tions.
The WGS system is characterized by four species, i.e. CO, H2O, CO2,

H2, and temperature, resulting in five descriptors and it is represented
by the mean-field microkinetic model proposed by Maestri et al. [60].
The net production rate of CO2 is the quantity considered for the ta-
bulation with the ExtraTrees techniques. A set of partial pressures of the
gas species which span the range reported in Table 3 is employed for
the generation of the training data. In particular, the microkinetic
model is solved for any given set of partial pressures and temperatures
to evaluate the distribution of the site fractions and the net production
rate of the target molecule [34]. In this case, the termination criteria
are the following OOB/OOB(1) = 0.05 and RAD = 2.5%.
The initial training set consists of 3 evenly distributed points for

each direction sampled on a logarithmic scale for the partial pressures
and a linear scale for the temperature. The procedure is deemed to
provide an accurate result when the OOB in terms of mean relative

Fig. 7. Cupmix mass fraction along of the reactor axis for CO (square), O2 (triangle), CO2 (circle) (a) and local reaction rates on the foam surface (b).

Fig. 8. Site fractions maps on the catalytic surface for CFD-kMC simulation of CO oxidation on RuO2(110) in isothermal conditions (T = 600 K) on an open-cell
foams.

Table 3
Range of partial pressures and temperature employed
for the tabulation of the CO2 net production rate in the
WGS system.

Variable Range

CO 1·10−2−1·10−1 bar
H2O 1·10−2−1·10−1 bar
H2 1·10−6−1·10−3 bar
CO2 1·10−6−1·10−3 bar
T 650–900 K
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error is around 2.5% which is expected to provide the same average
benchmark error. To assess the accuracy of the procedure, a benchmark
dataset is also computed by generating 104 random sets of composition
and temperature in the range of interest.
Fig. 9 shows the evolution of the average benchmark error as a

function of the number of training points along with the target error
represented by a dotted line. Each circle corresponds to an iteration of
the adaptive design procedure of the training points. Based on the in-
itial dataset, the procedure begins with the tabulation of 243 (35) data
points in an ExtraTrees table which provides a rough estimation of the
target production rate, with an average benchmark error of around 7%.
Then, additional points are sequentially added according to the envi-
sioned procedure in three further iterations. As expected, the average
benchmark error (Eq. (15)) decreases by increasing the data points with
a quasi-exponential fashion and reaches the grid reaches the termina-
tion criteria by considering 4860 points. More stringent termination
criteria would lead to a different amount and distribution of the
training points and a concomitant lower benchmark error.
The accuracy of the procedure is assessed by computing the average

benchmark error which is equal to 2.7%. The final point distribution is
uneven as listed in Table 4 along with the evolution of the number of
training points at each iteration. Temperature shows the highest
number of points, followed by water, hydrogen, and carbon monoxide,
whereas a negligible effect is observed for carbon dioxide. These results
reflect the intrinsic kinetics of the system which can be macroscopically
described as a first-order reaction rate with respect to water with in-
hibition through the most abundant reaction intermediates which are
carbon monoxide and hydrogen [61]. It is worth noticing that the
procedure can select the most relevant descriptors avoiding the addi-
tion of points for irrelevant variables in the conditions of interest, such
as CO2. The negligible effect of the CO2 can be explained by the oper-
ating conditions which are distant from thermodynamic equilibrium

resulting in the presence of the sole forward water-gas-shift.
The capability of the procedure in reducing the number of training

points is assessed with a comparison with evenly distributed points in
all the directions. First, we select a number of equally spaced points in
each direction to make the grid dimension as similar as possible to size
of the training set from the procedure. The final number of points falls
in between an evenly distributed grid with 5 and 6 points, corre-
sponding to 3125 and 7776 data points, respectively, as shown in Fig. 9.
Hence, we compared the performance of the advance procedure with
both the resulting sets. The data points are employed to train an Ex-
traTrees which provides predictions of the benchmark set with an
average relative error of 4.9% and 3.5%, both larger than the error
achieved by the adaptive design procedure.
We have also quantified the number of data points required by an

evenly distributed grid to ensure the same accuracy on the predictions.
Fig. 9 shows that an evenly distributed grid converges to the target
accuracy much slower, requiring roughly 32,000 points to obtain an
analogous accuracy. This means that the adaptive design procedure is
able to provide the expected accuracy by employing 1/8 of the data
points required by an evenly distributed set. The reduction in data
points results in a relevant reduction of the computational cost spent in
the generation of the ExtraTrees. As a whole, this result reveals that the
adaptive design of the training points is the enabling factor to increase
the overall dimensionality of the system being able to minimize the
computational cost without hindering the accuracy.

4.5. Simulation of a PFR with WGS on Rh

ExtraTrees has been employed to properly tabulate and interpolate
the results of the microkinetic model. Here, we employ the ExtraTrees
net production rates obtained with the adaptive procedure to carry out
the reactor simulation. This enables a direct assessment of the accuracy
of the methodology within reactor simulations by a comparison with
the results obtained by simultaneously solving also the microkinetic
model.
We simulate WGS on Rh in a washcoated monolith with square

channels. The channel is 12 mm length with an initial zone of 2 mm
without coating. The channel diameter is 3.1 mm. The catalyst loading
is m m4.14·10 cat

5 2 3. A mixture of CO and H2O with molar fractions
equal to 0.02 is fed to the system along with inert N2 with a flowrate of
30 NL min−1. The system is isothermal at the temperature of 850 K and
it is kept at a total pressure of 1 bar.
Fig. 10 compares the profiles of reactants and products along the

reactor axis. A perfect agreement (i.e., deviation below 0.2%) between
the predictions obtained through ExtraTrees and complete solution of
the microkinetic model is observed. Hence, the simulations carried out
with net rates tabulated with the ExtraTrees method provides the same
results of the complete solution of the microkinetic scheme in the
model. As such, these results highlight the possibility of achieving an
effective coupling between complex kinetic schemes and reactors
models through the combined effect of Machine Learning and the
adaptive procedure for the generation of the training points.

5. Conclusions

A procedure for the adaptive design of the training points for ML
techniques has been proposed in this work. The procedure is conceived
to generate a curated training set minimizing the number of records
required for the accurate approximation of the real function. To achieve
this, the capability of the RF and ExtraTrees to evaluate the variable
importance is employed to selectively refine the training set over the
directions of more impact on the ML predictions. Moreover, the posi-
tions of the training points are defined according to the gradient of the
function. Hence, the position of the data points follows the function
trend and most of the training data are placed in the region of sharp
variations.

Fig. 9. Average benchmark error for the WGS system as a function of the
training points for each iteration of the procedure (black circle) along with the
error achieved by means of evenly distributed sets of points (grey diamond).
The dotted line highlights the target accuracy of the procedure.

Table 4
Distribution of the number of training points at each iteration of the adaptive
procedure for each of the descriptors involved in the WGS system along with
the total number of points.

Iteration CO H2O H2 CO2 T Total

#1 3 3 3 3 3 243
#2 4 4 4 3 5 960
#3 6 6 5 3 9 4860
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We reveal the potential of the procedure employing the tabulation
through ExtraTrees of first-principles base kinetic scheme aiming at
their inclusion in reactor models on two levels. First, we assessed the
efficiency of the design of the points by comparing the ExtraTrees
predictions with respect to an evenly distributed rectangular grid. The
same accuracy is achieved by considering significantly less training
points (< 60%), resulting in a relevant computational saving.
Moreover, we demonstrated the accuracy of the tabulated kinetic
models in the description of the reactor behavior through a direct as-
sessment with the full kinetic scheme in the case of the mean-field
model. The predictions of the two models are in perfect agreement with
deviations below 0.2%. Finally, we included the first-principles kMC
kinetic model in a CFD simulation through the ExtraTrees tabulated
TOF enabling the coupling between the accurate description of the
chemistry and the transport. The simulation of CO oxidation on a
complex three-dimensional geometry of an open-cell foam revealed the
capability of the methods in predicting the gas and surface species
concentrations and trends. The tabulation of the site coverages also
enabled the inclusion of specific information (i.e., site coverages) pro-
vided by the kMC simulation.
The envisioned procedure reveals to be an effective methodology in

reducing and optimizing the size and shape of Machine Learning
training set. On a broader perspective, this concept can also be ex-
tended to the reduction of the cost connected to the application of ML in
the context of the approximation of computationally expensive func-
tions important in catalysis at large, such as first-principles calculations
or generation of potential and forces for molecular dynamics.
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