HW/SW Codesign for Embedded Telecom Systems

S. Antoniazzi (a,b), A. Balboni (b), W. Fornaciari (a), D. Sciuto (c)

(a) CEFRIEL, via Emanueli 15, 20126 Milano (MI), Italy, E-mail: fornacia@mailer.cefriel.it
(b) ITALTEL-SIT, Central Research Labs, CLTE, 20019 Castelletto di Settimo m.se (MI), Italy
(c) Politecnico di Milano, Dip. Elettronica e Inform., P.zza L. Da Vinci 32, Milano, Italy, E-mail: sciuto@elet. polimi.it

Abstract

The aim of this paper is to define an approach, tailored for
control-oriented applications, to manage system
cospecification, high-level partitioning, hw/sw tradeoffs and
cosynthesis. Our research effort focuses on fulfilling the goal of
linking high-level specifications to efficient and cost-effective
hw/sw implementations, by investigating techniques such as
synchronous cospecification styles, direct machine code
generation as well as exploiting the capability of commercial
VHDL synthesis tools.

1. Introduction

Heterogeneous hardware/software architectures, for many
application fields requiring an ASIC approach, may provide a
more effective design solution for some target performance/cost
figures with respect to fully dedicated hardware
implementations. Therefore, new design automation
methodologies should be placed on top of current ASIC design
flows in order to integrate dedicated logic obtained by
register-transfer level synthesis, with CPU core cells and the
related software (firmware).

Although hardware/software codesign goals and strategies
will not probably converge to a single common interpretation,
due to the wide spectrum of application fields and design
requirements, the potential value-added provided by the
automation of codesign tasks has been shown by a number of
recent research works ({11, [2], [3], {4}, [5), [6]).

The aim of this paper is to introduce a novel methodology to
manage the codesign process for a specific application field,
namely control-dominated ASICs such as those embedded into
telecom digital switching subsystems. The development of such
methodology is currently in progress within a research project
called TOSCA (TOols for System Codesign Automation), in
which one of the main activities is the definition of a support
environment by integrating commercial EDA software with new
experimental tools.

After a general overview of the proposed codesign
methodology, the paper will discuss the main phases allowing
hw/sw tradeoff exploration and cosynthesis starting from high-
level cospecification. The prototype software environment,
supporting the envisaged codesign flow, will also be addressed.

2. The codesign flow
The aim of the proposed methodology is to allow the

1063-6404/94 $4.00 © 1994 IEEE

278

designer to experiment altemative system designs in order to
balance hardware costs and software performances. Such a goal
can be achieved through a design flow, able to capture initial
specification avoiding as much as possible any implementation
bias but, at the same time, suitable to make possible fast
architectural exploration and direct integration within existing
commercial synthesis environments.

In order to give effectiveness and validate the proposed

approach, a prototype software environment, supporting the
codesign flow depicted in fig.1, is currently under development.
The target is to cover the following issues:
acquisition of behavioral specifications, suited to the
application field of interest, while maintaining full
independence of any particular hw/sw implementation;
analysis/validation at specification-level,
tool-directed restructuring and hw/sw binding of
concurrent synthesis of sw-bound, hw-bound parts and
related interfaces;
cost/performance analysis of the altemative hw/sw
architectures;
integration with commercial RTL synthesis and optimization
tools, as well as software/firmware development tools.
The codesign process starts from a system model captured
via a mixed graphical/textual formalism, based on concurrent
and hierarchical finite-state machines (FSMs). After a
preliminary analysis/validation activity, an internal system
representation (TOSCA DB) tailored to support high-level
architectural exploration, is obtained. The main activities
involving the design database, are the restructuring of the initial
system modularization to produce a new set of system partitions
and their association (binding) either with software or with
dedicated hardware, the HW-SW interface generation; the
cosynthesis stage. A set of strategies and basic transformations
can be iterated onto the system representation, until the design
constraints are satisfied. The user, as well as some heuristic
strategies, can organize these actions along predefined
schedules called recipes. Both software and hardware synthesis
exploit technology-dependent parameters, enabling a realistic
cost/performance estimation of each proposed architectural
solution.

According to the chosen level of accuracy, the information
used for hardware characterization range between purely
estimation and data obtained through an actual synthesis
process. Due to the impossibility of carefully controlling time

delay, code size and low level interfacing schemas, the software
parts need to be considered at a lower level with respect to
C-language based solutions, in particular if processor
retargeting capabilities are envisaged. Our solution is to
consider the software description at the level of a virtual
assembly whose structure can be mapped onto different CPUs
core with fully predictable translation rules and, consequently,
reliable performance estimation.

Finally, back-end tools produce a design representation of
the selected hw/sw solution (assembly code, VHDL) acceptable
for the target commercial implementation environment.

F==)

— | foreseen

Junderdev. []ready
Figure 1: The codesign activities supported by the TOSCA
environment.

3. Specification and system-level exploration

As mentioned in the introduction, the TOSCA approach
focuses on control-dominated designs. Therefore, a particular
specification style has been adopted, based on a preliminary
analysis of the selected target field. Such analysis stage has
shown that the following aspects should be carefully taken into
account:

a) a concurrent model is required, based on multiple
interacting processes;

b) each process may be properly modeled via a synchronous
state/transition description;,

c) high-level concepts/constructs such as timeouts, behavioral

hierarchies and symbolic data may be very valuable in order

to cope with specification complexity and implementation

independence;

logic functions and bit vector data types dominate

descriptions while arithmetic data processing plays a

secondary role;

€) multiple clocks may drive processes.

d)

279

It should be pointed out that the synchronous paradigm is not
intended to force any hardware bias but to model the intrinsic
nature of the application itself. For a discussion of synchronous
approaches to reactive system modeling see ([7], [8]).

A commercial environment (SPeeDCHART by Speed
Electronic) has been adopted for both specification and
validation purposes. The formalism provided by SPeeDCHART
belongs to the Statecharts family ([9], [10], [11]), coupling
graphics with textual descriptions written in a VHDL-like script
language. Such environment also allows system validation by
simulation, including visual animation capabilities.

The system 1is composed of multiple processes
communicating via shared signals. Special states labeled entry
always allow identification of the initial state of a diagram at
any hierarchical level. Actions and priorities (represented via
circled numbers on edges) can be associated with transition
edges. State nodes can also have behavioral scripts in terms of
entry/exit actions: entry actions are triggered when the related
state is reached and are semantically equivalent to actions
associated with all the incoming transitions; exit actions are
triggered when the related state is exited and are semantically
equivalent to actions associated with all the outcoming
transitions. There are also some useful additional features such
as timeouts (captured by the settimer statement) and the
symbolic representation of communication messages.

Since the subsequent codesign stages have been
implemented on top of a different software environment (the O2
object-oriented DBMS) a preliminary step (Import) has to be
performed in order to translate SPeeDCHART design data into
the TOSCA internal model. Such core representation preserves
the concurmrent/hierarchical structure of the original
specification. The main difference is in the management of
textual scripts: the Import procedure starts from ASCII files
produced by SPeeDCHART and carries out a parsing process
building symbol tables for declarations and data flow graphs for
conditions and actions. Enumerative types are also encoded in
this step.

After the Import procedure has been completed, architectural
tradeoffs may be carried out by iterated manipulation of the core
model. This stage manages two classes of objects (processes,
namely the modules in the specification, and architectural units,
ie. the modules in the target implementation) and involves
three tightly related activities:
® restructuring. transformations local to a single process

modifying the cardinality of the whole process set (acts at
process-level only),
e allocation: clustering of processes by assigning an
architectural unit identifier to each process (operates on
both processes and architectural units),
hw/sw binding: marking of each architectural unit either
with a software or a hardware constraint (operates on
architectural units only).
In the following, a sofiware-bound architectural unit will be
indicated with the term thread while a hardware-bound unit will
be called coprocessor.

condiion’-actons actors™, _ Conditon/O-ackons

condition'-actions + T-entry actiops- condidon/-actions + T-exit actons
NS

>

Figure 2: State actions unfolding (left); the simplest case of hierarchy removing (right).

Concerning restructuring, a set of basic transformation

algorithms has been made available:

a) unfolding entry/exit actions;

b) unfolding FSM enabling conditions;
c) flatten hierarchies;

d) mapping timers onto counters;

e) collapsing a set of processes.

As mentioned above, entry/exit actions may be possibly
associated with states, thus allowing a more concise
representation. Users may preserve such a model structure or
apply the algorithm a), obtaining the representation depicted in
fig.2 (left), by migrating entry and exit actions respectively
toward incoming and outcoming transitions.

SPeeDCHART also allows to specify a general condition
associated with a whole FSM: the FSM is enabled if and only if
such a condition is true. The transformation b) moves the
condition from the FSM level downto each transition: such
condition is merged with the original transition predicate by
using an AND operator.

In order to make easier the hardware/software mapping step,
hierarchical descriptions can be expanded by the application of
algorithm c). Referring to the case reported in fig.2 (right), all
the incoming edges will be linked to the entry state together
with their condition/actions pairs.

Concerning the outcoming arcs, if no exit condition is
present, is sufficient to create an edge connecting the exit state
with the target state at the upper level. In the general case of
edges having their own target state and condition/actions pairs,
for each state belonging to the child it is necessary to introduce
an edge connected to the upper level state. Actions can still
remain joined to the original condition or added to the target
state action list. Zero-flagged counter variables with decrement
control, introduced by transformation d), are employed to act as

Finally, the task of collapsing multiple machines on a
common final target machine () is implemented by a technique
based on symbolic execution. A similar approach, but assuming
an asynchronous semantics, is discussed in [6]. This capability
can be used to collapse machines belonging to a common
partition (architectural unit) to obtain a coarse grain description
useful for the subsequent hw/sw binding and cosynthesis. The
algorithm for building a set of architectural umits it is based
upon a basic procedure, MERGE(proc., proc.), able to collapse
two FSMs at once, and performs a pairwise merging of the

280

processes. First actions of the MERGE(MA, MB) procedure are
the creation of the interface specification for the merged
machine and the removal of the unnecessary inter-module links
by transforming them into internal variables. MA and MB,
beginning from their first state, are then symbolically executed
in parallel. States in the target machine are obtained from each
explored state pair (MAMB). Their DFGs (if any entry/exit
action is present) correspond to the merging of those from MA
and MB states. The transitions of the merged-machine are
obtained by considering all possible combinations of those
present in MA and MB. For each resulting transition the
following rules are applied:
e actions are merged;
e conditions are combined by an AND operator;
e priorities are managed by computing a function of the
original priorities.

Users may define their own custom flows (recipes) based
upon the above kit of basic transformation algorithms. Recipes
may also contain special report actions, describing
characteristics and statistics about intermediate and final
results. The output of this process is a set of monolithic
architectural units with a binding establishing either a hardware
or software implementation. Each architectural unit is then
passed as input to the subsequent cosynthesis stages, as
described in the next section.

Additional transformation algorithms are under development,
such as moving arithmetic operators across clock steps and
splitting a process into multiple subprocesses.

4. Hardware/software mapping

The target hw/sw architecture is realized on a single chip.
The most general case includes one off-the-shelf CPU core cell
and a collection of synthesized coprocessors. After
restructuring, allocation and binding, each resulting hardware-
bound architectural unit is mapped onto its own coprocessor. In
this discussion the term coprocessor includes also
arithmetic/logic operations and the possible private storage
capability, while high-level synthesis tools typically separate
controllers from data-paths.

If a coprocessor requires interfacing to/from software-bound
elements, then it is connected to the CPU shared data bus (and
related address/control lines) and to the interrupt lines. All
hardware-to-hardware interfaces are managed by customized
local interconnection lines. The RAM memory required for

program/data storage shares with coprocessors the main data
bus but can be accessed only by the CPU core.

Concerning the hardware mapping strategy adopted in
TOSCA, it should be pointed out that control-oriented
specifications cannot be easily managed by classical high-level
synthesis approaches involving operators scheduling.

In fact, circuit speed estimation is very difficult when dealing
with descriptions dominated by logic functions, where
arithmetic operations are typically restricted to a few additions,
subtractions and comparisons (if any of them is present at all).
During the next stage involving VHDL translation into a generic
netlist, technology mapping and logic implementation, any
direct relationship between functional specification and
synthesized implementation is lost. Estimating area is also a
very hard task. As a consequence, scheduling operators
according to estimated propagation delays cannot be considered
a realistic approach. In the TOSCA module devoted to hardware
mapping, each hardware-bound architectural unit (possibly
obtained from multiple merged processes) is implemented by
generating a finite state machine VHDL description. Since the
starting point is a synchronous model, no additional scheduling
step is needed. The VHDL code generator translates the internal
representation of each FSM into a VHDL template complying to
the guidelines for synthesizability enforced by commercial tools
such as MGC Autologic and Synopsys. The data flow graphs
modeling conditions and actions are translated into VHDL
statements included in the related template. The algorithm
adopted is able to produce a very readable description by
building expressions whenever possible instead of basic
assignments for each DFG node. Parameters such as the logic
types to be used (eg. BIT-VECTOR vs IEEE standard
packages) or modeling style (structural vs behavioral) can be
customized by the user.

In particular cases, such as for instance counters, predefined
library components may be preferred to RTL synthesis in order
to guarantee an efficient implementation.

The application field requirements have led to discard a
C-language based approach for the automated implementation of
software-bound elements. In fact an high-level language such as
C does not allows an accurate control of time delays nor the
code size as well as the low level characterization of the /O
interface. Therefore, a lower level of abstraction has been
introduced with the concept of Virtual Instruction Set (VIS),
comparable to the one provided by a RISC assembly language
while maintaining independence from the target CPU core. VIS
is defined in terms of a register-oriented machine supporting
unsigned/signed integer data types (8, 16 and 32 bits) as well as
all typical arithmetic/logic operations.

At present, a code generation prototype tool has been
developed supporting a single software-bound FSM (anyway,
multiple machines may be collapsed before software synthesis).
Such a tool provides register usage optimization and automated
packing of single-bit variables. Data transfer from software to
hardware and viceversa is modeled via memory-mapped
COProcessor registers.

VIS code is finally translated into the target assembly
language (or binary image) by first generating an ASCII
representation and invoking a rule-based program implemented

281

by means of a PERL (a text processing language for UNIX
platforms) script. A retargeting tool has been implemented for a
Motorola 68000 core. The approach can be easily extended to
most popular CPU cores.

Work is in progress in order to manage multiple concurrent
software threads with a minimum overhead, adopting a static
scheduling strategy.

5. Conclusions and future developments

An application-oriented hw/sw codesign methodology has
been presented. A prototype toolset covering cospecification,
hw/sw exploration and cosynthesis has been also developed.
Work is in progress aiming at introducing more sophisticated
algorithms and features on top of such a basic framework.
Currently most of the implementation effort is devoted to the
transformation algorithms and to the cost/performance
evaluation, while restructuring and hw/sw binding can be
performed only manually (the choice concerning the strategy to
be adopted at each iteration of the exploration cycle is left to the
user).

Global cosimulation is one of the issues that will be
addressed in the future work. Both the specification level and
the implementation levels will be developed.

References

[1] Gupta RK,, and De Micheli G., Hardware-Software Cosynthesis for
Digital Systems, [EEE Design& Test, September 1993.

[2] BarmrosE., Rosenstiel W., Xiong X., Hardware/Software Partitioning
with UNITY, Proc. of 2nd Workshop on HW/SW Co-Design, Cambridge,
Massachussetts, October, 1993.

(3] Benner T, Emst R., Henkel J., Hardware-Software Cosynthesis for
Microcontroliers, IEEE Design&Test, Vol.10, No.4, December 1993,

[4] M.Chiodo, P.Giusto, A.Jurecska, L.Lavagno, H.Hsieh, A.Sangiovanni-
Vincentelli, Synthesis of Mixed Software-Hardware Implementations from
CFSM Specifications, Proc. of 2nd Workshop on HW/SW Co-Design,
Cambridge, Massachussetts, October 1993.

(5] Steinhausen U., Camposano R., Gunther H., Ploger P., Theibinger M.,
Veit H., Vierhaus H.T., Westerholz U., Wilberg J., System-Synthesis using
Hardware/Software Codesign, Proc. of 2nd Workshop on HW/SW Co-
Design, Cambridge, Massachussetts, October, 1993.

[6] Wolf W., Takach A., Huang C., Manno R., The Princeton University
Behavioral Synthesis System, 29th DAC, 1992.

[7] Benveniste A. and Berry G., The Synchronous Approach to Reactive
and Real-Time Systems, in Proc. of the IEEE, V0.79, No.9, September
1991.

(8] Clarke E., Long D. and McMillan K., A Language for Compositional
Specification and Verification of Finite State Hardware Controllers, in Proc.
of the IEEE, V0.79, No.9, September 1991.

[9] Harel D. et al, STATEMATE: A Working Environment for the
Development of Complex Reactive Systems, IEEE Trans. on Software
Engineering, Vol.16, No.4, April 1990.

[10] Narayan S., Vahid F., Gajski D.D., System Specification with the
SpecCharts Language, IEEE Design & Test, Vol.9, No.4, December 1992.
[11] Vahid F., Gajski D., Specification Pastitioning for System Design,
Proc. of the 29th Design Automation Conf., 1992.

