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A New Architecture for the Automatic 
Design of Custom Digital Neural Network 

William Fornaciari and Fabio Salice 

Abstract-This brief presents a novel high-performance architecture for 
implementation of custom digital feed forward neural networks, without 
on-line learning capabilities. The proposed methodology covers the entire 
design flow of a neural application, by addressing the internal neuron’s 
structure, the system level organization of the processing elements, the 
mapping of the abstract neural topology (obtained through simulation) 
onto the given digital system and eventually the actual synthesis. Experi- 
mental results as well as a brief description of the software environment 
supporting the proposed methodology are also included. 

I. INTRODUCTION 
The digital solutions for neurocomputer implementation proposed 

by various authors [1]-[8], ranging from dedicated hardware to 
programmable processors similar to conventional computers, can be 
roughly classified in two categories: special-purpose and general- 
purpose neurocomputer. 

General purpose neurocomputers emphasize flexibility in spite of 
performance and silicon area. For a wide range of purposes, e.g., 
real-time applications, performance is particularly significant so that 
the use of special-purpose neurocomputers is required. According 
to the relationship among neurons (N’s) and processing elements 
(PE’s), special-purpose neurocomputers fall into two main classes: 
one PE per many (or one) N’s and one N per many (or one) PE’s. 
The former is represented by architectures in which the circuit 
complexity has been reduced by accepting a performance degradation. 
Typically, the computational cycle of each neuron is not uniform (e.g., 
as for multilayer feed-forward neural networks with different layer 
cardinalities) so that some clock cycles have to be used to synchronize 
neuron activations with the corresponding weights. On the contrary, 
silicon area used for active components is efficiently used since these 
elements (adders, multipliers. . .) are shared among different neurons. 
The proposal reported in [4] falls into this class. 

The latter class achieves high performance, it consists of architec- 
tures in which the neuron functionality is spread over some processing 
elements concurrently working. The drawback of this approach is 
that replication of computational blocks to build each single neuron, 
increases silicon area. This class can be represented by two main 
digital implementations having different degree of distribution of the 
neural operations. A first architecture is reported in [l]. The neural 
computation is realized via a systolic array, avoiding any sort of time 

is not particularly suitable for feed-forward neural networks with 
a realistic number of connections because of both the number of 
processing elements (a multiplier and an adder for each weight) and 
the complex structure of the Synchronization signal. 

multiplexing of synapses onto interconnection lines. This structure 
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Fig. 1. Decomposition of a neuron onto four pseudoneurons (PN’s) 

A solution overcoming such a problem has been presented in 
[9], [ lo]. The network consists of neuro-cells, called pseudo-neurons 
(PN’s), that can be assembled together in a linear array structure 
to build a neuron, as shown in Fig. 1. Each PN consists of a 
local ROM for weights storage and of a unit capable of either 
evaluating the summation of weighted inputs (added, if necessary, to a 
similar summation coming from a previous neuro-cell) or forwarding 
this value to the subsequent elements. In such a solution latency 
and throughput are improved because of pipelined evaluation of 
operations and optimization of bus accesses. Furthermore, if all PN’s 
compute the same number of synaptic products, synchronization is 
simplified and no wait cycle for interlayer data transfer needs to 
be introduced. Even though this architecture offers a good tradeoff 
between area and performance, it uses a large amount of delay-cells to 
synchronize data transfer between both PN’s and layers and requires 
a complex network of synchronization signals. 

The goal of this paper is to present a novel digital neuron 
architecture, still based on a PN approach, named tree structure. As it 
will be shown it obtains lower latency with the same throughput and 
hardware resources as the linear one. Moreover the performance and 
area costs due to synchronization signals are greatly reduced; a formal 
design methodology to fully define the entire neural network structure 
has been developed. The final hardware description is given in terms 
of a set of VHDL parametric cells suitable to obtain automatic VLSI 
implementation through existing CAD synthesis tools. 

The next section contains a description of the neuron architecture 
together with its main properties. Section I11 reports a graph-based 
formalization of both computation and structure and an overview of 
the design methodology. The organization of the design environment 
implementing the proposed methodology linking existing top-level 
neural simulator [ 1 I] to a VHDL-based synthesis environment, it is 
also outlined. Section IV presents implementation details and results 
concerning the neural cells as well as the overall network. Some 
experimental data have been obtained by implementing a test-case 
neural network. 

11. THE TREE STRUCTURE 
This section introduces a neuron architecture based on the PN 

approach, suitable for VLSI custom neural network. This architecture 
achieves much lower latency than the linear array structure [9] 
with the same throughput and without any additional hardware 
requirements. 
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Fig 2. Internal architecture of a neuron: tree structure of a 32 inputs neuron. 
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Fig. 3. Temporal distribution of weights and linear outputs for one neuron 
composed by a tree of 8 PN. PN’s belonging to the same layer forward their 
linear output at the same time step. In some cases, more than one PN weight 
positions can be used to collapse partial results from previous layers. 

Each PN is only able to add two terms at a time (see Fig. 6): the 
first can be either a product between neuron input and corresponding 
weight or a linear input (LI) from another PN, while the second one is 
a value stored in an accumulator containing, step by step, the partial 
summation. Let S, be the weighted inputs summation pertaining to 
PN, ; to improve the computational parallelism it is possible to arrange 
the set of partial summations in pairs working together as in the 
following equation: 
N1-1 

(wl,z,Jx1--1,2) - 84, = (. .. ( ( ( 8  + S1) + (S2 + 5 3 ) )  
J=1 

+ ( (  S ~ + S ~ ) + ( S ~ + S ~ ) ) ) . . . + ( S T L -  ~ + S T L ) * . . ) .  

Where NI is the number of neurons in layer 1 (in each layer, 
neurons are numbered from 1 to Ni); U J ~ , ~ , ~  synaptic weight value of 
connection between neuron 2 of layer 1 and neuron j of layer I - 1; 
1 9 i , ~  is the threshold value for neuron i in layer I ;  Xi,% output value 
of neuron i in layer 1; PNw is the number of words stored locally in 
each PN memory. To obtain such a computational flow, the internal 
architecture of each neuron is organized as shown in Fig. 2. 

The internal structure of the neuron (with I< PN’s), can by 
considered as a tree composed of Llog,(Ir’)] internal layers of PN’s, 
where each PN, computes its output by adding to S, a number of 
LI’s produced by PN’s belonging to the previous internal layers of 
the neuron. The number of PN’s forwarding their linear inputs to the 
considered PN,, depends on the position of PN, itself within the tree. 
An example of data propagation among different PN’s composing 
a neuron, is shown in Fig. 3.  The latency of a tree neuron, i.e. the 
delay between the process of the first weight and the neuron fire, is 
Zutencyt,, = P N w  + rlog2(I<i)1, where I<< = represents 
the number of PN’s per neuron in layer 1. 

Each cell of Fig. 3 contains a numerical identifier representing 
a weight inside the PN memory, while x , y  and Fiw are not 
important for the computation; they are used only for synchronization, 
to allow both partial sums propagation through P N s  (z and y) and 

forwarding of the neuron output to the following neurons (Fire). The 
sampling of the partial sum from the previous PN takes place during 
the time step 3: while the new partial sum is made available during 
the y time step. 

Concerning the functional equivalence between the tree and the 
linear array neuron structures, it can be proved the following theorem: 
let PNw be the PN’s memory size and I the number of neuron inputs. 
A tree structure dealing with I inputs can be realized by using the 
same number I i  of PN’s necessary for the linear array architecture. 
I = K ( P N w  - 2). Although a formal proof can be found in [12], 
it can be justified by considering that both linear array and tree 
structures are composed of Ir‘ PN’s (with the same memory size 
PNw), so that 2 K memory words are used for collapsing of the partial 
summation and firing. As a consequence, the number of memory 
locations available for storing the synaptic weights is the same for 
both structures. 

A significant difference between tree and linear array is in term 
of performance. As far as latency is concerned, the use of a tree 
structure allows to obtain an improvement with respect to the one of 
the linear array, that is P N w  + K - 1, due to an optimized collapsing 
of the LI’s produced by the various PN’s. The improvement depends 
almost-linearly on I<- and evaluates 

Latency gain = latency,,nea, array - latency,,,, 

= (IC - 1) - riog,(ii)l 

The actual gain starts with I< > 3 because for I C  < 4 both 
structures correspond to the same connection of PNs.  Furthermore, 
the PN’s memory size (PNw) has to be sufficient to make possible the 
collapsing of the maximum number of LI pertaining to a single PN 
of the tree. Hence, it is necessary to fulfill the feasibility constraint 
of having P N w  2 llog,(IC)] + 1. 

Both structures have the same throughput f ck /PNw since: 
given a neural network topology, the number and the memory 
size of each PN is the same; 
they use the same type of PN, i.e., they have the same clock 
and overall computational cycle equal to the number of memory 
words to be processed. 

As it will be shown in Section IV, a proper coding of the tree 
structure memory cootents will also allow to avoid any broadcast of 
signals to control the PN computation, i.e., to relax the connectivity 
requirements of the digital implementation. 

111. THE DESIGN METHODOLOGY 
The design methodology is mainly based upon an internal structure 

representation of the PN-based neuron (both linear array or tree) by 
means of a direct graph (digraph) [13]. For such a type of modeling, 
we obtained some formal rules which allow to determine the position 
of all weights within each PN memory (both positions z, y used for 
synchronization and synaptic weights). This representation constitutes 
the basic support of our approach to ANN design since the digital 
architecture is automatically obtained by exploiting some of the 
digraph model properties. 

Each node of the neuron digraph modeling corresponds to one of 
its PN’s while each oriented arc represents the data transfer between 
PN’s (see Fig. 4). 

The digraph model can be formally described by its adjacency 
matrix A 3 [a,,] - h’ x I<-, where az3 =Z 1 if there is an arc from 
PN, to PN,, otherwise a, = 0. If a linear array architecture i s  
comidered, the adja x has only the firsr upper codiagonal 
composed of I,  because each element i is connected to element 2 + 1. 
For a tree structure composed of h- PN’s, the non-null elements 
of A are those satisfying the following conditions: i = 2ts + 2t-1 
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Fig. 4. Digraph representation of a neuron composed of 16 PN's in a tree configuration. 
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Fig. 5.  The complete design flow. 

and j = min((2ts + 2 t ) ,  K ) ,  with t ranging in [I, rlog,(K)l] and 
s ranging in [0,max((lK/2t] - I ) , O ) ] .  

In fact, if t = 1 and for each value of s, the elements of A set to 
1 represent links from the nodes of the basis (nodes with indegree = 
0) to elements at distance 1 from them; if t = 2 and for each value 
of s the elements of A equal to 1 corresponds to the links from the 
previous nodes (at distance 1 from the basis) to nodes at distance 1 
from them, and so on for the other values of t. Not to exceed the 
I i  x I< boundaries of the matrix A, the midmax constraints have 
been introduced on the j and s ranges in the previous conditions. 

It has been proved [13] that each entry of U:,, of A" = [U:,,], is 
the number of walks of length n from node i (PN,) to node j (PNj). 
Since there exists at the most one path connecting two different nodes, 
i.e., the digraphs are in-tree [13], the elements of A" can be either 
0 or 1. 

By exploiting the above structure of the matrix A" it is possible 
to efficiently find out the length of the longest path connecting all 
the possible pairs of PN's. This values are gathered in the longest 
path matrix LPM, defined as 

where 
[log, (K)1 for a tree structure 
IC for a linear array 

The longest distance between nodes of our digraph model is used 
in our methodology to represent the computational delays which 
have to be introduced to guarantee a proper synchronization of the 
computation among PN's. 

The final formal representation produced by the methodology is 
obtained starting from the network topology (the layers number and 
the cardinality of neurons per layer), the weight sets of each neuron 
and the architectural parameters (either IC or PN and the type of 
neuron: tree or linear array). It is summarized by the following 
information 

0 allocation of synaptic weights within the PN memones (it is 
stored in the final network matrix, MRF); 

* definition of the delay cells required to obtain synchroniza- 
tion both inside the layer and between adjacent layers (it is 
represented by the set of delay number tables, {NTDi}); 

.={ 

From this information the complete digital architecture is estab- 
lished; in fact, positioning of the delay cells and allocation of the 
synaptic weights within the PN memories allow the mapping of 
interconnections onto the buses, and guarantee synchronization both 
inside the neuron and among all neurons. The methodology for 
obtaining MRF and the set of NTDls is based on the following 
sequence of steps: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Guarantee a correct synchronization within each neuron; 
this condition is expressed by the neuron number table 
NTNl,i, containing the synaptic weights of neuron i of 
the layer j ,  so that correct synchronization is obtained. 
Guarantee the synchronization between adjacent layers, by 
extracting the delay number tables NTDls, each defining 
for its layer I ,  how the input signals to the various PN's 
must be delayed. 
Obtain the correct placement of weights inside the layer 
by collapsing all the NTNI,; of layer 1 into the layer 
number table, NTLI, of layer 1. 
Derive from NTLI the network number table NTR, 
to represent the correct weights synchronization for the 
whole neural network. 
Extract the relative position of all the weights during a 
computational cycle, namely the placement of weights in 
the PN's memories. The result of this step is the matrix 
MRF. 

The description of the complete algorithm for the automatic 
synthesis as well as examples of its application are given in [14]. 
The final formal description of the VLSI macrocell architecture, is 
eventually automatically translated in a corresponding VHDL code 
for synthesis. In fact, t h i s  design methodology and the related tool are 
part of a more general design environment starting from an abstract 
view of the problem (see Fig. 5). 

The first stage of the design flow concerning a neural applicahon 
is the functional simulation and the learning process in order to find 
out both the weights set and the network topology able to solve 
the given problem (TopSimJ. Such an abstract description is mapped 
onto an optimized digital structure (tree or linear array) by using the 
previously discussed methodology implemented in ArchSyn. Before 
committing the optimized macroblock description, WeDis performs a 
preliminary processing to find out, by assuming the learning error as 
a constraint, both a discretized weights set and the number of steps 
required by each approximated nonlinear activation function. The 
obtained macrocell system implementahon will be converted into a 
VHDL descnption by VHDLGen. The VHDL network model is useful 
as input for both final layout synthesis tools and process analyzer. The 
software system has been developed on a SUN SPARCStation 11; 
VHDL simulation and synthesis use the View Logic POWER VIEW 
and SEC- SYN 3 tools. 

IV. IMPLEMENTATION AND EXPENMENTAL RESULTS 
A suitable encoding of the PN memory words has been adopted 

both to store the synaptic weights and to locally generate the control 
signals for the data transfer. Such a memory encoding allows to 
reduce the connectivity requirement avoiding any broadcast of control 
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Fig. 6.  
of the neuron described in Fig. 3. 

Format and usage of the memory words stored in PN4 local memo9 

signals among PN's. The words locally stored in each PN are 
composed of two parts (see Fig. 6): 

a weight block; consisting of a certain number of bits used to 
store the connection weight; 
a synchronization block, that is a control-part composed of 
two bits. The first allows to realize the multiplexing of PN's 
onto both inter-PN s connection lines and inter-layer bus by 
controlling their three-state buffered outputs (value 1 enables 
the output); the corresponding weights are both y and fire (see 
Fig. 6) .  The second is used, internally to each PN, to select either 
the synaptic product (value 0) or the LI (value 1) as the adder 
input (see Fig. 6); the corresponding weight is 2. 

Referring to the weight block, it has to be pointed out that the 
words not used to store synaptic weights (the ones marked as z 
and y in Fig. 6) can be considered as don't care bits set so that 
it is possible to obtain a reduction in the memory area if a PLA 
solution is adopted. In addition, another connectivity reduction can 
be obtained for the tree structure due to not uniform distribution of 
weight among PN memories. In fact, for the linear array, the number 
of buses connecting the layer I - 1 to the layer 1 is equal to the 
number of PN's composing the neurons of layer I (i.e., Si), while 
whenever the last PN of the tree structure is used only to collapse 
partial computations, its input set is empty so that no bus line is 
needed (memory word are used only for synchronization purposes). 

In order to match the requirements of computation process ordering 
of the first hidden layer, the input signals belonging to the envi- 
ronment have to be correctly sampled. To support such a sampling 
process, an interface circuit is designed by using some information, 
implicitly included in MRF and {NTDl}, related to the hidden layer 
synchronization. 

The interface circuit presents two classes of signals: input and 
synchronization. The first class is partitioned into some sets, each 
containing inputs using the same bus, that are completely defined by 
NTDfirsthlddenAayer. Each signal of the second class defines both the 
temporal points in which the input signals can be changed (level 0) 
and the temporal period in which the input signals have to be stable 
(level 1). The sampling of inputs set is performed on the falling edge. 
The definition of the above temporal periods is completely specified 
by the position of entries y and fire inside the sub-matrix of MRF 
corresponding to the first hidden layer. An example of input interface 
circuit is reported in Fig. 7. 

rynsh ad I 

spch signal 2 

w c h  signal 3 

Fig. 7. Example of input interface 

1- - __- I- 1. I _  
Fig. 8. The chip layout of the neural network implementation. 

To validate both architecture and methodology, some experimental 
results have been obtained by implementing a test-case neural net- 
work composed of 8 neurons with 6 inputs, 4 neurons in the hidden 
layer and 4 output neurons. The implemented nonlinearity is a 2's 
power stepwise approximation of the sigmoidal function because of 
its suitability for VLSI implementation [15]. In particular, one and 
three steps functions are respectively employed for the hidden and the 
output layers. In such a way it is possible to simplify the multipliers 
that, for three steps nonlinear functions, leads to the complexity of 4 
equivalent-gates per bit. The weights are encoded on 8 bits while the 
summation units are realized as ripple carry structures. The project 
has been developed at SGS-THOMSON by using a standard cells 1.5 
p double metal process (the layout is reported in Fig. 8.). 

The chip, whose layout is core-limited, also includes the logic for 
the cyclic generation of the memory bus address which is broadcasted 
to all PN's memory. The memories, one for each PN, have been 
implemented through PLA's. The computational part of each PN 
takes about 0.3 mm2 while the PLA's take less than 10% of the global 
area which is, pad included, 4227 x 3496 p'. The clock frequency 
is approximately 250 KHz and the circuit performance are reported 
in Fig. 9. 

Further results have been obtained by producing a gate-level 
description of a neural network with 25 inputs of 8 bit each, 20 hidden 
neurons and 1 output neuron. They use a stepwise approximation 
of the nonlinear function, with one and nine levels respectively 
employed for output and hidden layers; weights have been represented 
onto 12 bits. Two different implementations ("1 and "2) have 
been produced by using respectively the cost functions area' * 
latency' and area' * latency' to drive the decision concerning 
the architectural parameters. The optimal PNws pertaining such 
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LatencyJClock frequency:. ............. 44w Tfiroughput: 41 KHz 
Clock frequency: ........................... 250 KHz Routing area 3.2 m2 (36%) 

PN area.. ....................................... 0.3 mm2 
Global area (pad included) ............ 4227 p x 3496 p Core area (PLAs + Routing + PNs) 3396 p x 2622 p 

PLAS area 338 p x 2622 p=0.88mm2 
Fig 9 Circuit performance and final layout data 

“1 Myz 
PLAs size ( P ~ w )  ................................ 11 ......................... 7 
PNs per hidden layer neuron .............. 3 ........................... 3 
PNs per output fuyer neuron .............. 3 ........................... 4 

-1 m2 each 
-0.5 mm2 each 

Total number of PNs .......................... 60+3 ..................... 1~ 
Number of gates ................................. 120886 ................. 197380 
Global area [1.5pm] (PLAs+PNs+routing) ....................... -65 m2 
Latency/Clock frequency .................... 2.76 psec ............ ..2.18 psx 
Throughput (fck/PNw) ....................... 0.79 MHz ............. 1.24 MHz 
Clock frequency ................................. 8.7 MHz ............... 8.7 MHz 

Fig. 10. Circuits characterization 

-100 mm2 

networks, obtained by means of TopSim, are respectively 11 for 
the former and 7 for the latter. Fig. 10 reports data on area and 
performance. 

V. CONCLUSION AND FUTURE DEVELOPMENTS 
A neuron model and a formal methodology and a neuron model for 

obtaining the complete architecture of a feed-forward neural network 
for fully dedicated systems without on-line learning capabilities, 
have been presented. The methodology allows the creation of the 
network by mapping each neuron onto some basic processing ele- 
ments connected either as a tree or a linear array structure. The final 
result is the complete description of the neural network, namely the 
organization of PN’s inside each neuron, the bussed interconnection 
structure among neurons and the positioning of delay cells such that 
synchronization between layers is guaranteed. With respect to other 
proposals of the literature, this solution is characterized by better 
latency and throughput, together with a more efficient connection 
strategy and the possibility of fully automating the whole design 
process. The description of the digital architecture consists of some 
matrixes that can be simply arranged for the final VLSI synthesis. 
This approach is particularly suitable to support automatic synthesis 
based upon a library of building blocks (e.g. PN’s and delay cells). 
The methodology has been tested and experimented by realizing 
a design environment running on SUN SPARC station 2 and by 
implementing some test-case neural networks passing through an 
intermediate VHDL description. The data collected show that the 
proposed architecture is characterized by good performances while 
efficiently fulfilling the connection requirement imposed by the 
application. Currently the system has been improved to cover also the 
Hopfield model. Further work will be in the direction of supporting 

a wider range of neural models through extension of the macrocells 
library and of the interconnection capacity. 
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