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a b s t r a c t

Robots are increasingly exploited in production plants. Within the Industry 4.0 paradigm, the robot
complements the human’s capabilities, learning new tasks and adapting itself to compensate for
uncertainties. With this aim, the presented paper focuses on the investigation of machine learning
techniques to make a sensorless robot able to learn and optimize an industrial assembly task.
Relying on sensorless Cartesian impedance control, two main contributions are defined: (1) a task-
trajectory learning algorithm based on a few human’s demonstrations (exploiting Hidden Markov
Model approach), and (2) an autonomous optimization procedure of the task execution (exploiting
Bayesian Optimization). To validate the proposed methodology, an assembly task has been selected as
a reference application. The task consists of mounting a gear into its square-section shaft on a fixed
base to simulate the assembly of a gearbox. A Franka EMIKA Panda manipulator has been used as a
test platform, implementing the proposed methodology. The experiments, carried out on a population
of 15 subjects, show the effectiveness of the proposed strategy, making the robot able to learn and
optimize its behavior to accomplish the assembly task, even in the presence of task uncertainties.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Context

Industry 4.0 paradigm [1] is proposing an enhanced produc-
ion environment in which robots are increasingly required to be
ntelligent systems [2]. In fact, robots (and in particular collab-
rative robots) bring many advantages to the production envi-
onment, reducing safety risks [3,4] and being flexible solutions
n terms of usage and programming [5,6]. To improve indus-
rial production, the robot should be able to carefully monitor
ts working scene [7], safely interacting with humans and with
he environment [8,9], learning new skills/tasks and adapting its
ehavior to the specific context [10,11]. Assembly tasks are one
f the most required industrial applications to be executed by a
anipulator, autonomously or in collaboration with the human
perator [12,13]. Assembly tasks are still nowadays not trivial
o be performed by a robot, requiring a deep knowledge of the
ssembly procedures, materials, geometry of the parts, etc. [6].
herefore, ad hoc programming of such kind of tasks is commonly
ifficult and time-consuming, resulting in rigid applications that
annot be adapted to different situations. Thus, to implement a
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ttps://doi.org/10.1016/j.robot.2020.103711
921-8890/© 2020 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
flexible and intelligent robotic cell, the robot has to be able to
learn, optimize and adapt its behavior to the specific working
scene with as low as possible programming effort. In such a
scenario, it is of fundamental importance the possibility to easily
transfer the human’s task-related knowledge to the robotic sys-
tem [14,15]. Human’s demonstrations-based approaches are one
of the most powerful methodologies for such a purpose [16,17].
Exploiting such approaches it is in fact possible to intuitively
teach a target task to the robot. Once the task is learned, au-
tonomous task optimization and adaptation methodologies have
also to be implemented to give to the robot a fully autonomous
and flexible behavior [18,19]. In the following, the state of the
art related to learning, optimization and adaptation of robotized
tasks is analyzed.

1.2. Related works

Machine learning offers to robotics a framework and a set
of tools for the design of sophisticated and hard-to-engineer
behaviors and applications; conversely, the challenges of robotic
problems provide both inspiration, impact, and validation for
developments in robot learning [20,21]. Machine learning tech-
niques have been widely applied to robotics in different fields,
such as motor skill learning for human–robot collaboration pur-
poses [22], robot model learning [23], control design and tun-

ing [24], grasping capabilities [25], etc.
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Machine learning has found a huge application in robotized
task learning [26]. In particular, (i) autonomous task learning
methodologies and (ii) collaborative task learning methodologies
can be highlighted from the state of the art analysis. Considering
(i), the main objective of such approaches is to make the robot
able to learn a specific task without any interaction with the hu-
man. The following contributions can be identified related to this
kind of methodology. In [27] the iterative learning and reinforce-
ment learning procedures are applied to an automotive industrial
assembly task, to automatize the compliance controllers param-
eters tuning. In [28] a policy search method is used to learn a
range of dynamics manipulation behaviors without using known
models or example demonstrations. [29] proposes a method that
combines motion planning with reinforcement learning policy
search for efficient learning of assembly tasks. In [30] a team
of heterogeneous robots assembles autonomously a furniture kit,
following a generated assembly sequence. [31] applies a rein-
forcement learning method based on motor primitives to hit a
baseball with an anthropomorphic robotic arm. A recent deep
reinforcement learning algorithm based on off-policy training
shows that a robot can learn a variety of 3D manipulation skills
without any prior demonstrations or manually designed rep-
resentations [32]. Considering (ii), the main objective of such
approaches is to make the robot able to learn a specific task on the
basis of human’s demonstrations. The following contributions can
be identified related to this kind of methodology. [33] developed
a method for learning and reproduction of complex trajectories
for robot programming by demonstration applied to a painting
process. In [34] the robot learns a reward function from a demon-
stration and a task model from repeated attempts to perform
the task, thanks to the application of reinforcement learning.
In [35] a Programming by Demonstrations approach allows the
end-user to program the robot simply by showing it how to
perform the task: in fact, the teacher does several demonstrations
of the task of juicing an orange, by changing the location of
each item to allow the robot to generalize correctly. The same
approach is used in [36], where a robot learns how to make
a chess move by generalizing across different demonstrations.
In [37] demonstrations recorded through human tele-operation
are used in a robotic arm assembly task. In [38] the compliance
of the robot controller is adjusted allowing a human teacher to
indicate compliance variations by physically interacting with the
robot during the task execution.

Assembly tasks are one of the most investigated applications
considering task learning methodologies [39]. In fact, it is not
trivial to define a priori the sequence of all the subtasks, the
ontrol parameters, etc., making the robot able to perform the
pecific task. In [40] Reinforcement Learning (RL) is applied to
ompute a geometric motion plan for the robot executing the
ssembly. Such computation is based on the available parts CAD
ata. In [41] a strategy to guide the user during the assembly
ask phases is proposed, on the basis of the assembly CAD data.
n [42] an optimization algorithm is presented in combination
ith impedance control strategy to optimize the robotic dual
eg-in hole assembly task, reducing the assembly time while
moothing the contact forces during assembly process. In [43]
he learning of the required assembly forces is performed on
he basis of human’s demonstrations. In [44] a self-supervised
earning methodology is presented to perform multimodal rep-
esentations of contact-rich tasks, and it has been demonstrated
n a peg-in-hole task.

Once the reference task has been learned, its (autonomous)
ptimization (i.e., optimization of control variables to maximize
he task performance) and (eventually) adaptation can be per-
ormed in order to maximize the task performance while com-
ensating for task uncertainties. Sources of uncertainties are re-
ated to the working scenario layout (i.e., positioning of the ma-
ipulated parts), assembly properties (i.e., assembly tolerances
 B

2

and parts materials), and noise/uncertainties on the learned task
trajectories (i.e., uncertainties on the reference task teached by
a human, e.g., containing measurements noise). In fact, consid-
ering real industrial production plants, positioning of the parts
and their geometry are not always the same, affecting the task
execution performance and possibly resulting in task failures.
Therefore, task optimization and adaptation capabilities are fun-
damental in order to enhance the robotic cell with an intelligent
behavior. However, the state of the art approaches related to as-
sembly task learning are only considering fixed and well-defined
scenarios, not including such sources of uncertainties. Once the
task learning is completed, there is no possibility to adapt its
execution to a (partially) new scenario. In addition, the learning,
optimization and adaptation of an assembly task with a standard
sensorless (i.e., no force/torque sensor is used to reduce hardware
costs and setup time) industrial robot is even more difficult [45,
46]. In fact, without the measurements of the interaction forces
the assembly procedure has to rely only on the robot Cartesian
pose information.

1.3. Paper contribution

The here presented paper proposes a methodology to make a
sensorless robot able to learn and optimize an industrial assembly
task. In fact, standard industrial robots are not equipped with
force/torque sensors to measure the interaction force, requiring
additional costs and efforts in order to integrate such devices
in the robot. Relying on sensorless Cartesian impedance con-
trol (extendible to position control-based sensorless impedance
control for the robots not equipped with torque control), two
main contributions are defined: (1) a task-trajectory learning al-
gorithm, and (2) an optimization procedure of the task execution.
Considering (1), a few human’s demonstrations (from a single
operator) of the assembly task execution are performed. The
robot (in gravity compensation control mode, i.e., not requiring a
force sensor for such collaborative procedure) is manually guided
by the human to perform the task, while recording the Cartesian
end-effector pose. The recorded data (considering each trans-
lational Cartesian degree of freedom and each angular velocity
component separately) are then processed by a Hidden Markov
Model (HMM) approach. The HHM approach is able to select the
nominal reference assembly task trajectory to be given to the
sensorless Cartesian impedance control as the target set-point.
The HMM approach aims to the following contributions:

• teach the task to the robot on the basis of a single operator
demonstrations;

• teach the task to the robot exploiting a few (between 3
and 5) repetitions of the target application in order to
eliminate/reduce teaching uncertainties. In fact, a single
demonstration might contain uncertainties in robot guid-
ance, while the proposed HMM method is capable with few
demonstrations to select the most reliable one.

Considering (2), a Bayesian Optimization (BO)-based algorithm has
been designed to autonomously optimize (i.e., optimization of
control variables to maximize the task performance) the robot
sensorless Cartesian impedance control parameters. The objec-
tive of the BO algorithm is to maximize the task performance
(i.e., avoiding task failures while reducing the interaction force),
aking the robot able to compensate for task uncertainties. For

his aim, the learned nominal reference assembly task trajectory
i.e., the sensorless Cartesian impedance control set-point) is op-
imized, together with the control parameters (i.e., stiffness and
amping sensorless Cartesian impedance control matrices). The

O approach aims to the following contributions:
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Fig. 1. Reference assembly task of a gear component performed by a Franka
EMIKA panda robot.

• compensate for task uncertainties (such as parts position-
ing);

• autonomous (re)-learning of the task in new conditions
(such as new positioning of the parts or new geometries to
be manipulated);

• autonomous tuning of the control parameters.

The task-trajectory learning algorithm and the optimization pro-
cedure are executed separately for each subtask of the assembly
on the basis of a predefined sequence of the subtasks. Such pre-
defined sequence of subtasks can be automatically computed [47]
or identified from the part assembly-datasheet.

With respect to Dynamic Movement Primitives [48] and deep
earning [49] approaches for task learning applications, the here
resented HMM methodology allows to achieve a fast teaching
f the specific task with few demonstrations, being easily imple-
entable and applicable. In addition, the proposed optimization
rocedure allows to avoid the classical ‘‘record and play’’ ap-
roaches to reproduce a teached task. In fact, in the case of
eaching and/or task uncertainties, such approaches result in a
ask failure. The employed BO approach allows in addition to limit
he number of required experiments in order to optimize the task.

To the best knowledge of the authors, the state of the art
pproaches devoting to assembly task learning are considering
ixed and well-defined scenarios. Therefore, such approaches do
ot allow to compensate for task uncertainties (as described in
ection 1.2). The here presented paper, instead, is capable to both
earn a nominal task and (re)optimize it if required, in order to
ace the above mentioned task uncertainties. This objective is the
ore novelty of the proposed paper.
To validate the proposed methodology, an assembly task has

een selected as a reference application. The task consists of
ounting a gear into its square-section shaft on a fixed base

o simulate the assembly of a gearbox (Fig. 1). A Franka EMIKA
anda manipulator has been used as a test platform, imple-
enting the proposed methodology. 15 subjects have been in-
olved in the experimental validation. Each subject is treated
eparately, teaching its own assembly task independently from
he other subjects. Each subject performed 5 task demonstrations.
he HHM approach has been applied to learn (independently
or each subject) the nominal reference assembly task trajec-
ory. After the nominal reference assembly task trajectory is
earned, the assembly location has been modified in order to
ntroduce position uncertainties into the working scene (i.e., nom-
nal demonstrations conditions are different from optimization
nd testing conditions for each subject). The BO algorithm has
een then applied (independently to each learned nominal as-
embly task trajectory, one for each subject) to optimize the
3

Fig. 2. Human–robot collaborative framework for assembly task learning and
optimization. The sensorless Cartesian impedance controller is exploited to
perform the task execution. The collaborative task learning procedure (based on
the HMM approach) is exploited to define the nominal task reference trajectory.
The iterative (from experiment Nexp = 1 : Nmax , where Nmax is the maximum
number of experiments) optimization procedure (based on the BO approach) is
exploited to tune the control parameters to maximize the task performance.

task execution, adapting the robot behavior to the new work-
ing scenario. Experimental results show the effectiveness of the
proposed strategy, making the robot able to learn and optimize
its behavior to accomplish the assembly task, even in the pres-
ence of task uncertainties. The proposed methodology has been
compared with the non-optimized assembly task (i.e., only the
nominal assembly task trajectory learning is performed for each
subject independently) showing the importance of the BO-based
methodology for task optimization and adaptation purposes (as-
sembly task success rate equal to 93% for the HMM+BO approach,
assembly task success rate equal to 19% for the HMM approach).

1.4. Paper outline

The paper is structured as follows. Section 2 defines the pro-
posed architecture for collaborative task learning and optimiza-
tion purposes, highlighting the main components. Section 3 de-
scribes the implemented robot controller. Section 4 presents the
proposed approach for collaborative learning of nominal task
trajectory based on the Hidden Markov Model approach. Sec-
tion 5 presents the proposed approach for task optimization
based on the Bayesian optimization approach. Section 6 describes
the validation scenario and the achieved results. Conclusions and
directions for future works are given in Section 7.

2. Methodology

Relying on sensorless Cartesian impedance control, the pro-
posed paper defines a human–robot collaborative framework
for assembly task learning and optimization. On the one hand,
the assembly task learning is performed exploiting a few hu-
man’s demonstrations. The robot (in gravity compensation con-
trol mode, i.e., do not requiring a force/torque sensor for the
human–robot collaboration) is manually guided by the human
performing the task. The robot end-effector Cartesian positions
and angular velocities are recorded during the task executions.
The recorded data (considering each Cartesian degree of freedom
– DoF – separately) for each demonstration are then processed by
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Hidden Markov Model (HMM) approach, selecting the nominal
eference assembly task trajectory from the set of demonstrations
o be given to the sensorless Cartesian impedance control as the
arget set-point. The main contribution of the HMM approach
s to limit the teaching uncertainties inherently included into
he human’s demonstrations. On the other hand, a Bayesian
ptimization (BO)-based algorithm has been designed to au-
onomously optimize the robot sensorless Cartesian impedance
ontrol parameters. The BO algorithm maximizes the task perfor-
ance on the basis of a defined cost function, evaluated for each
xperimental iteration: task failures have to be avoided while
educing the interaction force. The proposed BO methodology op-
imizes the reference assembly task trajectory (i.e., the sensorless
artesian impedance control set-point computed by the HMM
lgorithm), together with the sensorless Cartesian impedance
ontrol parameters (i.e., stiffness and damping parameters). The
ain contribution of the BO is to compensate for task uncertain-

ies (e.g., parts positioning). The proposed framework is shown in
ig. 2.
The nominal reference task trajectory learning algorithm and

he optimization procedure are executed separately for each sub-
ask of the assembly on the basis of a predefined sequence.
onsidering a peg-in-hole task [50] or an assembly task [6] with
nsertion direction along the vertical Cartesian DoF z, three main
ubtasks can be identified:

• approaching subtask (subtask #1): the robot has to posi-
tioning the part to be assembled in the proximity of the
assembly location;

• insertion subtask (subtask #2): the robot has to perform the
part insertion (e.g., a peg positioned into its hole, or a gear
positioned into its shaft);

• pushing subtask (subtask #3): the final pushing is performed
in order to complete the assembly (e.g., a pushing force is
required to complete a mechanical fixing of the part on a
reference surface).

Such three subtasks will be considered for the task-trajectory
learning algorithm and for the optimization procedure. In general,
the predefined sequence of subtasks related to a specific assembly
can be automatically computed [47] or identified from the part
assembly-datasheet.

It is important to underline the motivation behind the selec-
ion of the proposed algorithms for nominal task learning and
ptimization (i.e., HMM and BO, respectively). Considering nom-
nal task learning phase, the main objective has been related to
elect a methodology allowing a fast teaching procedure (i.e., with
imited demonstrations) of the specific task. As detailed in Sec-
ion 1.3, w.r.t. other state-of-the-art techniques, HMM approach
hows the advantage to be able to select the nominal task from a
imited set of demonstrated ones [51]. Considering optimization
hase, the main objective has been related to select a method-
logy capable to reduce the required experimental trials. W.r.t.
ther state-of-the-art techniques, Bayesian Optimization allows,
n fact, to minimize the required experiments for optimization
urposes, balancing exploration and exploitation behaviors [52].
In the following Sections, the sensorless Cartesian impedance

ontroller, the nominal reference task trajectory learning method-
logy and the task optimization methodology are described.

emark 1. In this paper, an assembly task with insertion di-
ection along the vertical Cartesian DoF z is considered. The
xtension of the approach to a general assembly location pose
s straightforward.

emark 2. The optimization procedure might consists in an
ptimization from scratch, or in a re-optimization in the case
4

that specific tasks conditions change, introducing new sources of
uncertainties (e.g., re-location of the parts or assembly location in
the robot workspace).

3. Sensorless Cartesian impedance control

In this Section, the sensorless Cartesian impedance control is
described. Such control methodology allows to avoid any use of
force/torque sensor, implementing a compliant behavior for the
manipulator. In such a way, the target assembly task can be per-
formed, having the robot safely interacting with the surrounding
environment.

The sensorless Cartesian impedance controller can be designed
on the basis of the following manipulator dynamics [53]:

B(q)q̈ + C(q, q̇) + g(q) + τ f (q̇) = τ − J(q)Thext , (1)

where B(q) is the robot inertia matrix, C(q, q̇) is the robot Coriolis
vector, g(q) is the robot gravitational vector, τ f (q̇) is the robot
joint friction vector, q is the robot joint position vector, J(q) is the
robot Jacobian matrix, and hext is the robot external force/torque
vector, τ is the robot joint torque vector.
Based on (1), it is possible to design the sensorless Cartesian
impedance controller with dynamics compensation [53], defining
the robot joint torque vector τ as:

τ = B(q)γ + C(q, q̇) + g(q) + τ f (q̇), (2)

where γ is the sensorless Cartesian impedance control law. Trans-
lational p̈ and rotational ϕ̈cd (described by the intrinsic Euler
angles representation) acceleration components of the sensorless
Cartesian impedance controller γ can be written as:

p̈ = M−1
t (−D t ṗ − Kt ∆p) ,

ϕ̈cd = M−1
r

(
−Dr ϕ̇cd − Kr ϕcd

)
.

(3)

Considering the translational part of the sensorless Cartesian
impedance control, Mt is the mass matrix, Dt is the damping
matrix, and Kt is the stiffness matrix. p is the actual Cartesian
positions vector, while ∆p = p − pd, where pd is the target
position vector. Concerning the rotational part of the sensorless
Cartesian impedance control, Mr is the inertia matrix, Dr is the
damping matrix, Kr is the stiffness matrix. ϕcd is the set of
Euler angles extracted from Rd

c = RT
dRc , describing the mutual

orientation between the compliant frame Rc (at the end-effector)
and the target frame Rd.

Angular accelerations ω̇cd can be computed considering the
rotational part of the sensorless Cartesian:

ω̇cd = T(ϕcd)
(
M−1

r

(
−Dr ϕ̇cd − Kr ϕcd

))
+ Ṫ(ϕcd)ϕ̇cd, (4)

where matrix T(ϕcd) defines the transformation from Euler angles
derivatives to angular velocities ωcd = T(ϕcd)ϕ̇cd, and ω = Reeωcd
(with Ree the rotation matrix from the robot base to its end-
effector) [53]. By defining M̃r =

(
ReeT(ϕcd)

)−1 Mr and D̃r =

Dr − M̃rReeṪ(ϕcd), (4) can be written as:

ω̇ = M̃−1
r

(
−D̃r ϕ̇cd − Kr ϕcd

)
. (5)

The formulation resulting from (5), (4), and (3) can be written in
a compact form as follows:

ẍimp
= −M−1 (D ẋ + K∆x) , (6)

where the target acceleration computed by the sensorless Carte-
sian impedance control is ẍimp

= [ẍt; ẍr ] = [p̈; ω̇]. M =

[Mt 0; 0 M̃r ], D = [Dt 0; 0 D̃r ], K = [Kt 0; 0Kr ] are the sensorless
Cartesian impedance mass, damping and stiffness matrices com-
posed by both the translational and rotational parts, and ∆x =

x − xd = [∆p; ϕ ].
cd
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he sensorless Cartesian impedance control law γ can then be
ritten as follows:

= J(q)−1 (ẍimp
− J̇(q, q̇)q̇

)
. (7)

n general, matrix J(q)−1 can be substituted with the pseudo-
nverse of the Jacobian matrix J(q)# [54].

Substituting (2) in (1), under the hypothesis that the manip-
lator dynamics is known (such identification can be performed
ith state-of-the-art techniques [55]), the controlled robot dy-
amics results in:

¨ = γ − B(q)−1J(q)Thext , (8)

here hext = [f, TT (ϕcd)µd
] (considering the external forces f and

he external torques µd - referred to the target frame Rd - acting
n the robot related to the interaction with the surrounding
nvironment). Substitution of (7) into (8) leads to:

(q)q̈ + J̇(q, q̇)q̇ = ẍ = ẍimp
− J(q)B(q)−1J(q)Thext , (9)

aving ẍ = J(q)q̈+ J̇(q, q̇)q̇ the resulting Cartesian acceleration of
he robot end-effector resulting from the implementation of the
roposed sensorless Cartesian impedance controller.
inally, substituting (6) into (9), the controlled robot dynamics
esulting from the design of the sensorless Cartesian impedance
ontrol is described by the following equation:

ẍ + Dẋ + K∆x = −H(q)hext , (10)

here H(q) = MJ(q)B(q)−1J(q)T .

Remark 3. The resulting controlled robot dynamics (as defined
by (10)) is therefore coupled in the DoFs by the matrix H(q). This
ill affect the task execution. Such coupled behavior has to be
ompensated in order to correctly perform the target task.

emark 4. It has to be underlined that the only difference be-
ween sensorless Cartesian impedance control and sensor-based
mpedance control results from (10), where the coupling of the
oFs is not present for the sensor-based controller.

emark 5. It has to be underlined that the proposed learning
pproach described in the following can be applied in the same
ay to a sensorless position control-based impedance control for
he robots not equipped with torque control.

.1. Redundancy management

The Franka EMIKA panda manipulator has been used as a test
latform for experimental validation. Such a robot is redundant,
equiring to manage its null-space configuration while perform-
ng the main task. In this paper, a pure damping behavior is
roposed for the null-space configuration control, aiming to damp
he null-space motion:

R = B(q)
((
I − J(q)#J(q)

)
(−Dnq̇)

)
, (11)

here τR is the null-space control torque, I is the identity matrix,
(q)# is the pseudo-inverse of the Jacobian matrix, and Dn is the
ull-space damping diagonal matrix. The term

(
I − J(q)#J(q)

)
is

he null-space projection matrix. The term −Dnq̇ allows to damp
he null-space motion.

The control law (2) is, therefore, modified as follows:

= B(q)γ + C(q, q̇) + g(q) + τ f (q̇) + τR. (12)

he control torque τR acts in the null-space of the manipulator,
.e., not affecting the Cartesian motion of the robot. Indeed, the
artesian controlled robot behavior in (10) is not affected by this
erm.
5

4. Nominal reference task trajectory learning

In this Section, the nominal reference task trajectory learning
methodology is described. In this phase, the robot is controlled
by means of the gravity compensation mode (i.e., allowing the
human to move the robot in the free space). A few human’s
demonstrations of the target task are performed, recording the
robot end-effector Cartesian positions x and angular velocities ω
for each subtask separately. While the positions xt are directly
measured and recorded, the end-effector Cartesian rotation ma-
trix is recorded. The Euler angles are then extracted in order
to compute the related derivatives ϕ̇. The angular velocities are
finally computed on the basis of the formulation ω = T(ϕ)ϕ̇ [53].
The records are processed (for each demonstration) by a HMM
algorithm to select most consistent demonstrated task trajectory
(Fig. 2). In fact, each demonstration includes teaching uncertain-
ties and the proposed HMM approach allows to select the most
reliable one to limit the presence of teaching uncertainties. The
HMM algorithm is applied to each Cartesian DoF separately in
order to limit the influence of the uncertainties of a specific DoF
on the other ones. The complete trajectory is then recomposed
to be executed by the manipulator. Exploiting the proposed ap-
proach, it is possible to transfer the human’s task knowledge to
the manipulator, making it able to learn the target application.
In fact, in addition to the task kinematics, the recorded data in-
clude important task knowledge, such as workspace constraints,
obstacle avoidance requirements, workpiece approaching strate-
gies, and subtask definition. The proposed approach is shown in
Fig. 3, showing the implemented data processing procedure and
algorithms.

Remark 6. It has to be underlined that the recording and pro-
cessing of the robot end-effector Cartesian position xt and angular
velocities ω has been proposed instead of the robot joint trajec-
tories q. In fact, processing each joint trajectory independently
results in a deviation of the Cartesian end-effector trajectory from
the human’s demonstrated one in the final motion reconstruction.
Taking as a reference the Cartesian DoFs allows to preserve the
required task information.

4.1. Hidden Markov model-based methodology

Following the proposed methodology detailed in Fig. 3, in or-
der to apply the HMM approach for the selection of the reference
task trajectory on the basis of a single human’s demonstrations,
some preliminary data (i.e., the robot end-effector Cartesian po-
sitions xt and angular velocities ω) recording and pre-processing
steps are required:

• human’s demonstrations data recording [56] (Observed tra-
jectories block in Fig. 3): the human guides the robot (in
gravity compensation control mode) to perform the task.
The robot end-effector Cartesian positions xt (t) and angular
velocities ω(t) are recorded for each time-instant t . The
recording time is fixed, according to the task execution time
requirements. Each trajectory is then divided in 32 sub-
intervals with equal duration for the next processing steps
of the methodology;

• Short Time Fourier transformation [57] of the recorded data
(Short Time Fourier Transformation block in Fig. 3): each end-
effector Cartesian position xt and angular velocity ω shifts
into the frequency domain for each sub-interval;

• LBG clustering [58] (LBG clustering block in Fig. 3): it is used
to partition a set of input data into a number of clusters,
generating a codebook, exploiting the frequency domain
data.
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Fig. 3. Reference task trajectory learning methodology: on the basis of a few human’s demonstrations of the target task, the most consistent demonstrated task
trajectory is selected for autonomous execution and optimization. The procedure start with the training of phase, where the task is teached by the human, and it
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After the recording and pre-processing of the data, the HMM
akis Left-Right algorithm [51] is implemented to select the nom-
nal reference task trajectory over the demonstrated ones. The
roposed HMM algorithm (HMM initialization and training block
n Fig. 3) is characterized by the following mathematical model:

= (A,B,π), (13)

here A is the state transition probability matrix, B is the obser-
ation probability matrix, and π is the initial state distribution.
specially, the state transition probability matrix and the obser-
ation probability matrix are randomly initialized. Furthermore,
he initial state distribution π is initialized as follows:

j =

{
0, j ̸= 1;
1, j = 1.

(14)

where j = 1 : N is the observation index incrementally increased,
and N is the total number of observations.

The model in (13) is then trained on the set O, which is
formed by the observation sequences, exploiting the Expectation–
Modification (EM) method [59]. Afterwards, the HMM algorithm
is applied to select the most consistent demonstrated trajectory,
evaluating the probability of a sub-interval m to be in a HMM
state xpHMM , while the next sub-interval m + 1 is in a state
xjHMM (where j and p denote the generic HMM state, i.e. the
generic frequency cluster). Each robot end-effector Cartesian DoF
is elaborated separately. The trajectory selection is performed
on the basis of the likelihood index calculation [60] for each
demonstrated one. The trajectory showing the maximum likeli-
hood index is considered to be the most consistent one, and it
will be selected as the nominal reference trajectory.

Once the reference task trajectory has been selected over the
demonstrated ones by the proposed HMM, a post-processing step
(Trajectory smoothing block in Fig. 3) is additionally implemented
in order to improve the autonomous trajectory execution per-
formance. The purpose of this post-processing step is to find a
good fit of the given path, limiting the trajectory accelerations
(i.e., avoiding dangerous discontinuities and satisfying limits). The
selected criteria is the cubic smoothing spline. A complete descrip-
tion is provided by [61,62]. The method defines the smoothing of
the selected trajectories according to a user-defined parameter s.
or the purpose of this work, s = 0.5 has been imposed, so that
balance between the preserving the trajectories information

nd their smoothing is achieved. In fact, in the case s = 0, the
haracteristic shape of the curve is lost, while in the case s = 1,
no smoothing of the trajectory is performed.

Finally, the complete nominal reference task trajectory is re-
composed, generating the robot Cartesian motion by consider-
ing all the 6 Cartesian DoFs above elaborated by the proposed
6

methodology (translational and rotational DoFs). Such nominal
learned trajectory defines the sensorless Cartesian impedance
setpoint xd(t) in (6) for the assembly task execution.

emark 7. It has to be underlined that the proposed method-
logy is applied to each subtask separately. Therefore, subtasks
rajectories are independently recorded, elaborated and recom-
osed into the sensorless Cartesian impedance setpoint xd,#k(t),

where #k denotes the considered subtask in a defined sequence
of the assembly task.

Remark 8. It is important to note that, since the gravity com-
pensation mode is exploited to control the robot in this phase,
there is no need of external forces/torques measurements. The
proposed HMM approach can be applied to both sensor-based or
sensorless robots as presented in this Section.

5. Task optimization

In this Section, the optimization algorithm for task-
performance maximization and uncertainties compensation is
described. The optimization is performed for each subtask sep-
arately, by defining a cost function J#kBO (where #k identifies the
specific subtask) maximizing the task performance (i.e., avoiding
task failures, limiting interaction forces and guaranteeing the
execution time). Relying on the Bayesian Optimization (BO) [63],
the proposed methodology allows to optimize both the nom-
inal learned reference trajectory (i.e., the sensorless Cartesian
impedance setpoint xd,#k, which is computed as described in
Section 4) and the sensorless Cartesian impedance control pa-
rameters (i.e., the stiffness and damping parameters K#k and D#k).
The cost function is evaluated for each experimental iteration of
the approach in order to perform the optimization (Fig. 2). In
addition, task uncertainties (e.g., parts positioning, demonstra-
tions uncertainties - i.e., residual noise in the nominal reference
trajectory) are compensated in such optimization approach. One
of the most important effect to be compensated is the cou-
pled behavior resulting from the sensorless Cartesian impedance
controller (10), affecting the execution of the nominal learned
reference trajectory.

5.1. Cost function definition

On the basis of the subtasks definition in Section 2, a specific
optimization can be performed for each subtask (i.e., specifically
defining a cost function for each subtask). Considering the ap-
proaching subtask, it is considered that an optimization is not
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equired since such subtask only aims to pre-positioning the ma-
ipulated part in the correspondence of the assembly location. In
ddition, no information are available to perform an optimization
ince no external sensors (e.g., vision systems) are involved in
he proposed application. Considering the insertion subtask and
he pushing subtask, an optimization has instead to be performed
in order to maximize task performance and compensate for task
uncertainties (e.g., position of the parts/assembly location w.r.t.
the robot reference frame).

5.1.1. Insertion subtask optimization
The optimization of the insertion subtask consists in being

able to perform the initial insertion of the part in the reference
assembly location. Such assembly subtask is the most critical one,
since a failure in performing the first insertion of the part will
result in a task failure. In addition, such subtask is character-
ized by the highest position uncertainties in the parts/assembly
location w.r.t. the robot reference frame. Therefore, it is of funda-
mental importance to being able to optimize such subtask while
compensating for assembly uncertainties.

In order to perform the optimization of the insertion subtask,
the following cost function J#2BO (to be maximize) can be defined:

J#2BO = −
(
G#2
xy e

#2
xy + G#2

z e#2z + G#2
ψ e#2ψ + G#2

f e#2f + G#2
L L#2

)
. (15)

The term e#2xy in (15) is computed as the maximum value of the
ositioning error in the x–y plane:

#2
xy = max

(√(
xd,#2x (t) − xx(t)

)2
+

(
xd,#2y (t) − xy(t)

)2)
. (16)

xd,#2x (t) and xd,#2y (t) are the sensorless Cartesian impedance con-
trol setpoint x and y coordinates. The Cartesian robot end-effector
positions xx(t) and xy(t) are measured during the experimental
task execution. Such term allows to compensate for misalign-
ments related to parts/assembly location position uncertainties
and to demonstrations uncertainties related to the approaching
subtask.

The term e#2z in (15) is computed as the maximum value of the
positioning error along the z DoF:
#2
z = max

(
| xd,#2z (t) − xz(t) |

)
. (17)

d,#2
z (t) is the sensorless Cartesian impedance control setpoint
z coordinate. The Cartesian robot end-effector position xz(t) is
easured during the experimental task execution. Such term al-

ows to compensate for misalignments related to parts/assembly
ocation position uncertainties and to interference effects of the
arts.
The term e#2ψ in (15) is computed as the maximum value of the

otational error along the z axis:

#2
ψ = max

(
| xd,#2ψ (t) − xψ (t) |

)
. (18)

d,#2
ψ (t) is the sensorless Cartesian impedance control setpoint
for the rotational DoF ψ (rotation about the z axis). The Carte-
sian robot end-effector position xψ (t) is measured during the
experimental task execution. Such term allows to compensate
for misalignments related to parts/assembly location orientation
uncertainties.

The term e#2f in (15) is computed as the maximum value of the
estimated interaction force:

e#2f = max
(√

fx(t)2 + fy(t)2 + fz(t)2
)
. (19)

he ith estimated interaction force is computed as:

(t) = K#2
(
xd,#2(t) − x (t)

)
. (20)
i i i i

7

Such term allows to avoid too strong interaction between the
robot and the environment, avoiding for safety emergency stop
and/or task failures.

The term L#2 in (15) is introduced to penalize subtask failures.
uch failures are related to safety emergency stop of the robot
such as extra interaction force/torque identified by the robot
ontroller). In addition, failures are related to the impossibility
n finding the insertion location. Such failure is identified by the
onitoring of the term e#2z . If such error increases over a specified

hreshold ē#2z , the subtask is considered as failed. In fact, this
eans that the manipulated part has not be properly inserted in

he target location. In the case of a failure, the optimization is
topped and penalized, the robot is re-positioned to the starting
ubtask position and the next optimization iteration is started.
he penalty L#2 is imposed as:

#2
= e−t/T#2 if e#2z > ē#2z , (21)

here T#2 is the target subtask execution time.
The terms G#2

xy , G
#2
z , G#2

ψ , G#2
f , and G#2

L are gains related to the
pecific cost function term. Such gains can be tuned in order to
eight the different contributions in the cost function. In this
aper, these gains have been experimentally tuned.

emark 9. In order to achieve a more accurate estimation of the
nteraction force in (20), a sensorless methodology, as proposed
n [64,65], can be implemented.

.1.2. Pushing subtask optimization
The optimization of the pushing subtask consists in being able

o finalize the assembly task (e.g., a pushing force is required to
omplete a mechanical fixing of the part on a reference surface).
In order to perform the optimization of the pushing subtask,

he following cost function J#3BO (to be maximize) can be defined:

#3
BO = −

(
G#3
z e#3z + G#3

ψ e#3ψ + G#3
f e#3f + G#3

L L#3
)
. (22)

The term e#3z in (22) is computed similarly to e#2z in (17). Such
erm allows to avoid any stacking behavior during the subtask
xecution.
The term e#3ψ in (22) is computed similarly to e#2ψ in (18).

uch term allows to compensate for misalignments related to
arts/assembly location orientation uncertainties and/or for parts
ngagement.
The term e#3f in (22) is computed as the maximum value of the

orce error along the vertical direction:
#3
f = max

(
| f dz − fz(t)2 |

)
. (23)

here the estimated interaction force fz(t) is computed as in
20) and f dz is the assembly reference force. Such term allows
o finalize the assembly, making the robot applying a reference
orce.

The term L#3 in (22) is computed similarly to L#2 in (21),
onsidering the subtask execution time T#3. Such terms allows
o penalize task failures.

The terms G#3
z , G#3

ψ , G#3
f , and G#3

L are gains related to the
pecific cost function term. Such gains can be tuned in order to
eight the different contributions in the cost function. In this
aper, these gains have been experimentally tuned.

emark 10. It has to be underlined that cost functions (15) and
22) are user-defined. Therefore, such definitions can be modified
n order to include different terms and metrics for the assembly
ptimization.
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.2. BayesIan optimization

On the basis of the controller structure described in Section 3,
he cost functions J#kBO in Section 5.1 allow to tune the target con-
roller parameters (for the specific subtask k), i.e., the sensorless
artesian impedance control setpoint xd,#k and the stiffness and
amping parameters of K#k and D#k.
Let us consider the generic cost function J and its related

esign parameters. By collecting all these design parameters in
vector θ, the tuning task reduces to the minimization of the
ost J(θ) with respect to θ, within a space of admissible values Θ .
owever, a closed-form expression of the cost J as a function of
he design parameter vector θ is not available. Furthermore, this
ost cannot be evaluated through numerical simulations as the
obot dynamics are assumed to be partially unknown. Instead, it
s possible to perform experiments on the robot and measure the
ost Ji achieved for a given controller parameter vector θi, and
hus run an optimization algorithm driven by measurements of
. Nonetheless, the peculiar nature of the optimization problem
t hand restricts the class of applicable optimization algorithms.
ndeed,

i) the measured cost Ji consists in a noisy observations of the
‘‘true’’ cost function, namely Ji = J(θi) + ni, with ni de-
noting measurement noise and possibly intrinsic process
variability;

ii) no derivative information is available;

iii) there is no guarantee that the function J(θ) is convex;

iv) function evaluations may require possibly costly and time-
consuming experiments on the robot.

Features (i), (ii) and (iii) rule out classical gradient-based al-
orithms and restrict us to the class of gradient-free, global opti-
ization algorithms. Within this class of algorithms, Bayesian op-

imization (BO) is generally the most efficient in terms of number
f function evaluations [63,66] and it is thus the most promising
pproach to deal with (iv).
In BO, the cost J is simultaneously learnt and optimized by

equentially performing experiments on the robot. Specifically, at
ach iteration i of the algorithm, an experiment is performed for
given controller parameter θi and the corresponding cost Ji is
easured. Then, all the past parameter-cost observations Di =

(θ1, J1), (θ2, J2), . . . , (θi, Ji)} are processed and a new parameter
i+1 to be tested at the next experiment is computed according to
he approach discussed in the following. Additional details related
o surrogate model, acquisition function, and algorithm outline used
or Bayesian Optimization can be found in [52].

emark 11. It has to be underlined that, since the assembly
cenario is considered (partially) unknown (i.e., uncertainties on
ssembly location and parts geometry/positioning), the proposed
re)optimization procedure will be the same for sensor-based
obots. The only difference between sensorless and sensor-based
ptimization is in the possibility to use forces/torques measure-
ents in (19) and in (23), instead of the estimation provided by

20). In fact, without accurate information on the parts geometry
nd positioning, even sensor-based controllers cannot perform
ssembly tasks in a totally blind way [27]. Such limitations can be
vercome by means of vision systems and machine vision algo-
ithms. Such a solution, however, results in increased costs, setup
ime, and computational time, in addition requiring an ad hoc
re) design of the robotic cell to provide proper light-conditions
nd avoidance of occlusions between the vision system and the
ssembly location.
8

Fig. 4. Target assembly task. The Franka EMIKA panda robot grasps and
assembles the target gear into its square shaft.

6. Experimental results

In this Section, the experimental validation of the proposed
methodology is performed. The proposed reference assembly task
is described. Achieved results applying the proposed HMM al-
gorithm and the proposed BO algorithm are given separately,
in order to better highlight specific performance. The proposed
HMM+BO procedure has been compared with the HMM proce-
dure without optimization, in order to highlight the improved
performance provided by the BO algorithm, capable to compen-
sate for task uncertainties.

Remark 12. A video of the proposed methodology (including the
HMM algorithm for task learning and the BO algorithm for task
optimization) is available at https://www.youtube.com/watch?v=
ZCT56C2Gb_8&t=108s.

6.1. Reference assembly task description

In order to validate the proposed methodology, an assembly
of a gear into its square shaft has been considered (Fig. 4). Parts
are positioned in the robot working area with a tolerance of ±7.5
mm. Tight assembly tolerance H7/h6 is shown for the installation
of the gear in its shaft. The task is considered successful if the
gear inserted in its shaft, making it engaging with the already
installed gear. As detailed in Section 2, three main subtasks can
be identified for the target assembly: an approaching subtasks,
an insertion subtask, and a pushing subtask. The learning and
optimization description and results of such phases are detailed
in the next Sections.

The robotic platform involved in the experiments is a Franka
EMIKA panda manipulator. Exploiting its model-based torque
control mode with gravity compensation (control frequency 1
kHz), the sensorless Cartesian impedance controller in Section 3
has been implemented. Friction compensation has been imple-
mented as in [67].

The HMM algorithm in Section 4 has been performed exploit-
ing the Hidden Markov Model (HMM) Matlab Toolbox [60].

The BO algorithm in Section 5 has been performed exploiting
the c++ limbo [68] and the NLopt [69] libraries.

https://www.youtube.com/watch?v=ZCT56C2Gb_8&t=108s
https://www.youtube.com/watch?v=ZCT56C2Gb_8&t=108s
https://www.youtube.com/watch?v=ZCT56C2Gb_8&t=108s
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Fig. 5. The 5 subjects’ demonstrations are shown for the Cartesian translational DoFs x, y, z and for the Cartesian rotational DoFs φ, θ , ψ . The computed nominal
reference trajectory learned exploiting the proposed HMM methodology is highlighted for all the DoFs.
6.2. Nominal reference task trajectory learning validation descrip-
tion and results

In order to evaluate the proposed nominal reference task
trajectory learning methodology (described in Section 4), 15 sub-
jects have been involved in the experimental validation. Prior
to testing, all subjects have been informed about the evaluation
scenario and the testing procedure. In particular, each subject
had to perform each subtask (described in Section 2) 5 times in
order to record the robot end-effector Cartesian pose trajectory
(sampling frequency 1 kHz). The subject manually guided the
robot (controlled in gravity compensation mode) to perform each
subtask. After the recording is performed, each subtask has been
9

processed by the proposed methodology (described in Section 4)
in order to select the most consistent subtask trajectory.

Remark 13. It has to be underlined that each subject is treated
independently w.r.t. the other subjects, meaning that 15 different
teached task trajectories will be available, one for each subject.

By applying the learning HMM methodology described in Sec-
tion 4, the trajectory shown in Fig. 5 is selected. Results are shown
for one subject, considering the approaching subtask. Results
related to other subjects and other subtasks (i.e., insertion and
pushing subtasks) are similar. The proposed HMM algorithm is
capable to select the most consistent trajectory for each Cartesian
DoF independently, allowing to select the most reliable demon-
strated task trajectory. In particular, the selected trajectory is
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Fig. 6. Likelihood values for the demonstrated trajectories (for each DoF) considering the approaching subtask.

Fig. 7. HMM algorithm applied to the learning of the three subtasks: approaching subtask #1, insertion subtask #2, pushing subtask #3.

10
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Fig. 8. Simulated task assembly location pose uncertainties for the evaluation
of the BO algorithm capabilities.

Fig. 9. Cost function J#2BO values over the experimental iterations for the first
ub-optimization of the insertion subtask. The best iteration is marked by the
ed circle. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

he one which shows the maximum likelihood index computed
y the HMM methodology, and it is highlighted in the plots.
ikelihood values are shown in Fig. 6 for the approaching subtask.
imilar results are obtained for the insertion and pushing sub-
asks. The complete robot motion is finally recomposed for each
ubtask.
Considering the approaching subtask, the selected nominal

eference trajectory xd,#1(t) is executed to positioning the robot in
he correspondence of the assembly location. Considering the in-
ertion subtask, the final pose xd,#2f is extracted from the selected
ominal reference trajectory to be used in the BO algorithm for
he optimization of this subtask. xd,#2f will be, in fact, used to
efine the optimization variables ranges to perform the insertion
ubtask optimization. Considering the pushing subtask, the final
ose xd,#3f is extracted from the selected nominal reference tra-
ectory to be used in the BO algorithm for the optimization of
his subtask. xd,#3f will be, in fact, used to define the optimization
ariables ranges to perform the pushing subtask optimization.
Fig. 7 shows the experiments related to the nominal reference

ask trajectory learning, for each subtask, applying the proposed
MM algorithm.
11
Fig. 10. xd,#2x , xd,#2y and xd,#2ψ DoFs optimization related to the first sub-
optimization of the insertion subtask. The best iteration is marked in red. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Remark 14. Results related to one subject are shown, consider-
ing the approaching subtask #1. Results related to the other 14
subjects and to the other two subtasks are similar.

6.3. Task optimization validation description and results

In order to perform the assembly task optimization, the pro-
posed BO algorithm described in Section 5 has been implemented.
After the task trajectories are learned independently for all the
subjects (i.e., 15 independent teached trajectories will be avail-
able after the demonstration phase), an optimization has been
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Fig. 11. Cost function J#2BO values over the experimental iterations for the second
ub-optimization of the insertion subtask. The best iteration is marked by the
ed circle. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

erformed independently for each of the learned task trajecto-
ies. While the demonstrations of the task trajectories has been
erformed in nominal working conditions, the optimization has
een performed modifying the assembly scenario (i.e., modify-
ng the assembly location pose differently for each optimization
xecution in the range of ±7.5 mm for translational DoFs, and
12
±5◦ for rotation; Fig. 8). In such a way, it is possible to evaluate
the capabilities of the proposed approach to compensate for task
uncertainties.

Each subtask has been independently optimized as described
in Section 5, exploiting the specific cost function. In particular, the
approaching subtask has not been considered for optimization,
and it is executed exploiting the nominal learned task trajecto-
ries. Insertion subtask and pushing subtask have been instead
optimized.

6.3.1. Insertion subtask optimization
Exploiting the cost function J#2BO proposed in (15), the insertion

subtask can be optimized. In particular, the proposed cost func-
tion allows for the exploration and optimization of the assembly
pose (i.e., the sensorless Cartesian impedance control setpoint
xd,#2 to find the assembly insertion location), together with the
control parameters (i.e., stiffness and damping parameters of
he sensorless Cartesian impedance control K#2 and D#2). Since
he insertion subtask is the most critical assembly phase, its
ptimization has been divided in two sub-optimizations.

emark 15. Results related to one optimization procedure are
hown. Results related to the other 14 optimizations are similar.

The first sub-optimization allows to optimize the xd,#2x , xd,#2y

ranslational DoFs and the xd,#2ψ rotational DoF (rotation about the
axis). The considered ranges of the optimization variables are:

d,#2
f ,x ± 7.5 mm for the x DoF, xd,#2f ,y ± 7.5 mm for the y DoF, and
xd,#2f ,ψ ±5◦ for the ψ DoF. The proposed ranges exploit the Cartesian
pose xd,#2f selected by the HMM in Section 6.2. In such a sub-
optimization, it is possible to find the correct assembly location
to perform the insertion.
Fig. 12. xd,#2x , xd,#2y , xd,#2z and xd,#2ψ DoFs optimization related to the second sub-optimization of the insertion subtask. The best iteration is marked in red. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. K#2
x , K#2

y , K#2
z , K#2

φ , K#2
θ and K#2

ψ stiffness parameters optimization related to the second sub-optimization of the insertion subtask. The best iteration is
marked in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Insertion subtask #2 optimization: a subtask failure and a subtask successful execution are shown.

13
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Fig. 15. Cost function J#3BO values over the experimental iterations for the
ptimization of the pushing subtask. The best iteration is marked by the red
ircle. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

The cost function J#2BO observed values over the optimization
iterations are shown in Fig. 9. The cost function has to be max-
imized. J#2BO values in the range [−10−5,−10−4

] are related to
the penalty term in (15) (i.e., safety emergency stop or subtask
failure). The values of the xd,#2x , xd,#2y and xd,#2ψ DoFs over the
optimization iterations are shown in Fig. 10. It is possible to high-
light the evolution of the optimization procedure, exploring in the
initial iterations and optimizing while the optimization evolves,
converging to the optimum set of optimization variables. The
first sub-optimization returns the optimized parameters xd,#2,opt1x ,
xd,#2,opt1y and xd,#2,opt1ψ . Such parameters will be used by the second
sub-optimization in order to define the optimization variables
ranges.

The second sub-optimization allows to optimize the xd,#2x ,
xd,#2y and xd,#2z translational DoFs and the xd,#2ψ rotational DoF
(rotation about the z axis). In addition, the stiffness parameters
of K#2 are also optimized. The damping parameters of D#2 are
then computed on the basis of the relation D = 2ϵD

√
MK#2,

here ϵD is the diagonal damping ratio matrix, in which all the
arameters have been imposed equal to 1 (i.e., critical damping
mposed to the controlled robot). The considered ranges of the
ptimization variables are: xd,#2,opt1x ± 1 mm for the xd,#2x DoF,
d,#2,opt1
y ± 1 mm for the xd,#2y DoF, [xd,#2f ,z − 15 mm, xd,#2f ,z ] for
the xd,#2z DoF, xd,#2,opt1ψ ± 1◦ for the xd,#2ψ DoF, [1000, 4000] N/m
for the translational stiffness parameters, [500, 5000] Nm/rad for
the rotational stiffness parameters. Considering the sensorless
Cartesian impedance setpoint, the proposed ranges exploit the
Cartesian pose xd,#2f selected by the HMM in Section 6.2, and the
reviously optimized parameters xd,#2,opt1x , xd,#2,opt1y and xd,#2,opt1ψ .

In such a sub-optimization, it is possible to locally re-optimize
xd,#2x , xd,#2y , and xd,#2ψ DoFs. In addition, the xd,#2z DoF is optimized
to achieve good position-tracking performance. The optimization
of the stiffness parameters K#2 allows to implement the best
compliant robot behavior to perform the target assembly (i.e., be-
ing able to insert the part without applying excessive interaction
forces).

The cost function J#2BO observed values over the optimization
iterations are shown in Fig. 11. The cost function has to be
maximized. In this second sub-optimization, no subtask failures
are shown. In fact, the insertion location is identified in the
14
Fig. 16. xd,#3z , K#3
z and α values related to the optimization of the pushing

subtask. The best iteration is marked in red. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

previous sub-optimization. The second sub-optimization allows
to optimize the control parameters, i.e., maximizing the task
performance. The values of the xd,#2x , xd,#2y , xd,#2z and xd,#2ψ DoFs
over the optimization iterations are shown in Fig. 12. The values
of the stiffness parameters K#2 over the optimization iterations
are shown in Fig. 13. It is possible to highlight the evolution
of the optimization procedure, exploring in the initial iterations
and optimizing while the optimization evolves, converging to the
optimum set of optimization variables for both the DoFs opti-
mization variables and for the stiffness optimization variables.
The second sub-optimization returns the optimized parameters
xd,#2,optx , xd,#2,opty , xd,#2,optz , xd,#2,optψ , K#2,opt

x , K#2,opt
y , K#2,opt

z , K#2,opt
φ ,

#2,opt #2,opt
Kθ , and Kψ . Such parameters will be used by the pushing
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Fig. 17. Push subtask #3 optimization: a subtask failure and a subtask successful execution are shown.
Fig. 18. HMM assembly task success rate vs. HMM+BO task success rate.
ubtask optimization in order to define the optimization variables
anges.

For the considered subtask #2, Fig. 14 shows an optimization
teration related to a subtask failure (the part is not inserted in
ts shaft) and an optimization iteration related to a successful
ubtask execution (the part is inserted in its shaft).

.3.2. Pushing subtask optimization
Exploiting the cost function J#3BO proposed in (22), the pushing

ubtask can be optimized. In particular, the proposed cost func-
ion allows for the exploration and optimization of the required
nteraction force to be applied to finalize the assembly (i.e., having
he robot capable to find the reference surface to complete the
ssembly). The optimization of the pushing subtask is performed
n one-shoot. In particular, the Cartesian DoF xd,#3z and the K#3

z
tiffness parameter (i.e., related to the z DoF) are considered as
ptimization variables. In addition, a sinusoidal motion is super-
mposed to the DoF xd,#3ψ (i.e., rotation about the z axis) in order
o make the gears engagement effective:

sin(t) = α + sin (ωsint) ,

here α is the sinusoidal motion amplitude and ωsin = 1 rad/s
s the sinusoidal motion pulsation. α is included in the opti-
ization variables. The parameters not involved in the pushing
ubtask optimization have been imposed to the values result-
ng from the output of the insertion subtask optimization. The
onsidered ranges of the optimization variables are: [xd,#2,optz −

0 mm, xd,#2,optz ] mm for the xd,#3z DoF, [1000, 4000] N/m for K#3
z ,

0, 15]◦ for α. Considering xd,#3z , the proposed range exploit the
artesian pose xd,#3f selected by the HMM in Section 6.2.
The cost function J#3BO observed values over the optimization

terations are shown in Fig. 15. The cost function has to be
15
maximized. J#2BO values in the range [−10−5,−10−4
] are related

to the penalty term in (15) (i.e., safety emergency stop or subtask
failure). The values of the optimization variables xd,#3z , K#3

z , and α
over the optimization iterations are shown in Fig. 16. It is possible
to highlight the evolution of the optimization procedure, explor-
ing in the initial iterations and optimizing while the optimization
evolves, converging to the optimum set of optimization vari-
ables. The pushing subtask optimization returns the optimized
parameters xd,#3,optz , K#3,opt

z , and α#3,opt .
For the considered subtask #3, Fig. 17 shows an optimization

iteration related to a subtask failure (the engagement between
the two gear is not performed) and an optimization iteration re-
lated to a successful subtask execution (the engagement between
the two gear is performed).

Remark 16. It has to be underlined that it is possible to extend
or reduce the range of the optimization variables on the basis
of the target assembly task to be performed (such as, mounting
tolerances). It is, in addition, possible to add/remove optimization
variables.

Remark 17. Once the optimization of all the considered subtasks
is concluded, the optimized values are stored and applied to the
autonomous execution of the assembly task.

6.4. HMM+BO vs. HMM

The proposed HMM+BO procedure has been compared with
the HMM procedure without optimization, in order to highlight
the improved performance provided by the BO algorithm, capable
to compensate for task uncertainties. In fact, in the second case,

the task uncertainties cannot be compensated.
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In order to evaluate the two methodologies, for each of the
15 subject-learned tasks (as described in Section 6.2), 10 repe-
titions of the assembly task have been performed for both the
HMM+BO procedure (i.e., using the optimized parameters) and
for the HMM procedure (i.e., using the learned non-optimized
nominal trajectories). Therefore, 150 repetitions of the assembly
task have been performed for both the HMM+BO procedure and
for the HMM procedure. Fig. 18 shows the comparison between
the two methodologies, highlighting the success rate of the as-
sembly task. An assembly task is considered successful if all
the three subtasks are correctly performed. If a subtasks is not
correctly performed (e.g., the insertion subtask fails due to the
impossibility to insert the gear into its shaft), the assembly task
is ended and the failure is reported. From Fig. 18 it can be noted
that the proposed HMM+BO procedure allows to compensate for
the task uncertainties, resulting in a successful execution rate of
93%, while the HMM algorithm alone is not capable to take such
uncertainties into account, resulting in a successful execution rate
of only 19%.

7. Conclusions

The presented paper proposed machine learning techniques
to make a sensorless robot (i.e., no force/torque sensor is used)
able to learn and optimize an industrial assembly task. Exploiting
sensorless Cartesian impedance control (and being extendible
to position control-based impedance control for the robots not
equipped with torque control), (i) a task-trajectory learning al-
gorithm (implying a few human’s demonstrations) based on a
Hidden Markov Model approach and (ii) an autonomous task op-
timization procedure based on a Bayesian Optimization algorithm
have been derived. In such a way, human’s knowledge related
to the task is transferred to the robot. In addition, sensorless
Cartesian impedance control parameters are optimized in order
to maximize the task performance. To validate the proposed
methodology, an assembly task of a gear into its square shaft
has been selected as a reference application. A Franka EMIKA
Panda manipulator has been used as a test platform, implement-
ing the proposed methodology. Validation experiments show the
capabilities of the proposed approach, making the robot learning
the task execution while compensating for the task uncertainties.
The HMM+BO methodology and the HMM algorithm without
optimization have been compared. Such comparison shows the
capabilities of the optimization stage to compensate for task
uncertainties. In particular, the HMM+BO methodology shows
an assembly task success rate of 93%, while the HMM algorithm
shows a success rate of only 19%.

Current and future work is investigating inverse reinforcement
learning approaches and model-based reinforcement learning ap-
proaches for task learning. In particular, continuous task learning
is under investigation, in order to avoid the task segmentation. In
addition, collaborative controllers to relieve the human from the
manipulation of heavy loads are under development.
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