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Abstract

We consider constraint-coupled optimization problems in which agents of a network aim to cooperatively minimize the
sum of local objective functions subject to individual constraints and a common linear coupling constraint. We propose
a novel optimization algorithm that embeds a dynamic average consensus protocol in the parallel Alternating Direction
Method of Multipliers (ADMM) to design a fully distributed scheme for the considered set-up. The dynamic average
mechanism allows agents to track the time-varying coupling constraint violation (at the current solution estimates).
The tracked version of the constraint violation is then used to update local dual variables in a consensus-based scheme
mimicking a parallel ADMM step. Under convexity, we prove that all limit points of the agents’ primal solution estimates
form an optimal solution of the constraint-coupled (primal) problem. The result is proved by means of a Lyapunov-based
analysis simultaneously showing consensus of the dual estimates to a dual optimal solution, convergence of the tracking
scheme and asymptotic optimality of primal iterates. A numerical study on optimal charging schedule of plug-in electric
vehicles corroborates the theoretical results.
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1. Introduction

Given the increasing penetration of network-connected
devices and cloud-computing services in various applica-
tion domains (e.g., energy, transportation, manufactur-
ing), systems are becoming more and more large-scale,
composed by different interacting agents, and complex.
Efficiently operating these systems is challenging: the com-
putational burden associated to the computation of an op-
timal strategy for the entire system may be prohibitive for
a single processing unit and privacy issues may arise if the
different agents are forced to disclose sensitive information
to the entity in charge of solving the problem. This chal-
lenge has been taken up by the control community, which
has directed its efforts in devising distributed algorithms
for the resolution of such optimization problems.

In this paper we investigate a set-up that is relevant to
several network control applications. We consider agents
which can communicate only with their neighbors in a net-
work. Each agent knows its local cost function and con-
straints, that depend on its individual decision variables.
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Moreover, the agents’ decision variables are coupled by
a linear constraint. Each agent knows only how its lo-
cal decision variables affect the coupling constraint. The
agents collectively aim at minimizing the sum of the lo-
cal cost functions subject to both local and coupling con-
straints. The presence of the coupling element makes the
problem solution challenging, especially in the considered
distributed context in which no central authority commu-
nicating with all the agents is present.

Even though constraint-coupled problems arise natu-
rally in practical applications, until recently, the main
effort in distributed optimization has been devoted to
solve optimization problems in which there is no cou-
pling constraint but the agents are required to agree on
a common decision. For this set-up, consensus meth-
ods based on (sub)gradient iterations and proximal op-
erators (see Johansson et al. (2008); Nedić and Ozdaglar
(2009); Nedić et al. (2010); Zanella et al. (2011); Jakovetić
et al. (2014); Shi et al. (2015); Nedić and Olshevsky
(2015); Margellos et al. (2018)), distributed algorithms
based on duality (see Duchi et al. (2012); Zhu and Mart́ınez
(2012)), and distributed approaches based on the Alter-
nating Direction Method Multipliers (ADMM) (see Mota
et al. (2013); Ling and Ribeiro (2014); Shi et al. (2014);
Jakovetić et al. (2015); Iutzeler et al. (2016); Makhdoumi
and Ozdaglar (2017)) have been proposed. Recently, dis-
tributed gradient schemes for problems with common de-
cision variables have also been combined with a tech-
nique known as dynamic average consensus (firstly pro-
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posed in Zhu and Mart́ınez (2010) and further elabo-
rated in Kia et al. (2019)), resulting in the so-called
gradient-tracking schemes, see, e.g., Di Lorenzo and Scu-
tari (2016); Varagnolo et al. (2016); Nedić et al. (2017); Qu
and Li (2018); Xu et al. (2018); Xi et al. (2018). Differ-
ently from consensus-based gradient approaches, gradient-
tracking methods achieve linear convergence rate thanks to
a constant step-size, but at the expense of imposing more
restrictive assumptions on the cost functions.

Applying the techniques designed for the common deci-
sion set-up to the constraint-coupled one considered in this
paper is possible but it would require to define as common
decision vector the collection of all local decision vectors.
Agents would then have to store and update the entire
solution estimate of the problem rather than the portion
associated with their decision variables only, and would
have all to know the global coupling constraint. These
major drawbacks hamper the applicability of those meth-
ods to various applications characterized by local decision
variables, thus calling for novel and efficient distributed
optimization strategies.

Recently developed approaches directly tackling
constraint-coupled problems are mostly based on La-
grangian duality. The works Necoara and Nedelcu (2015);
Alghunaim et al. (2018); Sherson et al. (2019) consider a
similar set-up, but the proposed algorithms rely on the
sparsity pattern of the coupling constraints. Moreover,
in Sherson et al. (2019), smoothness of the cost function
is assumed. In Chang et al. (2014); Mateos-Núnez and
Cortés (2017), primal-dual approaches are proposed but
they need a diminishing step-size to achieve convergence.
In the very recent paper Liang et al. (2019), a primal-dual
algorithm with constant step-size is proposed under
smoothness assumption on the cost and constraints
functions. In Simonetto and Jamali-Rad (2016); Falsone
et al. (2017) the dual problem is tackled via distributed
subgradient algorithms, in Chang (2016); Wang and Ong
(2017) by means of consensus-ADMM schemes, while an
alternative approach based on successive duality steps
has been investigated in Notarnicola and Notarstefano
(2019); however, all these algorithms typically exhibit
a slow convergence rate for the local decision variables.
In Necoara and Suykens (2009) an interior point frame-
work is exploited, but the developed algorithm requires
a central unit. In He et al. (2015); Chang et al. (2018),
ADMM-based algorithms where the local decisions vari-
ables are updated in a sequential fashion are proposed,
but require a central unit to adjust the dual variables.
In Chen and Yang (2019) a distributed continuous-time
algorithm based on Lagrangian flow and consensus is
proposed, but it is tailored to a special case of our set-up.
The tracking mechanism has been also employed in Kia
(2017) to solve constraint-coupled problems based on an
augmented Lagrangian approach in a continuous-time
setting, but the considered set-up does not allow for
nonsmooth costs and local constraints. Finally, in the
very recent papers Zhang and Zavlanos (2018); Carli and

Dotoli (2019), two ideas similar to the one proposed in
this paper are introduced. However, both approaches
require the agents to perform multiple communication
rounds and the number of rounds has to be carefully
tuned to bound a non-zero steady state error between the
algorithm solution and the optimal one.

The contributions of this paper are as follows. We
propose a novel, fully distributed optimization algorithm
to solve constraint-coupled problems over networks by
means of an ADMM-based approach. Differently from dis-
tributed ADMM schemes for problems with common deci-
sion variables, we design our Tracking-ADMM distributed
algorithm by embedding a tracking mechanism into the
parallel ADMM designed for constraint-coupled problems
with a central unit, thus allowing to get rid of it.

The resulting algorithm has the following appealing fea-
tures: (i) convergence is guaranteed for all the (constant)
choices of a penalty parameter and no other coefficients
are necessary; (ii) agents solve optimization problems de-
pending on their local (few) decision variables and asymp-
totically compute only their portion of an optimal (hence
feasible) solution to the given problem; (iii) the local esti-
mate of the coupling constraint violation gives each agent
a local assessment on the amount of infeasibility, which can
be useful, e.g., in designing distributed (receding horizon)
control schemes.

The convergence proof of our Tracking-ADMM for
constraint-coupled problems relies on control systems anal-
ysis tools. By explicitly relying on Lyapunov theory for
linear systems, we are able to find a constrained solution
to a suitable discrete Lyapunov equation that leads to an
aggregate descent condition allowing us to prove: (i) the
(exact) convergence of the dual variables to a dual opti-
mal solution and (ii) that any limit point of the primal
sequences is an optimal solution of the original constraint-
coupled problem. This novel approach allows us to derive
a clean and elegant proof of the asymptotic optimality of
our algorithm.

The rest of the paper is organized as follows. In Section 2
we present the problem set-up and in Section 2.2 we re-
vise the ADMM algorithm. In Section 3 we introduce our
novel Tracking-ADMM distributed algorithm and analyze
its convergence properties, discussing the main steps of the
proof. In Section 4 we apply our algorithm on a realistic
application related to the optimal charging schedule for a
fleet of electric vehicles. In Section 5 we draw some con-
clusions and finally, in Appendix A we report the proofs
of all the results stated in the body of the paper.

Notation. The vector in Rn containing all ones is denoted
by 1n. The identity matrix of order n is denoted by In.
The Kronecker product is denoted by ⊗. For a matrix
S we write S> to denote its transpose, S � 0 to de-
note that S is positive definite, ρ(S) to denote the spec-
tral radius of S, and ‖S‖ for its spectral norm. We write
blkdiag(S1, . . . , Sn) to refer to the block-diagonal matrix
with S1, . . . , Sn as blocks. For a vector v, ‖v‖ is the Eu-
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clidean norm of v, and, for any matrix S � 0, ‖v‖S is the
weighted norm of v, i.e., ‖v‖2S = v>Sv.

2. Constraint-Coupled Optimization

In this section we introduce the optimization set-up
and recall some preliminaries about the Alternating Direc-
tion Method of Multipliers (ADMM). We refer the reader
to Bertsekas and Tsitsiklis (1989); Boyd et al. (2011) for
an in-depth discussion on ADMM.

2.1. Optimization Problem and Assumptions

We consider a system composed of N agents which are
willing to cooperatively solve an optimization program for-
mulated over the entire system. Each agent has to set its
local decision variables xi ∈ Rni so as to minimize the sum
of local objective functions fi : Rni → R, while satisfying
local constraints Xi ⊂ Rni as well as a linear constraint
that couples the decisions of all the agents. Formally, we
address the following mathematical program

min
x1,...,xN

N∑
i=1

fi(xi)

subject to:

N∑
i=1

Aixi = b

xi ∈ Xi i = 1, . . . , N,

(P)

where Ai ∈ Rp×ni and b ∈ Rp specify the coupling con-
straint.

We impose the following regularity conditions on P.

Assumption 1 (Convexity and compactness). For all i =
1, . . . , N , the function fi is convex and the set Xi is convex
and compact.

Let x = [x>1 · · · x>N ]>, consider a vector λ ∈ Rp of La-
grange multipliers and define

L(x, λ) =

N∑
i=1

fi(xi) + λ>
( N∑
i=1

Aixi − b
)

(1)

the Lagrangian function obtained by dualizing the cou-
pling constraint

∑N
i=1Aixi = b. Then, the dual problem

of P is

max
λ∈Rp

min
x∈X

L(x, λ) = max
λ∈Rp

N∑
i=1

ϕi(λ), (D)

where X = X1× · · · ×XN , and the i-th contribution ϕi is
defined as

ϕi(λ) = min
xi∈Xi

fi(xi) + λ>(Aixi − bi), (2)

the vectors b1, . . . , bN being such that
∑N
i=1 bi = b.

The next assumption ensures that P and D are well-
posed.

Assumption 2 (Existence of optimal solutions). Prob-
lem P admits an optimal solution x? = [x?1

> · · · x?N>]>

and problem D admits an optimal solution λ?.

Next, we revise the popular ADMM algorithm which
provides an effective way to solve P by splitting the com-
putation over N agents coordinated by a central unit.

2.2. The ADMM Parallel Algorithm

A version of the ADMM algorithm specifically tailored
to problem P is presented in (Bertsekas and Tsitsiklis,
1989, pag. 254, eq. (4.75)) and is reported here with our
notation for the reader’s convenience. Given initial values
xi,0 ∈ Xi, d0 = (1/N)

∑N
i=1(Aixi,0 − bi), and λ0 ∈ Rp,

at each iteration k ≥ 0, a set of N agents and a central
unit perform the following two steps. First, all agents,
i = 1, . . . , N , compute (in parallel) a minimizer of the
following optimization problem

xi,k+1 ∈ argmin
xi∈Xi

{
fi(xi) + λ>k Aixi

+
c

2
‖Aixi −Aixi,k + dk‖2

}
,

(3a)

where c > 0 is a (constant) penalty parameter. Then,
each agent sends the quantity Aixi,k+1 − bi to the central
unit, which computes and broadcasts back to all agents
the following two quantities

dk+1 =
1

N

N∑
i=1

(Aixi,k+1 − bi) (3b)

λk+1 = λk + c dk+1, (3c)

where the parameter c is the same as in (3a). We shall
point out that dk+1 has no dynamics as it is the average
of the local contributions Aixi,k+1−bi to the coupling con-
straint and it measures the infeasibility of the current ten-
tative solutions xi,k+1, i = 1, . . . , N . Its “average” struc-
ture is crucial and will be exploited in the design of our
Tracking-ADMM distributed algorithm.

The evolution of (3) is analyzed in (Bertsekas and Tsit-
siklis, 1989, pp. 254-256) and its convergence property is
reported below.

Proposition ((Bertsekas and Tsitsiklis, 1989, Proposi-
tion 4.2)). Let Assumptions 1 and 2 hold. Then, any limit
point of the primal sequence {[x>1,k · · · x>N,k]>}

k≥0 gener-

ated by (3a), is an optimal solution of P, and the dual
sequence {λk}k≥0, generated by (3c), converges to an op-
timal solution of D.

Notice that, since all limit points of the primal sequence
are optimal, they are necessarily feasible for the coupling
constraint. It thus follows that the sequence {dk}k≥0 gen-
erated by (3b) converges to zero. Moreover, we shall stress
that no requirement on the penalty parameter c is neces-
sary for the convergence result to hold, albeit its value can
affect the convergence rate of ADMM.
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Finally, note that the algorithm described by (3) re-
quires a central unit to compute (3b) and (3c). This ham-
pers the applicability of ADMM to a distributed compu-
tation framework, where agents communicate only with
neighbors according to a (typically sparse) communica-
tion graph. Schemes requiring a central unit are usually
referred to as parallel schemes. For this reason in the rest
of the paper we will refer to (3) as the parallel ADMM.

3. Tracking-ADMM Distributed Algorithm

In this section we propose our novel distributed opti-
mization algorithm for constraint-coupled problems. We
first introduce the distributed framework and then de-
scribe the algorithm along with its convergence properties.

3.1. Distributed Computation Framework

Assume that, at each iteration k, the N agents com-
municate according to a graph G = (V, E), where V =
{1, . . . , N} is the set of nodes, representing the agents, and
E ⊆ V×V is the set of edges, representing the communica-
tion links. The presence of edge (i, j) in E models the fact
that agent i receives information from agent j. We assume
that the communication graph does not change across it-
erations and, consequently, E does not depend on the iter-
ation index k. We denote by Ni = {j ∈ V | (i, j) ∈ E} the
set of neighbors of agent i in G, assuming that (i, i) ∈ E
for all i = 1, . . . , N . We impose the following connectivity
property on G.

Assumption 3 (Connectivity). The graph G is undirected
and connected, i.e., (i, j) ∈ E if and only if (j, i) ∈ E and
for every pair of vertices in V there exists a path of edges
in E that connects them.

Each edge (i, j) ∈ E has an associated weight wij , which
measures how much agent i values the information received
by agent j. For those (i, j) /∈ E we set wij = 0, which mod-
els the fact that agent i does not receive any information
from agent j. We impose the following assumption on the
network weights.

Assumption 4 (Balanced information exchange). For all
i, j = 1, . . . , N , wij ∈ [0, 1) and wij = wji. Furthermore

•
∑N
i=1 wij = 1 for all j = 1, . . . , N ,

•
∑N
j=1 wij = 1 for all i = 1, . . . , N ,

and wij > 0 if and only if (i, j) ∈ E.

Let W ∈ RN×N be the matrix whose (i, j)-th entry is
wij , often referred to as the consensus matrix. Assump-
tion 4 translates into requiring W to be symmetric and
doubly stochastic, i.e., W = W> and W1N = W>1N =
1N . We should point out that Assumptions 3 and 4 are
common in the consensus-based distributed optimization
literature, see, e.g., Nedić and Ozdaglar (2009); Nedić et al.
(2010).

Finally, we impose the following additional assumption
on the consensus matrix.

Assumption 5. W is positive semidefinite.

Note that this assumption is not too restrictive. Indeed,
starting from any consensus matrixW satisfying Assump-
tion 4, we can easily construct (in a distributed way) the
matrix 1

2 (I+W), which satisfies both Assumptions 4 and 5
and matches the connectivity property of the communica-
tion graph. In Section 3.3.2 we show that Assumption 5
can also be satisfied if the agents perform two consecutive
communication in the same iteration. Indeed, making two
communications with any consensus matrix satisfying As-
sumption 4 is equivalent to a single communication with
a consensus matrix satisfying both Assumptions 4 and 5.

3.2. Algorithm Description

In this section, we start from the parallel ADMM
and gradually introduce the reader to our proposed algo-
rithm to jointly gain insights about the underlying mech-
anism and motivate the role of the consensus and tracking
schemes.

The update (3c) for λk in the parallel ADMM resem-
bles a gradient step aiming at maximizing the cost func-
tion of D. Distributed implementations of gradient-based
approaches to solve optimization problems with common
decision variables in the form of D are well known, see
e.g. Nedić and Ozdaglar (2009). Typically, each agent i
maintain a vector λi,k ∈ Rp, representing a local version
(or copy) of λk, which is iteratively updated according to
a consensus-based scheme to force agreement of the local
copies. If, at each iteration, the quantity dk+1 were avail-
able to all agents, then we could propose the following
local update step of λi,k for agent i

λi,k+1 =
∑
j∈Ni

wij λj,k + c dk+1, (4)

for all i = 1, . . . , N .

However, update (4) cannot be implemented in a fully
distributed scheme since dk+1 is not locally available and
should be computed by a central unit (cf. (3b)). In the
same spirit of λi,k, a distributed counterpart for (3b) can
be obtained by equipping each agent i with a local auxil-
iary quantity di,k ∈ Rp, which serves as a local estimate
of dk. Since dk is the average of Aixi,k − bi, i = 1, . . . , N

(with
∑N
i=1 bi = b), we propose to update di,k according

to a (distributed) dynamic average consensus mechanism,
see Zhu and Mart́ınez (2010); Kia et al. (2019):

di,k+1 =
∑
j∈Ni

wij dj,k+(Aixi,k+1−bi)− (Aixi,k−bi), (5)

initialized with di,0 = Aixi,0 − bi, for all i = 1, . . . , N .

In this way, di,k acts as a distributed tracker of the (time-

varying) signal (1/N)
∑N
i=1 (Aixi,k − bi). Using di,k+1 in

place of dk+1 in (4) makes the update of λi,k fully dis-
tributed.

4



Algorithm 1 Tracking-ADMM

1: Initialization

2: xi,0 ∈ Xi

3: di,0 = Aixi,0 − bi
4: λi,0 ∈ Rp

5: Repeat until convergence

6: δi,k =
∑
j∈Ni

wij dj,k

7: `i,k =
∑
j∈Ni

wij λj,k

8: xi,k+1 ∈ argmin
xi∈Xi

{
fi(xi) + `>i,kAixi

+
c

2
‖Aixi −Aixi,k + δi,k‖2

}
9: di,k+1 = δi,k +Aixi,k+1 −Aixi,k

10: λi,k+1 = `i,k + c di,k+1

11: k ← k + 1

Clearly, since we propose to replace the centralized
quantities λk and dk with their local counterparts, the lo-
cal minimization in (3a) has to be adjusted accordingly.
The Tracking-ADMM is formally summarized in Algo-
rithm 1 from the perspective of agent i. Specifically, the
adapted local minimization to compute xi,k+1 is shown
in Step 8, where λk and dk in the original centralized up-
date (3a), are replaced by the local averages `i,k and δi,k,
respectively (cf. Steps 6 and 7).

Some remarks are in order. First, we shall stress that all
update steps (cf. Steps 8-10) are fully distributed, as they
only use quantities that are either locally known to agent
i or collected by agent i via neighboring communications
(cf. Steps 6 and 7). Moreover, the minimization in Step 8
is always well defined in view of Assumption 1.

While the initialization of xi,k and λi,k can be arbitrary,
the correct initialization of di,k as per Step 3 is crucial,
consistently with other tracking-based approaches as, e.g.,
the ones mentioned in the introduction (cf. Di Lorenzo and
Scutari (2016); Varagnolo et al. (2016); Nedić et al. (2017);
Qu and Li (2018); Xu et al. (2018); Xi et al. (2018)).
Sensible values for initializing Algorithm 1 are given by
xi,0 ∈ argminxi∈Xi

fi(xi), di,0 = Aixi,0 − b/N (which cor-
responds to setting bi = b/N), and λi,0 = 0.

Finally, the parameter c > 0 in Step 8 and 10 is constant
and is similar to the step-size of a gradient-based method,
but, differently from gradient-like approaches, its value can
be arbitrary. Like for the parallel ADMM, the actual value
of c can, however, affect the convergence rate, as shown in
Section 4.

3.3. Algorithm Analysis

In this subsection we analyze the proposed Tracking-
ADMM algorithm and state its convergence properties. To
ease the exposition, we state and discuss the main steps
of the convergence analysis, deferring their proofs to Ap-
pendix A.

3.3.1. Aggregate Reformulation of Tracking-ADMM

First of all we shall rewrite the execution of Algorithm 1
by all agents in a compact form.

Recalling that x = [x>1 · · · x>N ]>, let us consistently de-
note with bold symbols the vectors collecting the corre-
sponding quantity of all agents, i.e.,

xk = [x>1,k · · · x>N,k]>,

dk = [d>1,k · · · d>N,k]>, δk = [δ>1,k · · · δ>N,k]>,

λk = [λ>1,k · · · λ>N,k]>, `k = [`>1,k · · · `>N,k]>.

Then, the evolution of Algorithm 1 over the whole multi-
agent network can be compactly written as

xk+1 ∈ argmin
x∈X

{
f(x) + (Wλk)>Adx

+
c

2
‖Adx−Adxk +Wdk‖2

} (6a)

dk+1 = Wdk +Adxk+1 −Adxk (6b)

λk+1 = Wλk + cdk+1, (6c)

where f(x) =
∑N
i=1 fi(xi), Ad = blkdiag(A1, . . . , AN ),

X = X1 × · · · ×XN , and W =W ⊗ Ip. Note that, in (6),
we used δk = Wdk and `k = Wλk, which represent the
network-wide formulations of Steps 6 and 7 of Algorithm 1,
respectively.

As can be seen from (6), Tracking-ADMM describes a
dynamical system composed of two parts: a nonlinear dy-
namics given by the optimization step (cf. (6a)) and a
linear dynamics given by a twofold consensus-based step
(cf. (6b) and (6c)). In the forthcoming analysis, we will
investigate the structural properties of these two parts sep-
arately. Then we show how to combine them to prove con-
vergence of the proposed algorithm to an optimal solution
of the original problem P.

3.3.2. Discussion on Assumption 5

Before starting with the convergence analysis, we now
show that Assumption 5 is not restrictive.

Suppose to substitute Steps 6 and 7 with

δ′i,k =
∑
j∈Ni

wij dj,k and `′i,k =
∑
j∈Ni

wij λj,k

and then perform the updates

δi,k =
∑
j∈Ni

wij δ
′
j,k and `i,k =

∑
j∈Ni

wij `
′
j,k

before Step 8. These two steps can then be compactly
written as

δk = W 2dk = (W ⊗ Ip)2dk = (W2 ⊗ Ip)dk,
`k = W 2λk = (W ⊗ Ip)2λk = (W2 ⊗ Ip)λk,

which are equivalent to a single update round with W2 in
place of W. Since, under Assumption 4, W is symmet-
ric and doubly stochastic, then W2 is symmetric, doubly
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stochastic, and positive semidefinite, thus satisfying As-
sumption 5. Letting E2 be the set of edges (i, j) such that
there exists a κ ∈ V for which (i, κ), (κ, j) ∈ E , it is easy to
show that the graph G2 = (V, E2) satisfies Assumption 3
and W2 satisfies Assumption 4 with E2 in place of E .

Therefore, Assumption 5 can be easily satisfied by sim-
ply performing two update rounds rather than one. We
choose not to alter Algorithm 1 to keep the notation light
and avoid writing W2 in place of W everywhere.

3.3.3. Network Average Quantities

We start the analysis of Tracking-ADMM by stating
some important properties regarding the network averages
of the local variables di,k and λi,k, which are defined as

d̄k =
1

N

N∑
i=1

di,k and λ̄k =
1

N

N∑
i=1

λi,k, (7)

respectively. The following lemmas highlight key features
of d̄k and λ̄k.

Lemma 1 (Tracking property). Under Assumption 4 it
holds that

d̄k =
1

N

(
N∑
i=1

Aixi,k − b

)
, (8)

for all k ≥ 0.

Lemma 2 (Average dual update). Under Assumption 4,
it holds that

λ̄k+1 = λ̄k + c d̄k+1, (9)

for all k ≥ 0.

As can be seen by a formal comparison, (8) and (9)
mimic the update step (3b) and (3c) of the parallel
ADMM. Therefore, by virtue of Lemmas 1 and 2, running
Algorithm 1 results in the network behaving, on average,
like the parallel ADMM.

3.3.4. Consensus Errors as Linear Dynamical Systems

The introduction of d̄k and λ̄k is also useful to analyze
the behavior of di,k and λi,k. Specifically, as usually done
in consensus-based optimization algorithms, we shall study
the consensus error, i.e., the distance between the agents’
local quantities di,k and λi,k and their respective network
average d̄k and λ̄k.

To ease the notation, let us introduce the following vec-
tors stacking N copies of the respective average quantities

d̄k = 1N ⊗ d̄k,
λ̄k = 1N ⊗ λ̄k,

which are useful when comparing the aggregate vectors dk
and λk with their averages d̄k and λ̄k. Then, define the

consensus errors as

edk = dk − d̄k,
eλk = λk − λ̄k,

and the auxiliary sequence

zk = Adxk − d̄k. (10)

From the expression of dk+1 in (6b), we can write

edk+1 = dk+1 − d̄k+1

= Wdk +Adxk+1 −Adxk − d̄k+1 ± d̄k
(a)
= Wdk − d̄k + [zk+1 − zk]

(b)
= Wedk + [zk+1 − zk], (11)

where in (a) we used the definition of zk+1 and zk (cf.
(10)) and in (b) we exploited the following

W d̄k = (W ⊗ Ip)(1N ⊗ d̄k)

(c)
= (W1N ⊗ Ipd̄k)

(d)
= (1N ⊗ d̄k) = d̄k,

which holds due to the mixed-product property of the Kro-
necker product in (c) and the doubly stochasticity of W
under Assumption 4 in (d).

Finally, letting O be the N ×N matrix with all entries
equal to 1/N and noticing that

(O ⊗ Ip)edk =

(
1

N
1N1

>
N ⊗ Ip

)
[dk − d̄k]

= 1N ⊗
1

N

N∑
i=1

[di,k − d̄k]

= 1N ⊗
1

N
[Nd̄k −Nd̄k] = 0,

we can subtract the quantity (O⊗Ip)edk = 0 from the right
hand side of (11) to get

edk+1 = W̃edk + [zk+1 − zk], (12)

where we set W̃ = W − (O ⊗ Ip).
With an analogous reasoning, we can also show that

eλk+1 = λk+1 − λ̄k+1

(a)
= Wλk + cdk+1 − (λ̄k + c d̄k+1)

= Weλk + c edk+1

= W̃eλk + c edk+1, (13)

where, in (a), we used (6c) and (9) pre-multiplied by 1N⊗.

Under Assumptions 3 and 4, as a consequence of the
Perron-Frobenius theorem, we have that ‖W − O‖ < 1,
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and thus

ρ(W̃ ) ≤ ‖W̃‖ = ‖(W −O)⊗ Ip‖ = ‖W −O‖‖Ip‖ < 1.

Thus, all eigenvalues of W̃ lie within the unit circle. This
implies that the dynamical systems in (12) and (13), de-
scribing the evolution of the consensus errors, are asymp-
totically stable. The importance of this fact is twofold:
i) (12) and (13) enjoys the input-to-state stability prop-
erty: if the sequence {zk+1 − zk}k≥0 is bounded then also

{edk}k≥0 and {eλk }k≥0 are bounded; ii) if zk+1 − zk van-

ishes, then also edk and eλk do.

Point i) is formalized in the following lemma.

Lemma 3 (Bounded sequences). Under Assumptions 1, 3
and 4 we have that

(i) the sequences {xk}k≥0 and {zk}k≥0 are bounded;

(ii) the sequences {edk}k≥0 and {eλk }k≥0 are bounded.

The results in Lemmas 1, 2, and 3 can be interpreted as
follows. The sequences {dk}k≥0 and {λk}k≥0 generated by
(6b) and (6c) evolve in a (possibly large) neighborhood of
their averages d̄k and λ̄k, which, in turn, evolve according
to a parallel ADMM iteration.

3.3.5. Optimality Characterization

We now focus our attention on the analysis of the (non-
linear) update step in (6a). The following result represents
the distributed counterpart of the key inequality leveraged
in the proof of the parallel ADMM.

Proposition 1 (Local optimality). Under Assump-
tions 1, 2, and 4 we have that

‖λ̄k+1 − λ?‖2 + 2c[zk+1 −Adx
?]>eλk+1

≤ ‖λ̄k − λ?‖2 − ‖λ̄k+1 − λ̄k‖2,
(14)

for any optimal solution pair (x?, λ?) for P and D, where
we set λ? = 1N ⊗ λ?.

If we ignore the cross term 2c[zk+1 − Adx
?]>eλk+1,

then (14) tells us that as long as λ̄k changes from one
iteration to the next one, the local dual estimates are,
on average, getting closer to the optimal solution of D.
The additional cross term depends on the consensus error
eλk+1 = λk+1 − λ̄k+1 and is clearly a distinctive feature
of Tracking-ADMM (as opposed to the parallel ADMM)
due to its distributed nature. In the parallel ADMM, a
condition similar to (14) can be derived and leveraged to
prove the algorithm convergence. However, as expected,
this is not the case here: (14) is not sufficient to prove con-
vergence of the proposed scheme and we are required to
study the interplay between the minimization step in (6a)
and the two consensus steps in (6b) and (6c).

3.3.6. Tracking-ADMM Convergence

The convergence of Algorithm 1 is divided into two re-
sults. The first theorem proves that the two consensus
mechanism are successful, i.e., agents eventually agree on
a common value for the tracker and for the dual variables
(cf. points (i) and (ii)), and the algorithm converges to a
solution that is feasible for P (cf. point (iii)); the second
theorem proves that the primal and dual solution obtained
by Algorithm 1 are optimal for P and D, respectively.

Theorem 1 (Convergence). Under Assumptions 1-5, the
sequences generated by Tracking-ADMM satisfy:

(i) limk→∞ ‖edk‖ = 0,

(ii) limk→∞ ‖eλk ‖ = 0,

(iii) limk→∞ ‖d̄k‖ = 0,

(iv) {‖λ̄k − λ?‖2 + c2‖zk −Adx
?‖2}k≥0 is convergent,

for any optimal solution pair (x?, λ?) for P and D, with
λ? = 1N ⊗ λ?.

The main idea behind the proof of Theorem 1 is the
following. We start by considering (12) and (13) to-
gether as a single dynamical system for the consensus up-
dates (the consensus system). Since the consensus sys-
tem is asymptotically stable, then we can build a positive-
definite quadratic Lyapunov function which monotonically
decreases along its free evolution. However, the consensus
system is not autonomous, thus the inequality describing
the variation of such Lyapunov function across iterations
contains terms that are not defined in sign, so that it is
no longer necessarily decreasing. The idea is to properly
combine such inequality with (14) of Proposition 1 so as
to “balance out” the terms that are not defined in sign.
In this way, we obtain an aggregate descent condition that
allows us to prove the asymptotic stability of the over-
all (nonlinear) dynamical system modeling our Tracking-
ADMM algorithm.

The reader should note that point (i) of Theorem 1
implies that, for all i = 1, . . . , N , di,k tends to d̄k as
k →∞ which, together with point (iii), yields ‖di,k‖ → 0
as k →∞, for all i = 1, . . . , N . In light of (8), this ensures
that each agent is able to locally assess the amount of in-
feasibility of the current primal iterates for the coupling
constraint. This feature is of great importance in those
applications where feasibility up to a given tolerance is
sufficient.

Finally, the following result shows that by running Al-
gorithm 1 agents are able to compute optimal solutions to
P and D in a fully distributed way.

Theorem 2 (Optimality). Under Assumptions 1-5, the
sequences generated by Tracking-ADMM are such that

(i) any limit point of the primal sequence {xk}k≥0 is an
optimal solution x? of P;
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(ii) each dual sequence {λi,k}k≥0, i = 1, . . . , N , converges
to the same optimal solution λ? of D.

We point out that Theorem 2 guarantees that the se-
quences {xi,k}k≥0 are asymptotically optimal, hence feasi-
ble for both local and the coupling constraints. Notice also
that Algorithm 1 works with (not necessarily strictly) con-
vex primal cost functions and does not require any primal
recovery procedure.

4. Numerical Study

To demonstrate the effectiveness of our approach, we
test Tracking-ADMM on a modified version of the Plug-
in Electric Vehicles Optimal Charging Schedule problem
described in Vujanic et al. (2016). A fleet of N electric
vehicles has to select an overnight charging schedule so
as to minimize the sum of the electricity costs for charg-
ing the internal battery of each vehicle while complying
with vehicle-level constraints (user requirements on the fi-
nal state of charge and battery physical limitations) and
a network-wide constraint (maximum power that the grid
can deliver). For simplicity we focus on the “only charg-
ing” case of the charging problem in Vujanic et al. (2016).
Differently from Vujanic et al. (2016), where the vehicles
can decide only whether to charge or not their internal
battery at a fixed charging rate, here we allow each ve-
hicle to optimize also the charging rate. The resulting
optimization program can then be formalized as follows

min
ξ1,...,ξN

N∑
i=1

γ>i ξi

subject to:

N∑
i=1

Ãiξi ≤ b

ξi ∈ Ξi i = 1, . . . , N,

(15)

where Xi are bounded polyhedral sets. We refer the reader
to Vujanic et al. (2016) for the precise formulations of the
quantities in (15).

The coupling constraints in (15) is an inequality, which
makes (15) not fitting the formulation in P. However, we
can easily turn the coupling constraint into an equality by
introducing p additional slack variables for each vehicle.
Problem (15) thus becomes

min
ξ1,...,ξN ,
s1,...,sN

N∑
i=1

γ>i ξi

subject to:

N∑
i=1

(Ãiξi + si) = b

ξi ∈ Ξi

0 ≤ si ≤ s̄
i = 1, . . . , N,

(16)

which now fits P with the identifications xi = [ξ>i s>i ]>,
fi(xi) = γ>i ξi, Ai = [Ãi Ip], and Xi = Ξi × Si where

Si = {si : 0 ≤ si ≤ s̄}, for some s̄ ≥ b, for all i = 1, . . . , N .

In our simulation we considered N = 50 vehicles. Each
vehicle i has 24 decision variables ξi plus 24 additional
slack variables si (ni = 48) and the local constraint set
Xi is defined by 245 inequalities. The number of coupling
constraint, and consequently the number of Lagrange mul-
tipliers, is p = 24. The communication network and the
weight matrix W have been generated at random so as to
satisfy Assumptions 3, 4, and 5.

We run our Tracking-ADMM for 104 itera-
tions, initialized as suggested in Section 3.2, us-
ing different values of the penalty parameter
c ∈ {10−6, 10−5.5, 10−5, 10−4.5, 10−4}. Note that Step 8
of Algorithm 1 is solved using the network optimizer of
IBM ILOG CPLEX 12.9 with the minimum achievable
tolerance of 10−11 both for optimality and feasibility.

In Figure 1 we report, for different values of c, the be-
havior across iterations of the relative optimality gap

|
∑N
i=1 fi(xi,k)− f?|

|f?|

between the value of the cost function achieved by the pri-
mal tentative solution xi,k and the optimal cost f? com-
puted by a centralized solver (upper plot), and the relative
violation

‖
∑N
i=1Aixi,k − b‖
‖b‖

of the joint constraints (lower plot). As it can be seen
from the picture, the proposed algorithm achieves feasibil-
ity and optimality in all cases, albeit the actual value of
the penalty parameter affect the convergence speed. Note
that, differently from the approaches based on dual de-
composition, the primal iterates generated by Algorithm 1
achieve feasibility of the coupling constraint without re-
quiring any primal recovery procedure (which is known to
deteriorate the convergence speed). Similarly to the paral-
lel ADMM, Figure 1 shows that there is a range of values
for the penalty parameter c which result in a faster con-
vergence rate, while outside the range the speed may be
slower. However, we shall emphasize that tolerance thresh-
olds usually employed in practice (e.g., 10−6) are achieved
quite early for most values of c.

In Figure 2 we also plot the evolution of the consensus
errors eλk (upper plot) and edk (lower plot), for different
values of c (different colors). From the picture the reader
can easily see how the errors asymptotically vanish, in ac-
cordance to Theorem 1.

For comparison purposes we also run (Chang, 2016, Al-
gorithm 1) on the same problem. In Figure 3 we re-
port the behavior across iterations of the relative opti-
mality gap (upper plot) and the relative violation of the
joint constraint (lower plot) for different values of the
penalty parameter of (Chang, 2016, Algorithm 1), denoted
here as c′. For a fair comparison we show the runs of
(Chang, 2016, Algorithm 1) associated to those values of

8



0 2000 4000 6000 8000 10000
10−18

10−12

10−6

100

Iteration k

C
o
n
st
ra

in
t
v
io
la
ti
o
n

c = 10−6

c = 10−5.5

c = 10−5

c = 10−4.5

c = 10−4

0 2000 4000 6000 8000 10000
10−18

10−12

10−6

100

O
p
ti
m
a
li
ty

g
a
p

Figure 1: Relative difference between the cost achieved by the primal
tentative solution and the optimal cost (upper plot) and relative
violation of the joint constraints (lower plot), across iterations.

the penalty parameter that achieve the best performance:
c′ ∈ {102, 102.5, 103, 103.5, 104}. By comparing Figures 1
and 3, we can see how the proposed algorithm outperforms
the one in Chang (2016) in terms of convergence rate both
for optimality and feasibility. This is testified by the slopes
of the curves in Figure 1, which are steeper than those in
Figure 3, irrespective of the value of the penalty coeffi-
cient. To ease the comparison, we also report in Figure 3
the best run of Tracking-ADMM (c = 10−4.5).

5. Conclusions

In this paper we have proposed a novel distributed
method to solve constraint-coupled convex optimization
problems in which the sum of local cost functions needs to
be minimized while satisfying both individual constraints
(involving one component of the decision variables) and a
common linear coupling constraint (involving all the com-
ponents). The distributed algorithm combines the (par-
allel) ADMM algorithm tailored for this class of opti-
mization problems with a dynamic tracking mechanism.
We proved that each agent asymptotically computes an
optimal dual solution and its portion of an optimal so-
lution to the target (primal) problem. Moreover, the
tracking scheme allows agents to obtain a local measure
of the coupling-constraint violation. Numerical computa-
tions corroborated the theoretical results.
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Appendix A. Proofs

Proof of Lemma 1 (Tracking property)

We prove (8) by induction. For k = 0, given the initial-
ization in Step 3, we have that

d̄0 =
1

N

N∑
i=1

di,0 =
1

N

N∑
i=1

(Aixi,0 − bi)

=
1

N

(
N∑
i=1

Aixi,0 − b

)
10



which proves that (8) holds for k = 0. Assume now that
(8) holds up to k. If we can prove that (8) holds also for
k + 1, then the proof is completed. Indeed,

d̄k+1 =
1

N

N∑
i=1

di,k+1

(a)
=

1

N

N∑
i=1

( N∑
j=1

wijdj,k +Aixi,k+1 −Aixi,k
)

(b)
=

1

N

N∑
j=1

( N∑
i=1

wij

)
dj,k +

1

N

N∑
i=1

(Aixi,k+1 −Aixi,k)

(c)
= d̄k +

1

N

N∑
i=1

(Aixi,k+1 −Aixi,k)

(d)
=

1

N

( N∑
i=1

Aixi,k+1 − b
)
,

where in (a) we used Steps 9 and 6 in (b) we exchanged
the summations and we used column stochasticity of the
weights (cf. Assumption 4), in (c) we used the definition
of d̄k and the induction step in (d).

Proof of Lemma 2 (Average dual update)

By definition of λ̄k+1, we can write

λ̄k+1 =
1

N

N∑
i=1

λi,k+1

which can be further elaborated as follows

λ̄k+1
(a)
=

1

N

N∑
i=1

( N∑
j=1

wijλj,k + c di,k+1

)
(b)
=

1

N

N∑
j=1

(
N∑
i=1

wij

)
λj,k + c

1

N

N∑
i=1

di,k+1

(c)
= λ̄k + c d̄k+1,

where in (a) we used the definition of λi,k+1 in Step 10,
in (b) we switched the summations, and in (c) we used
column stochasticity of the weights (cf. Assumption 4)
together with the definition of λ̄k and d̄k+1.

Proof of Lemma 3 (Bounded sequences)

By (6a) we have that xk ∈ X for all k and, under
Assumption 1, X is bounded. Therefore the sequence
{xk}k≥0 is bounded. Under Assumption 4, from (8) in

Lemma 1 we have that d̄k = (1/N)(Axk − b) and, there-
fore, also {d̄k}k≥0 is bounded since d̄k = 1N ⊗ d̄k. More-

over, since zk = Adxk− d̄k, then also {zk}k≥0 is bounded.
This proves point (i).

Being the sequence {zk}k≥0 bounded, we have that
{zk+1 − zk}k≥0 is also bounded. Therefore, exploiting

the input-to-state stability property of the dynamical sys-
tem in (12) under Assumptions 3 and 4, we can conclude
that {edk}k≥0 is a bounded sequence. Finally, owing to the

input-to-state stability of the dynamical system in (13)
under Assumptions 3 and 4 together with boundedness
of {edk}k≥0, we also have that {eλk }k≥0 is bounded, thus

proving point (ii) and concluding the proof.

Proof of Proposition 1 (Local optimality)

By (Bertsekas and Tsitsiklis, 1989, Lemma 4.1) applied
to (6a), we have that xk+1 satisfies

f(xk+1) + [Wλk + c(Adxk+1 −Adxk +Wdk)]>Adxk+1

≤ f(x) + [Wλk + c(Adxk+1 −Adxk +Wdk)]>Adx,

for any x ∈ X. Recalling that dk+1 = Wdk + Adxk+1 −
Adxk and λk+1 = Wλk + cdk+1 (cf. (6b) and (6c), re-
spectively), we have

f(xk+1) + λ>k+1Adxk+1 ≤ f(x) + λ>k+1Adx,

for any x ∈ X. Under Assumption 2, we can set x equal
to some optimal solution x? of P, to obtain

f(xk+1) + λ>k+1[Adxk+1 −Adx
?] ≤ f(x?).

Under Assumption 2, by the Saddle Point Theorem in
(Bertsekas and Tsitsiklis, 1989, pag. 665) we have that

L(x?, λ) ≤ L(x?, λ?) ≤ L(x, λ?), (A.1)

for all x ∈ X and for all λ. Given (A.1) and the fact that
L(x?, λ?) = f(x?), we have that

f(xk+1) + λ>k+1[Adxk+1 −Adx
?] ≤ f(x?)

≤ f(x) + λ?>[Ax− b],

for all x ∈ X and any λ?. Writing b = Ax? and noticing

that λ?>[Ax−Ax?] = λ?
>

[Adx−Adx
?], it holds

f(xk+1) + λ>k+1[Adxk+1 −Adx
?]

≤ f(x) + λ?
>

[Adx−Adx
?].

Setting x = xk+1, simplifying f(xk+1), and bringing ev-
erything on the left-hand side, we have

[λk+1 − λ?]>[Adxk+1 −Adx
?] ≤ 0.

Adding and subtracting λ̄
>
k+1[Adxk+1 −Adx

?] yields

[λ̄k+1 − λ?]>[Adxk+1 −Adx
?]

+ [λk+1 − λ̄k+1]>[Adxk+1 −Adx
?] ≤ 0.

(A.2)

Focusing on the first term in (A.2), we have

[λ̄k+1 − λ?]>[Adxk+1 −Adx
?]
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(a)
=

N∑
i=1

[λ̄k+1 − λ?]>[Aixi,k+1 −Aix?i ]

(b)
= [λ̄k+1 − λ?]>

N∑
i=1

[Aixi,k+1 −Aix?i ]

(c)
= [λ̄k+1 − λ?]>[Axk+1 −Ax?]
(d)
= [λ̄k+1 − λ?]>[Axk+1 − b]
(e)
= [λ̄k+1 − λ?]>Nd̄k+1

(f)
=
N

c
[λ̄k+1 − λ?]>[λ̄k+1 − λ̄k]

(g)
=

1

c
[λ̄k+1 − λ?]>[λ̄k+1 − λ̄k], (A.3)

where (a) is due to the block structure of the vectors
involved in the product, (b) is given by the fact that
[λ̄k+1 − λ?] does not depend on i, (c) is given by the def-
inition of A, (d) is given by the fact that Ax? = b, (e) is
due to (8) in Lemma 1, (f) is given by (9) in Lemma 2,
and (g) uses the definitions of λ̄k and λ?. Owing to the
fact that

[λk+1 − λ̄k+1]>d̄k+1 =

N∑
i=1

[λi,k+1 − λ̄k+1]>d̄k+1

=

( N∑
i=1

[λi,k+1 − λ̄k+1]

)>
d̄k+1

= [Nλ̄k+1 −Nλ̄k+1]>d̄k+1

= 0

and considering the second term in (A.2), we have

[λk+1 − λ̄k+1]>[Adxk+1 −Adx
?]

= [λk+1 − λ̄k+1]>[Adxk+1 − d̄k+1 −Adx
?]

(a)
= [λk+1 − λ̄k+1]>[zk+1 −Adx

?] (A.4)

where in (a) we used the definition of zk+1 (cf. (10)). Using
(A.3) and (A.4) in (A.2) and multiplying by 2c we get

2[λ̄k+1 − λ?]>[λ̄k+1 − λ̄k]

+ 2c[λk+1 − λ̄k+1]>[zk+1 −Adx
?] ≤ 0.

(A.5)

Finally, using

2[a− b]>[a− c] = ‖a− b‖2 + ‖a− c‖2 − ‖c− b‖2

with the identifications a = λ̄k+1, b = λ? and c = λ̄k, (14)
follows, thus concluding the proof.

Proof of Theorem 1 (Convergence)

The dynamical evolution of edk and eλk , given in equa-
tions (12) and (13), respectively, can be arranged as

ek+1 = Fek +G(uk+1 − uk), (A.6)

with

ek =

[
eλk
c edk

]
, F =

[
W̃ W̃

0 W̃

]
, G =

[
I
I

]
,

and uk = c[zk − Adx
?]. Let P ∈ R2Np×2Np such that

P = P> � 0 and consider

‖Guk+1 − ek+1‖2P
(a)
= ‖Guk − ek + (I − F )ek‖2P
(b)
= ‖Guk − ek‖2P

+ 2[Guk − ek]>P (I − F )ek

+ e>k (I − F>)P (I − F )ek
(c)
= ‖Guk − ek‖2P − ‖ek‖2P−F>PF

+ 2u>k G
>P (I − F )ek, (A.7)

where in (a) we used the dynamics (A.6) and added ±ek
inside the norm, in (b) we expanded the square, while
in (c) we performed some algebraic manipulations. Sum-
ming (A.7) to the optimality-based inequality (14) (cf.
Proposition 1) yields

‖λ̄k+1 − λ?‖2 + 2u>k+1Hek+1 + ‖Guk+1 − ek+1‖2P
≤ ‖λ̄k − λ?‖2 + 2u>k G

>P (I − F )ek + ‖Guk − ek‖2P
− ‖λ̄k+1 − λ̄k‖2 − ‖ek‖2P−F>PF , (A.8)

with H = [I 0]. Notice that, choosing P such that P −
F>PF � 0, if the terms at k + 1 were analogous to the
terms at k, then (A.8) would describe a descent condition.
To enforce this, we need to find a P such that

H = G>P (I − F ), (A.9a)

P − F>PF � 0, (A.9b)

P � 0. (A.9c)

Satisfying (A.9) translates into (A.8) being
a non-expansive condition for the sequence
{‖λ̄k+1 − λ?‖2 + 2u>k+1Hek+1 + ‖Guk+1 − ek+1‖2P }k≥0,

i.e., a stability condition for the nonlinear dynami-
cal system in (6), which represents the evolution of
Algorithm 1.

Take P partitioned in blocks as follows

P =

[
P1 P2

P>2 P3

]
.

Owing to the fact that all eigenvalues of W̃ = W−(O⊗Ip)
lies in the open unit circle, thus (I − W̃ ) is invertible and,
from the equality MM−1 = M−1M = I with M = (I −
W̃ ), we have the following identities

W̃ (I − W̃ )−1 = (I − W̃ )−1 − I, (A.10a)

(I − W̃ )−1W̃ = (I − W̃ )−1 − I. (A.10b)
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Noticing that

(I − F )−1 =

[
(I − W̃ )−1 (I − W̃ )−1W̃ (I − W̃ )−1

0 (I − W̃ )−1

]
,

condition (A.9a) can be rewritten as G>P = H(I − F )−1

and translates into the following constraints on the blocks
of P :

P1 + P>2 = (I − W̃ )−1 (A.11a)

P2 + P3 = (I − W̃ )−1W̃ (I − W̃ )−1

(a)
= (I − W̃ )−2 − (I − W̃ )−1 (A.11b)

P1 + P>2 + P2 + P3 = (I − W̃ )−2, (A.11c)

where in (a) we used (A.10a), while (A.11c) follows by
simply summing (A.11a) and (A.11b) and will be useful in
the forthcoming discussion. Note that, from (A.11a), we
can further deduce that P2 = P>2 since both P1 and (I −
W̃ )−1 are symmetric matrices owing to P being symmetric
and Assumption 4, respectively.

We can thus express the matrix P − F>PF as[
P1 − W̃P1W̃ P2 − W̃ (P1 + P2)W̃

P>2 − W̃ (P1 + P>2 )W̃ P3 − W̃ (P1 + P>2 + P2 + P3)W̃

]
(a)
=

[
P1 − W̃P1W̃ P2 − W̃ (I − W̃ )−1W̃

P>2 − W̃ (I − W̃ )−1W̃ P3 − W̃ (I − W̃ )−2W̃

]
(b)
=

[
P1 − W̃P1W̃ W̃ − (P1 − I)

W̃ − (P1 − I) P1 − I

]
, (A.12)

where in (a) we used (A.11) and in (b) we leveraged
algebraic identities in (A.10) together with (A.11a) and
(A.11b) to express P2 and P3 as a function of P1 only.

Next, we find a value for P1 � 0 ensuring that P−F>PF
is positive definite. This requirement can be posed in terms
of its blocks by means of the Schur complement lemma,
i.e., P − F>PF � 0 if and only if

P1 − I � 0, (A.13a)

P1 − W̃P1W̃ − (W̃ − (P1 − I))(P1 − I)−1(W̃ − (P1 − I))

= 2W̃ + I − W̃ (P1 + (P1 − I)−1)W̃ � 0. (A.13b)

Take P1 = 2I and let TΛT> = W̃ be the eigendecompo-
sition of the symmetric matrix W̃ , with TT> = I and Λ
being a diagonal matrix containing the eigenvalues of W̃ .
Condition (A.13a) is trivially satisfied by this choice of P1,
while (A.13b) becomes

2W̃ + I − W̃ (2I + I)W̃ = 2W̃ + I − 3W̃ 2

= T (I + 2Λ− 3Λ2)T> � 0,

which is equivalent to I + 2Λ− 3Λ2 � 0 and always holds
true when all the eigenvalues of W̃ lies within (−1/3, 1).
In view of Assumption 5, this condition is guaranteed.

Finally, using again Schur complement lemma, it is also

easy to prove that P1 = 2I satisfies condition (A.9c). In
fact, we have that

P =

[
2I (I−W̃ )−1 − 2I

(I−W̃ )−1 − 2I (I−W̃ )−2 − 2(I−W̃ )−1 + 2I

]
� 0

if and only if

2I � 0, (A.14a)

(I−W̃ )−2 − 2(I−W̃ )−1 + 2I − 1

2

(
(I−W̃ )−1 − 2I

)2
=

1

2
(I − W̃ )−2 � 0. (A.14b)

Condition (A.14b) is satisfied since W̃ has all eigenvalues
in the open unit circle and hence I − W̃ � 0.

From (A.9a) we can rewrite (A.8) as

‖λ̄k+1 − λ?‖2 + 2u>k+1Hek+1 + ‖Guk+1 − ek+1‖2P
≤ ‖λ̄k − λ?‖2 + 2u>k Hek + ‖Guk − ek‖2P
− ‖λ̄k+1 − λ̄k‖2 − ‖ek‖2Q, (A.15)

where we set Q = P − F>PF � 0. Rearranging some
terms, and summing (A.15) from k = 0 to M − 1, with
M ∈ N, we have

M−1∑
k=0

‖λ̄k+1 − λ̄k‖2 + ‖ek‖2Q

≤ ‖λ̄0 − λ?‖2 + 2u>0 He0 + ‖Gu0 − e0‖2P
− ‖λ̄M − λ?‖2 − 2u>MHeM − ‖GuM − eM‖2P
≤ ‖λ̄0 − λ?‖2 + ‖Gu0 − e0‖2P + 2C,

where in the second inequality we neglected the terms
−‖λ̄M −λ?‖2 and −‖GuM −eM‖2P in the right-hand side
since they are non-positive (recall P � 0) and we used the
fact that |2u>k Hek| ≤ C for all k ≥ 0 owing to the results
of Lemma 3. Taking the limit as M →∞ finally yields

∞∑
k=0

(
‖λ̄k+1 − λ̄k‖2 + ‖ek‖2Q

)
<∞,

which, recalling that Q � 0, implies that limk→∞ ‖λ̄k+1−
λ̄k‖ = 0 and limk→∞ ‖ek‖ = 0. Hence, limk→∞ ‖edk‖ = 0
and limk→∞ ‖eλk ‖ = 0, thus proving points (i) and (ii),
respectively.

Since d̄k+1 = 1
c (λ̄k+1 − λ̄k), we also have that

limk→∞ ‖d̄k‖ = 0 and therefore limk→∞ ‖d̄k‖ = 0, thus
proving point (iii).

From (A.15) we also have that the sequence

{‖λ̄k − λ?‖2 + 2u>k Hek + ‖Guk − ek‖2P }k≥0

is non-increasing, bounded below since |2u>k Hek| ≤ C and
‖Guk − ek‖2P ≥ 0 (recall P � 0), and, therefore, conver-
gent. Since ‖ek‖ is vanishing and {uk}k≥0 is bounded, we
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have that also the sequence {‖λ̄k − λ?‖2 + ‖Guk‖2P }k≥0 is

convergent. A straightforward computation using (A.11c)
shows that G>PG = (I − W̃ )−2 � 0 which, recalling the
definition of uk = c (zk−Adx

?), implies that the sequence

{‖λ̄k − λ?‖2 + c2‖zk −Adx
?‖2

(I−W̃ )−2}
k≥0

is convergent, which finally implies that

{‖λ̄k − λ?‖2 + c2‖zk −Adx
?‖2}k≥0

is convergent due to norm equivalence, thus proving
point (iv) and concluding the proof.

Proof of Theorem 2 (Optimality)

Following the first steps in the proof of Proposition 1,
for any optimal solution x? for P, we can write

f(xk+1) + λ>k+1[Adxk+1 −Adx
?] ≤ f(x?).

By adding and subtracting λ̄
>
k+1[Adxk+1 − Adx

?] to the
left-hand side, we have

f(xk+1) + λ̄
>
k+1[Adxk+1 −Adx

?]

+ eλk+1

>
[Adxk+1 −Adx

?] ≤ f(x?).

Noticing that

λ̄
>
k+1[Adxk+1 −Adx

?] = λ̄>k+1[Axk+1 −Ax?]
= λ̄>k+1[Axk+1 − b]
= λ̄>k+1N d̄k+1, (A.16)

where the last inequality is due to Lemma 1, we have that

f(xk+1) +Nλ̄>k+1d̄k+1 + eλk+1

>
[Adxk+1 −Adx

?] ≤ f(x?).

From Theorem 1(iv) we have that the sequence

{‖λ̄k − λ?‖2 + c2‖zk −Adx
?‖2}k≥0

is bounded. Since {zk}k≥0 is also bounded by Lemma 3,

we have that {λ̄k}k≥0 and, therefore, also {λ̄k}k≥0 are
both bounded. Recalling that {xk}k≥0 is bounded, by
Theorem 1 points (iii) and (ii) respectively, it holds

lim
k→∞

λ̄>k+1d̄k+1 = 0, (A.17)

lim
k→∞

eλk+1

>
[Adxk+1 −Adx

?] = 0, (A.18)

and therefore

lim sup
k→∞

f(xk+1) +Nλ̄>k+1d̄k+1 + eλk+1

>
[Adxk+1 −Adx

?]

= lim sup
k→∞

f(xk+1) ≤ f(x?). (A.19)

Since xk ∈ X for all k ≥ 0 and, by Lemma 1 and Theo-
rem 1(iii),

lim
k→∞

‖Axk − b‖ = lim
k→∞

‖d̄k‖ = 0,

we know that any limit point x̃ of the sequence {xk}k≥0 is
feasible for P and, thus, satisfies f(x̃) ≥ f(x?). Combin-
ing this fact with (A.19) we can conclude that f(x̃) =
f(x?) for any limit point x̃. Since all limit points of
{xk}k≥0 are feasible and achieve the optimal value, they
are optimal solutions for P, proving Theorem 2(i).

Next, we prove the convergence of the local dual vari-
ables estimates to an optimal dual solution. Similarly to
the proof of Proposition 1, by applying (Bertsekas and
Tsitsiklis, 1989, Lemma 4.1) to Step 8 we have that xi,k+1

satisfies

fi(xi,k+1) + [`i,k + c(Aixi,k+1 −Aixi,k + δi,k)]>Aixi,k+1

≤ fi(xi) + [`i,k + c(Aixi,k+1 −Aixi,k + δi,k)]>Aixi,

for all xi ∈ Xi. Noticing that di,k+1 = δi,k + Aixi,k+1 −
Aixi,k and λi,k+1 = `i,k + c di,k+1 from Steps 9 and 10,
respectively, and subtracting λ>i,k+1bi, we have

fi(xi,k+1) + λ>i,k+1(Aixi,k+1 − bi)
≤ fi(xi) + λ>i,k+1(Aixi − bi)

for all xi ∈ Xi, which is equivalent to

xi,k+1 ∈ argmin
xi∈Xi

fi(xi) + λ>i,k+1(Aixi − bi)

and, thus, by definition of ϕi(λ) in (2), we have

ϕi(λi,k+1) = fi(xi,k+1) + λ>i,k+1(Aixi,k+1 − bi),

if b1, . . . , bN are such that
∑N
i=1 bi = b. Setting bi =

Aix
?
i , summing over i = 1, . . . , N , adding and subtracting

λ̄
>
k+1[Adxk+1−Adx

?] to the right hand side, and exploit-
ing again (A.16), we obtain

N∑
i=1

ϕi(λi,k+1) = f(xk+1) +N λ̄>k+1d̄k+1

+ eλk+1

>
[Adxk+1 −Adx

?].

(A.20)

Since the sequence {λ̄k+1}k≥0 is bounded, it admits a con-

vergent subsequence {(λ̄k+1,xk+1)}k∈K with K ⊆ N. Let
(λ̃, x̃) be its limit point. Now, taking the limit of (A.20)
across K, we have

lim
K3k→∞

N∑
i=1

ϕi(λi,k+1) = lim
k∈K

{
f(xk+1) +N λ̄>k+1d̄k+1

+ eλk+1

>
[Adxk+1 −Adx

?]
}
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(a)
= f(x̃)

(b)
= f(x?)

(c)

≥ max
λ

N∑
i=1

ϕi(λ), (A.21)

where in (a) we used (A.17) and (A.18), the fact that limit
points of {xk}k≥0 achieve the optimal value in (b), and
weak duality in (c). On the other hand, from (2), we have

lim
K3k→∞

ϕi(λi,k+1) ≤ lim
K3k→∞

{
fi(xi) + λ>i,k+1(Aixi − bi)

}
= fi(xi) +

(
lim

K3k→∞
λ̄k+1

)>
(Aixi − bi)

= fi(xi) + λ̃>(Aixi − bi), (A.22)

for all xi ∈ Xi, where the first equality is due to
limk→∞ λi,k = λ̄k, i = 1, . . . , N (recall limk→∞ ‖eλk ‖ = 0),

and in the last equality we plugged the limit point λ̃ of
{λ̄k+1}k∈K. Setting xi in (A.22) equal to the minimizer of
ϕi(λ̃) and summing over i = 1, . . . , N yields

lim
K3k→∞

N∑
i=1

ϕi(λi,k+1) ≤
N∑
i=1

ϕi(λ̃) ≤ max
λ

N∑
i=1

ϕi(λ).

Combining the latter with (A.21) gives

N∑
i=1

ϕi(λ̃) = max
λ

N∑
i=1

ϕi(λ), (A.23)

which means that λ̃ is optimal for D.

Recall that, from Theorem 1(iv), we have that the se-
quence

{‖λ̄k − λ?‖2 + c2‖zk −Adx
?‖2}k≥0

is convergent for any pair x? and λ? which are optimal
for P and D, respectively. We can thus take λ? = 1N ⊗ λ̃
and x? = x̃ and conclude that

lim
K3k→∞

{
‖λ̄k − λ?‖2 + c2‖zk −Adx

?‖2
}

= 0.

But since {‖λ̄k − λ?‖2 + c2‖zk −Adx
?‖2}k≥0 is conver-

gent, all its limit points are the same, and therefore

lim
K3k→∞

{
‖λ̄k − λ?‖2 + c2‖zk −Adx

?‖2
}

= 0,

for some primal optimal solution x? and some optimal dual
solution λ?, which implies that, for all i = 1, . . . , N ,

lim
k→∞

‖λi,k − λ?‖ = 0

lim
k→∞

‖Aixi,k −Aix?i ‖ = 0

since eλk is vanishing. So that Theorem 2(ii) follows and

the proof is complete.
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