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Abstract

In this paper, the contact force detection, isolation and estimation problems for an orbital robot are addressed.
First, an observer based on a base-joints dynamics is reviewed and analyzed considering the issues related
to a space robotic application. Then, a new scheme is derived reformulating the dynamics in terms of the
motion of the centroid of the whole robot and the joints. In both observers, three momentum-based residuals
are defined, which can be used to reconstruct the external contact wrench. The reconstruction through the
proposed observer turns out to provide superior performance with respect to the base-joints one thanks to
the decoupling of the angular and joint momentum residuals from the spacecraft linear velocity, which is an
inaccurate measurement in real space scenarios. The advantages of the proposed observer are shown through
both simulative and hardware validation featuring a 7 degrees of freedom (DoF) arm mounted on a 6 DoF
moving base.

Keywords: Contact force estimation; Floating-base space robots; Nonlinear observer; Collision detection
and isolation

1. Introduction

Orbital robotics is considered one of the key technologies for many future missions since it can provide higher
levels of safety, reliability and performance [1]. Especially, space manipulators are considered one of the most
promising technology for servicing, assembly and inspection in orbit. However, their use is still very limited
due to the high complexity involved. One of the most challenging issue is dealing with physical contact5

between the robot and a target object.
Since the beginning, the dynamics of the contact phase has been extensively studied, considering free-floating
robots [2][3][4][5]. Many authors have addressed the problem of guaranteeing a safe interaction when the
robot’s end-effector comes into contact with the target to perform grasping tasks [6][7][8][9][10]. In this
context, effective control strategies can take advantage of the accurate knowledge of the contact force, which10

can be measured by employing a force-torque sensor (FTS) duly placed at the wrist. However, a strategy
relying only on this sensor is not robust since a failure in the FTS could compromise the correct completion
of the task, or even block the operations until repair. Furthermore, the FTS measures forces and torques
acting only at the end-effector, and thus contacts that do not occur exactly there, e.g. a contact on links
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other than the one with the FTS, cannot be measured.15

These motivations have pushed some researchers to propose a different approach, in which the contact force
is estimated without using a dedicated sensor. In [11] the use of the disturbance observer is proposed, while
in [6] the force is estimated through the target’s equations of motion. Both methods require quantities that
are not measured directly, i.e., the joint accelerations, the linear velocity and the angular acceleration of the
robot base for the former, and the target’s accelerations for the latter. These quantities could be obtained20

through numerical differentiation, but they would introduce nonnegligible noise in the estimation process.
Moreover, these methods assume to know where the force acts, i.e. at the end-effector, and thus cannot be
used for a more general situation of a contact on a generic link.
The problem of estimating a contact force involving whichever part of the robot has been extensively studied
within the robotics community in the last years, especially for fixed-base robots [12][13][14], humanoids25

[15][16], and flying robots [17]. On the other hand, few works have been carried out considering orbital
robots. In [15] the well-known generalized momemtum-based observer, originally presented in [12] for fixed-
base robots, is extended to humanoids, featuring a floating-base dynamics similar to the one of space robots.
This observer computes linear, angular and joint momentum residuals which turn out to be the estimates of
the external generalized forces acting on the floating base and the disturbance joint torques due to a contact.30

Then, the residuals can be used to estimate the external wrench acting on the robot. The main drawback of
the method is the need of a fast and accurate reconstruction of the base linear velocity, which is difficult to
obtain in the the case of a real space application.
In this paper, the residual-based observer [15] is reviewed and analyzed considering the issues related to
a space robot. Then, a new observer is derived, which is based on a centroid-joints dynamics. The most35

important feature of the new observer is the complete decoupling from the base linear velocity of the angular
and joints momentum residuals, which, therefore, result to be less noisy. This leads to a better-performing
estimation of the contact wrench than [15]. Indeed, the wrench reconstruction can be performed using only
these two residuals, and thus not requiring a measurement of the base linear velocity, but measuring solely
the angular velocity, and the joint positions, velocities and torques, which can be acquired at high frequency40

and feature relatively low noise.
Furthermore, the proposed method allows reconstructing a contact on a generic point, and not only at the
end-effector. It can be used to detect, locate and estimate unexpected collisions which may occur during
the robot’s operations. The proposed strategy to isolate the collision uses only the information from the
angular and joint momentum residuals of the presented observer. Consequently, the contact point can be45

found relying only on accurate sensors working at high frequency, and thus an accurate and fast wrench
estimation is achieved.
The main contributions of this paper are: 1) the formulation of the observer [15] for application on an actuated
space robot, the analysis of its limitations, and the development of a new observer based on a centroid-joints
dynamics which solves these limitations; 2) a new method to identify a generic contact point along the robot,50

using only the angular and joint momentum residuals; 3) the experimental validation of both observers on
the On-Orbit Servicing Simulator (OOS-Sim) hardware-in-the-loop facility [18] at the DLR. Note that, to
the best of the authors’ knowledge, no experimental tests have been performed for the observer [15] before.
The work in this paper is an extension of the authors’ preliminary analyses presented in [19].
The paper is structured as follows: in Sect. 2, the notation, the assumptions and the equations are introduced.55

In Sect. 3, the method in [15] is formulated for space robots and the proposed observer based on a centroid-
joints dynamics is presented. In Sect. 4, the reconstruction of the external wrench is addressed. In Sect.
5, a strategy to isolate the generic contact point is presented. In Sect. 6, a simulation example is proposed
to compare the performance of the observers. In Sect. 7, the results of the experimental validation of the
observers are reported. Finally, in Sect. 8, the main conclusions are drawn and future works are discussed.60
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Figure 1: Floating space robot.

2. Preliminaries

2.1. Problem statement and assumptions

A space robot is considered as a multibody system composed of n+ 1 rigid bodies connected with n revolute
joints (see Fig. 1). An in-orbit proximity operation is taken as reference scenario. The robot is required to
perform manipulation or inspection tasks, and thus to operate close to one or more other objects. In this65

context, contact situations may arise and they can be planned, e.g. grasping a target, or unexpected, e.g. a
collision. In the former case, the accurate knowledge of the contact force at the end-effector is important to
guarantee a safe interaction, while, in the latter case, the force estimate can be used to detect and isolate
the collision and to implement a safe reaction. In this study, no disturbances caused by the environment
(e.g. gravity gradient, solar pressure, air drag and magnetic forces) are taken into account, because they are70

considerably smaller than the actuation forces. Note that this is a commonly accepted assumption in space
robotics. Finally, a contact on a generic point along the robot is considered. This situation is very general,
including both planned contact at the end-effector and unexpected collision.

2.2. Main notations

Four main reference frames are defined. One, denoted by B, is the body frame located on the center-of-mass75

(CM) of the spacecraft. The second one, denoted by C, is a frame with rotating axes, always parallel to B,
placed on the CM of the space robot. The third one, denoted by E , is a frame located on the end-effector.
The last one is the inertial frame, denoted by T .
In order to transform forces and velocities between reference frames, the Adjoint transformation [20] is
introduced:80

Axy =

[
Rxy [pxy]∧Rxy

0 Rxy

]
∈ R6×6, (1)

where pxy ∈ R3 and Rxy ∈ SO(3) indicate the generic position vector, expressed in X , and rotation matrix
from frame X to frame Y, respectively. The operator [ · ]∧ stands for the skew-symmetric matrix of the
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argument. Finally, the identity matrix and zero matrix are denoted by E and 0 of suitable dimensions,
respectively.

2.3. Dynamics of the impact phase85

The dynamics of the space robot can be expressed as follows: Mt Mtr Mtm

MT
tr Mr Mrm

MT
tm MT

rm Mm


︸ ︷︷ ︸

M(q)

 v̇b
ω̇b

q̈

+
 Ct Ctr Ctm

Crt Cr Crm

Cmt Cmr Cm


︸ ︷︷ ︸
C(q, q̇,vb,ωb)

 vb
ωb

q̇

 =

 fb
mb

τ

+

 fext,b
mext,b

τext

 ,
(2)

where  fext,b
mext,b

τext

 =

[
AT

pb

JT
p

]
Fext, (3)

and where Fext = [fText m
T
ext]

T ∈ R6 is the contact wrench at a generic point p along the robot; fext,b,mext,b ∈
R3 are the force and moment acting at base level due to the external contact; τext ∈ Rn is the vector of the
external joint torques due to the contact; Jp = [JTvp J

T
ωp]

T ∈ R6×n is the fixed-base robot’s Jacobian for the
point p, with Jvp ∈ R3×n, Jωp ∈ R3×n being the Jacobians mapping q̇ into the linear and angular velocity of a90

frame on the contact point p, respectively; vb,ωb ∈ R3 are the linear and angular velocity of the base expressed
in B; q, q̇ ∈ Rn are the joint angles and velocities; fb,mb ∈ R3 are the commanded base force and moment
around B, expressed in B; τ ∈ Rn are the commanded joint torques; the submatrices Mt,Mtr,Mr ∈ R3×3

compose the inertia matrix of the composite rigid body; the submatrices Mtm,Mrm ∈ R3×n are the coupling
inertia matrices; Mm ∈ Rn×n is the inertia matrix of the manipulator; C(q, q̇,vb,ωb) ∈ R(6+n)×(6+n) is the95

Coriolis/centrifugal matrix. The analytical expressions of the inertia matrix can be found in [21].
The total generalized momentum around B and expressed in B, denoted by hb ∈ R6, results in

hb =

[
ht

b

hr
b

]
=

[
Mt Mtr

MT
tr Mr

] [
vb
ωb

]
+

[
Mtm

Mrm

]
q̇, (4)

with htb,h
r
b ∈ R3 being the translational and rotational momentum, respectively.

3. Nonlinear force observer for space robots

In this section, the residual-based observer presented in [15] for humanoids is firstly adapted to space robots.100

This method is based on the momentum-based observer [13] in which a residual vector is defined as the dif-
ference between the generalized momentum of the fixed-base robot and its estimate. Under ideal condition,
this residual vector turns out to be a filtered estimation of the external disturbance on the joints. Hereafter,
the same idea is followed using the dynamics model (2) to obtain estimates of fext,b, mext,b and τext.
Afterwards, the proposed observer, based on a centroid-joints dynamics, is derived and discussed. Interest-105

ing decoupling properties from the linear velocity of the base are highlighted, which allow improving the
performance when real implementation issues are considered.
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3.1. Observer based on a base-joints dynamics

Considering Eq. (2), the dynamics of the robot can be split into base translational and rotational dynamics,
i.e., the first and second rows of the equation, and joint dynamics, i.e., the third row of the equation.110

Denoting by f̂ext,b, m̂ext,b ∈ R3 and τ̂ext ∈ Rn the residuals, they are designed as follows:

f̂ext,b = Kf (Mtvb +Mtrωb +Mtmq̇︸ ︷︷ ︸
htb

−
∫ t

0

(fb +CT
t vb +CT

rtωb +CT
mtq̇ + f̂ext,b)ds), (5a)

m̂ext,b = Km(MT
trvb +Mrωb +Mrmq̇︸ ︷︷ ︸

hrb

−
∫ t

0

(mb +CT
trvb +CT

r ωb +CT
mrq̇ + m̂ext,b)ds), (5b)

τ̂ext = Kτ (MT
tmvb +MT

rmωb +Mmq̇︸ ︷︷ ︸
hj

−
∫ t

0

(τ +CT
tmvb +CT

rmωb +CT
mq̇ + τ̂ext)ds), (5c)

where Kf ,Km ∈ R3×3, and Kτ ∈ Rn×n are positive-definite diagonal matrices containing the observer gains;
hj ∈ Rn is the joints generalized momentum.

By differentiating Eqs. (5a), (5b), and (5c), and by exploiting the dynamics (2) and the property Ṁ =
C +CT , the following equations result

˙̂
fext,b = Kf (fext,b − f̂ext,b), (6a)

˙̂mext,b = Km(mext,b − m̂ext,b), (6b)

˙̂τext = Kτ (τext − τ̂ext), (6c)

which express the relation between the estimated and true quantities.
From Eq. (6) it can be noticed that f̂ext,b, m̂ext,b, and τ̂ext are first-order-filtered estimations of fext,b,
mext,b, and τext, respectively.115

Increasing the observer gains reduces the time constants of the transient response of the estimates, and
thus leads to a faster estimation of fext,b,mext,b, and τext. Ideally, if the observer gains tend to infinity,

it would be achieved f̂ext,b ≈ fext,b, m̂ext,b ≈ mext,b and τ̂ext ≈ τext, respectively. However, in practice,
noise and uncertainties induce an upper bound on the values that the observer gains can take. Moreover, the
computation of all the residuals, i.e., f̂ext,b, m̂ext,b, and τ̂ext, requires the knowledge of the base linear velocity120

vb. A fast and accurate estimation of the linear velocity is particularly difficult in practical applications and
the observer scheme (5) would require very low gains resulting in limited response bandwidth. This limitation
motivates the derivation of the proposed observer presented hereafter, which turns out to be more practical
and better-performing.
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3.2. Observer based on a centroid-joints dynamics125

In this section, the robot dynamics is transformed using a new set of generalized velocities: the linear velocity
of the CM of the whole system, the angular momentum around C expressed in C and the joint velocities.
Afterwards, the transformed dynamics is used to formulate the new observer scheme.
Let hc ∈ R6 denote the total momentum around C. It can be computed as hc = A−Tcb hb [21]1, resulting in

hc =

[
ht

c

hr
c

]
=

[
mE −m[pbc]

∧ mJ̄v

0 Ic IcJ̄ω

] vb
ωb

q̇

 , (7)

where htc ∈ R3 is the translational momentum and hrc ∈ R3 is the rotational momentum around C, both
expressed in C, m ∈ R and Ic ∈ R3×3 are the mass and the rotational inertia around C of the whole body,
and J̄v, J̄ω ∈ R3×n are computed as follows

J̄v =
1

m

n∑
i=1

miR
T
ibJvi, (8)

J̄ω = I−1
c

n∑
i=1

RT
ibIiJωi +mi[pbi]

∧(Jvi − J̄v), (9)

with mi ∈ R and Ii ∈ R3×3 being the mass and rotational inertia of body i, computed around its CM, and
Jvi,Jωi ∈ R3×n being the Jacobians mapping q̇ in the linear and angular velocity of body i, respectively.
The Jacobians J̄v and J̄ω can be also computed based on the inertia model in (2) as:

J̄v =
1

m
Mtm, (10)

J̄ω =

(
Mr −

1

m
MT

trMtr

)−1(
Mrm − 1

m
MT

trMtm

)
. (11)

Introducing the linear velocity of the CM of the whole system, vc = 1
mh

t
c ∈ R3, and exploiting Eq. (7), a130

transformation matrix Γ ∈ R(6+n)×(6+n) can be defined as vc
hrc
q̇

 =

 E −[pbc]
∧ J̄v

0 Ic IcJ̄ω
0 0 E


︸ ︷︷ ︸

Γ

 vb
ωb
q̇

 . (12)

Consequently, the generalized forces transform as fb
mb

τ

 = ΓT

 fc
ac
τ̄

 , (13)

 fext,b
mext,b

τext

 = ΓT

 fext,c
aext,c
τ̄ext

 , (14)

1The equations used herein are slightly different from the ones presented in [21]: in [21] the frame C is nonrotating, whereas
here C is rotating, parallel to B.
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where fc ∈ R3, ac ∈ R3, and τ̄ ∈ Rn are new control inputs; fext,c ∈ R3, aext,c ∈ R3, and τ̄ext ∈ Rn are the
projections of the external wrench Fext into the new variables space.
Then, the dynamics in the new states is derived by pre-multiplying (2) by Γ−T and substituting vb, ωb, q̇
and their derivatives, isolated from Eq. (12), in (2). The resulting system is mE 0 0

0 I−1
c 0

0 0 M∗
m

 v̇c
ḣr

c

q̈

+

 Cc Ccr Ccm

−CT
cr C∗r C∗rm

−CT
cm −C∗Trm C∗m

 vc
hr

c

q̇

 =

 fc
ac

τ̄

+

 fext,c
aext,c

τ̄ext

 . (15)

where

M∗
m = Mm −

[
MT

tm M
T
rm

] [ Mt Mtr

MT
tr Mr

]−1 [
Mtm

Mrm

]
∈ Rn×n (16)

is the reduced inertia of the manipulator.
Expressing the dynamics in these new variables enables to obtain a system of inertially decoupled dynamic
equations. Moreover, it can be demonstrated (see the Appendix) that the following relations hold:

Ccvc +Ccrh
r
c +Ccmq̇ = m [ωb]

∧
vc, (17a)

−CT
crvc +C∗rh

r
c +C∗rmq̇ = I−1

c [ωb]
∧
hrc , (17b)

−CT
cmvc −C∗Trmhrc +C∗mq̇ = (Ṁ∗

m −
1

2
M∗

m/q)q̇ + ( ˙̄JTω − J̄Tω [ωb]
∧

+
1

2
I−Tc/q − J̄

T
ω/q)h

r
c , (17c)

where

M∗
m/q =


q̇T

∂M∗
m

∂q1
...

q̇T
∂M∗

m

∂qn

 ∈ Rn×n, I−Tc/q =


hrTc

∂I−T
c

∂q1
...

hrTc
∂I−T

c

∂qn

 ∈ Rn×3,

J̄Tω/q =


q̇T

∂J̄T
ω

∂q1
...

q̇T
∂J̄T

ω

∂qn

 ∈ Rn×3.

(18)

In the Appendix, a way to compute the partial derivatives ofM∗
m, I−Tc and JTω with respect to q is explained.

By using the simplifications in (17), the dynamic equations can be rewritten as

mv̇c +m [ωb]
∧
vc = fc + fext,c, (19a)

ḣrc + [ωb]
∧
hrc = mc +mext,c, (19b)

M∗
mq̈ + (Ṁ∗

m −
1

2
M∗

m/q)q̇ + ( ˙̄JTω − J̄Tω [ωb]
∧

+
1

2
I−Tc/q − J̄

T
ω/q)h

r
c = τ̄ + τ̄ext, (19c)

where it is denoted mc = Icac ∈ R3 and mext,c = Icaext,c ∈ R3.
First, note that Eqs. (19b) and (19c) do not depend on the base linear velocity anymore. On the other hand,
Eq. (19a) depends on the base linear velocity through vc. Second, note that M∗

m and J̄ω depend only on q,

M∗
m/q, J̄ω/q , and ˙̄Jω depends on q and q̇, and I−Tc/q depends on q, q̇, and ωb.
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Starting from (19), the residuals f̂ext,c, m̂ext,c ∈ R3 and ˆ̄τ ext ∈ Rn, are designed as

f̂ext,c = Kf (mvc︸︷︷︸
htc

−
∫ t

0

(fc −m [ωb]
∧
vc + f̂ext,c)ds), (20a)

m̂ext,c = Km(hrc −
∫ t

0

(mc − [ωb]
∧
hrc + m̂ext,c)ds), (20b)

ˆ̄τ ext = Kτ (M∗
mq̇︸ ︷︷ ︸
h∗j

−
∫ t

0

(τ̄ +
1

2
M∗

m/qq̇ − ( ˙̄JTω − J̄Tω [ωb]
∧

+
1

2
I−Tc/q − J̄

T
ω/q)h

r
c + ˆ̄τ ext)ds), (20c)

where h∗j ∈ Rn is the generalized momentum of the joints associated to the centroid-joints dynamics. By
differentiating Eqs. (20a), (20b), and (20c), and by using the dynamics (19), the following equations result

˙̂
fext,c = Kf (fext,c − f̂ext,c), (21a)

˙̂mext,c = Km(mext,c − m̂ext,c), (21b)

˙̄̂τext = Kτ (τ̄ext − ˆ̄τ ext), (21c)

which express the relation between the estimated and true quantities. From Eq. (21), it is clear that f̂ext,c,
m̂ext,c, and ˆ̄τ ext are first-order-filtered estimations of fext,c, mext,c, and τ̄ext, respectively. The observations
about the gains tuning made in the previous section are also valid for the proposed observer.135

Note that the residuals m̂ext,c and ˆ̄τ ext in (20b) and (20c) are computed without using the linear velocity.
Indeed, vb does not appear in (20b) and (20c), and the matrices therein are only function of q, q̇, and
ωb, as remarked previously. This property has an important implication from the practical point of view.
Considering real on-orbit scenarios, the linear velocity is not directly measured and its accurate estimation or
reconstruction is difficult. Thanks to the decoupling from vb, the residuals m̂ext,c and ˆ̄τ ext can be computed140

just relying on gyroscopes, encoders and torque sensors, which typically feature good acquisition frequency
and relatively low noise. Fast and accurate knowledge of the position and attitude of the base, and its
velocity, which is often unpractical, is totally avoided. Then, the residuals m̂ext,c and ˆ̄τ ext can be exploited
to reconstruct the external wrench Fext and to isolate the contact point, as it will be shown in the Sections
4 and 5, respectively.145

4. Reconstruction of the external wrench

Assuming to know the contact point along the space robot, the relation between the contact generalized
forces fext,b, mext,b, and τext in (2) and the external wrench Fext can be expressed as in Eq. (3). Using the
inverse of Eq. (14) and recalling that mext,c = Icaext,c, the relation between fext,c, mext,c, and τ̄ext, and
Fext is given by:  fext,c

mext,c

τ̄ext

 =

[
AT

pc

J∗Tp

]
Fext, (22)
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where

J∗p =

[
J∗vp
J∗ωp

]
=

[
−RpbJ̄v +Rpb [pcp]

∧
J̄ω + Jvp

−RpbJ̄ω + Jωp

]
∈ R6×n. (23)

Then, an estimate F̂ext of the external wrench at the end-effector can be computed as

F̂ext =

([
AT
pc

J∗Tp

])#
 f̂ext,c
m̂ext,c

ˆ̄τ ext

 , (24)

where the operator ( · )# stands for the Moore-Penrose pseudo inverse of the argument.

Considering

[
AT
pc

J∗Tp

]
has maximum rank, one has the freedom to eliminate redundant rows. In particular,

the estimate of the external wrench can be obtained using only m̂ext,c and ˆ̄τ ext, and thus getting rid of the
base linear velocity. Selecting the last two rows of Eq. (22) and taking the pseudo inverse, the following
relation can be written

F̂ext =
(
J̃∗Tp

)#
[
m̂ext,c

ˆ̄τ ext

]
, (25)

where

J̃∗Tp =

[
[pcp]

∧
RT
pb RT

pb

J∗Tvp J∗Tωp

]
∈ R(n+3)×6. (26)

Clearly, the rank of J̃∗p should be maximum to reconstruct F̂ext correctly. Notice that by using Eq. (25),
it is possible to estimate the external wrench acting at a generic known point along the robot without using
any unpractical measurements, such as the base linear velocity or the joint accelerations.150

In the development of the reconstruction strategy, the contact point has been assumed to be known. In case
of a planned contact at the end-effector, this is true and, through the kinematics, it is straightforward to
compute pce and the Jacobians Jve, Jωe (the generic point p coincides with the end-effector) required in Eq.
(24) and in Eq. (25). Conversely, when dealing with an unexpected collision, the contat point is unknown
and it is necessary to isolate it before being able to reconstruct the external wrench. In the following section,155

a solution to this problem is proposed.

5. Contact point isolation

Solving the isolation problem means locating the contact point p. In the following, first, a procedure to
identify the contact point using all the residual vectors is presented. This procedure can be applied considering
both the observer (5) and (20). Then, a different approach is proposed that relies only on m̂ext,c and ˆ̄τ ext,160

avoiding the need of the base linear velocity knowledge. In the development of both strategies, it is assumed
that the point of application of the external disturbance does not change during the contact, and the contact
wrench only consists in a linear force and no torque, namely

Fext =

[
fext
0

]
(27)

Note that these are reasonable assumptions for unexpected collisions.
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5.1. Isolation using all the residual vectors165

Considering all the residual vectors available, the contact point can be identified easily. Indeed, given (22)
and the assumption (27), it is

mext,c = [pcp]
∧fext,c. (28)

Then, it is possible to write
m̂ext,c = [pcp]

∧f̂ext,c, (29)

which means that the contact point can be found on the line

scp = (−[f̂ext,c]
∧)#m̂ext,c + d

f̂ext,c

||f̂ext,c||
∈ R3, (30)

with d being a varying scalar.
At this point, the contact point can be identified as the intersection between scp and the space robot, whose
CAD representation is known or can be simplified by primitive shapes. In order to discriminate the exact170

point among multiple possibilities, the estimation of the external torques can be exploited. Indeed, the exact
point would be the one that minimizes ||J∗Tp F̂ext − ˆ̄τ ext||. Note that the same procedure can be applied
using the residuals in (5).
It can be observed that this method is very straightforward. However, as already pointed out, from a practical
point of view it would be more convenient to be able to isolate the contact point without relying on the base175

linear velocity knowledge. For this reason in the following section a different approach is proposed.

5.2. Isolation using only m̂ext,c and ˆ̄τext

Assuming that the link i, on which the contact occurred, is known, the external wrench Fext can be trans-
formed with respect to a frame attached on a known position to link i using the Adjoint matrix, as

F i =

[
fi
mi

]
= AT

piFext =

[
E 0

[pip]
∧ E

] [
fext
0

]
, (31)

where pip is constant.
The effect of the contact wrench at frame i can be estimated using the recostruction strategy preaviously
explained in Section 4 as

F̂ i =

[
f̂i
m̂i

]
=

([
[pci]

∧
RT
ib RT

ib

J∗Tvi J∗Tωi

])# [
m̂ext,c

ˆ̄τ ext

]
(32)

where J∗vi, J
∗
ωi can be computed substituting in Eq. (23) Rpb with Rib, pcp with pci, and Jvp, Jωp with the

Jacobians mapping q̇ into the linear and angular velocity of frame i. At this point, manipulating Eq. (31),
the following relation can be written

m̂i = [pip]
∧f̂i, (33)

from which the line of action of fext can be computed as

sip = (−[f̂i]
∧)#m̂i + di

f̂i

||f̂i||
∈ R3. (34)
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Figure 2: Scheme of the proposed isolation method.

with di being a varying scalar. Assuming the knowledge of the geometry of the link i, the contact point can
be found as the intersection bewteen the link and the line sip.
Unfortunately, the contact link is usually not known in advance. However, it is possible to overcome this180

issue. Indeed, the scheme just explained can be applied to each link, assuming that the link is the contact
one. At the end, two possible results can be obtained:

• no intersections are found between the line of action and the link;

• a candidate contact point is found.

Among all the candidate points, the real contact point is the one minimizing185

δip =

∣∣∣∣∣∣∣∣J̃∗Tp,i [ f̂ext0

]
−
[
m̂ext,c

ˆ̄τ ext

]∣∣∣∣∣∣∣∣ , (35)

where J̃∗Tp,i ∈ R6×(n+3) is the Jacobian at the candidate point on link i. Fig. 2 reports the isolation method
schematically.
To conclude, the residuals m̂ext,c and ˆ̄τ ext allow not only to detect and estimate a contact force, but also to
isolate it without the need of the knowledge of the base linear velocity.

6. Simulation example190

In this section, the two observers are compared through numerical simulations including realistic noise models
for the measurements. The linear velocity of the base is reconstructed using a kinematics-based Kalman filter.
The superior performance and the advantages of the proposed method based on the centroid-joints dynamics
are shown.
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Table 1: Kinematics and dynamics parameters.

l [m] m [kg] Ix [kgm2] Iy [kgm2] Iz [kgm2]
Base 1.2 375 280 165 250

Link 1 0.17 5.1 0.03 0.03 0.03
Link 2 1.3 18.8 1.65 1.65 0.64
Link 3 0.17 8.9 0.15 0.15 0.03
Link 4 1.3 12.0 0.25 0.25 0.03
Link 5 0.17 11.7 0.26 0.26 0.03
Link 6 0.1 5.5 0.02 0.02 0.03
Link 7 0 4.7 0.01 0.01 0.02

6.1. Simulation scenario195

A 7DoF manipulator mounted on a 6DoF floating base is considered. The kinematics and dynamics param-
eters are reported in Tab. 1.
The base is controlled to keep the initial attitude through a PD controller, whereas it is free to translate, i.e.,
fb = 0. The manipulator joints are controlled to follow a reference trajectory. Especially, joint 1 and joint
4 are commanded to follow a trapezoidal velocity profile, while the other joints are commanded to keep the200

initial position, i.e., q0 = [−3 30 0 130 0 − 60 0]T deg. A simple PD controller is implemented for each
joint. Note that the performance of both contact observers does not depend on the control strategy adopted.
A constant external wrench is applied at the end-effector between t = 2.5 s and t = 3.5 s. The wrench
consists of only a linear force, with value fext = [−10 5 8]T N, and no torque.

6.2. Measurement model and velocity reconstruction205

The angular velocity, the joint angles and the joint torques can be directly measured using a gyro, encoders
and joint torque sensors, respectively. On the other hand, the linear velocity, required for the contact wrench
reconstruction only by the observer (5), and the joint velocities, required by both observers, are not directly
measured but need to be reconstructed, either using a discrete derivative or by data fusion. Herein only the
problem of the estimation of the linear velocity is addressed, while a simplified noise performance model is
used for the joint velocities.
In order to compare the observers with similar noise conditions, the measurements of the angular velocity,
joint angles and joint velocities are assumed to be affected by a white Gaussian noise with zero mean, while
an uniform noise is considered for the torque sensors [13]. For the angular velocity a bias is also introduced
leading to the following model [22]:

ωmb = ωb + bω + ηω

ḃω = ηbω,
(36)

where ωmb ∈ R3 is the measured angular velocity of the base; the term bω ∈ R3 is the bias; the terms
ηω,ηbω ∈ R3 are white Gaussian noise with zero mean.
The linear velocity is reconstructed through a kinematics-based Kalman filter using a gyro and an accelerom-
eter in the prediction step, and camera measurements for the update step. These sensors are placed on the
spacecraft. The camera measures the position of the inertial frame T , that can be imagined to be located on
a target object, with respect to the base (see Fig. 1).
The position of the target with respect to the base pbt ∈ R3 and base velocity vb, expressed in B, compose
the state vector, and their time derivatives are

ṗbt = −[ωb]
∧pbt − vb,

v̇b = −[ωb]
∧vb + ab,

(37)
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Table 2: Standard deviations and biases of the considered noise model.

σq [rad] σq̇ [rad/s] στ [Nm] σpbt [m] σbω [ µrad/s
3/2

]
5 · 10−5 10−4 0.2 0.01 3.162 · 10−4

σω [ µrad/s
1/2

] σba [m/s5/2] σa [m/s3/2] bω,0 [rad/hr] ba,0 [m/s2]
0.316 6.00 · 10−5 9.81 · 10−5 0.0017 0.003

where ab ∈ R3 is the base acceleration. Eq. (37) is the prediction step of the filter, where ωb and ab are
measured by the inertial measurement unit (IMU), including the gyro and the accelerometer.
The measurement equation is

p̃bt = pbt, (38)

where p̃bt ∈ R3 is the measurement vector.
Also for the accelerometer, the noise model (36) is used [23]. On the other hand, for the camera, the noise
is introduced by adopting the exponentially correlated random variable model [24][25]

εk+1 = Kεk +
√

1−K2N (0, σ),

K = e−1/(faT ),
(39)

where ε is the error with respect to the true quantity, N (0, σ) is a random number generated with a normal
distribution of zero mean and standard deviation σ, fa is the acquisition frequency and T is the autocorre-
lation time.
The standard deviations and biases of the considered noise models are reported in Tab. 2. The camera
acquires measurements at 3 Hz, while all the other sensors work at 200 Hz. The filter prediction step is210

performed at 200 Hz, whereas the update step at 3 Hz. Note that the attitude is controlled to be fixed. To
achieve this goal, attitude measurements are necessary, and thus it is assumed that the spacecraft is equipped
with a star tracker, which measures the Euler angles Φ ∈ R3. The exponentially correlated random variable
model (39) is used to reproduce the noise of the sensor [24], with standard deviation σΦ = 1.04 · 10−4 rad.
The star tracker works at 3 Hz, while the controller works at 200 Hz. Hence, the extended Kalman filter for215

quaternions presented in [26] is implemented 2. Similar to the filter for the base velocity, the prediction is
run at 200 Hz, while the update at 3 Hz.

6.3. Observers comparison

In [19] the better performance of the proposed method based on a centroid-joints dynamics are shown
considering a simplified Gaussian noise model for the linear velocity. In that case, the noise on consecutive220

measurements is completely uncorrelated and this feature deteriorates significantly the performance of the
observer (5), and consequently the accuracy of the external wrench estimation. In this paper, the linear
velocity is estimated through a Kalman filter, and thus it turns out to be less noisy. However, after the
filter has converged, the estimation is still affected by a certain level of uncertainty. When the prediction is
updated, at a frequency of 3 Hz, the velocity estimate may vary suddenly of few mm/s. This is due to the fact225

that the prediction step runs at a higher frequency and the error in the predicted states is accumulated. These

2In [26] the filter estimates also the angular velocity and the measurements are acquired by a laser vision system. In this
work, only the attitude is estimated and the measurements are provided by the star tracker, but the implementation of the filter
is analogous.
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Figure 3: Comparison between the observer [15] and the proposed one, including f̂ext,b and f̂ext,c in the estimation process.

sudden variations in the correction phase affect significantly the computation of the residuals depending on
the linear velocity, namely all the ones in (5) and f̂ext,c. Consequently, the accuracy of the contact wrench
reconstruction deteriorates. To mitigate this issue, the observers gains should be decreased considerably,
limiting the bandwidth. Conversely, the issue is overcome if the external wrench is estimated through (25),230

since m̂ext,c and ˆ̄τ ext are decoupled from the base linear velocity. Before proceeding, note that, in this
simulation, the contact point is at the end-effector, and thus it is assumed to be known.
Figs. 3 and 4 show a comparison between the reviewed method [15] and the proposed one. Fig. 3 compares
the two methods when all the three residuals are used to reconstruct fext. Only one component of the
force is reported, but similar results are obtained for the other two. In this case, for the observer based on235

a base-joints dynamics, i.e., given by (5), a contact force estimate f̂ext is computed by taking the pseudo
inverse of the relation (3) and using the residuals f̂ext,b, m̂ext,b, and τ̂ext, whereas for the observer (20) it
is given by the relation (24). On the other hand, Fig. 4 compares the two methods when only the angular
and joint momentum residuals are used to reconstruct fext. For the observer (5), the contact force estimate
f̂ext is computed removing the first row of (3), i.e., without f̂ext,b, and by taking the pseudo inverse of the240

resulting relation, while for the observer (20) it is given by the relation (25), i.e., without f̂ext,c. In both
observers, all the gains are set equal to 30 s−1.
Fig. 3 shows that the estimation process is significantly affected by the uncertainty in the linear velocity and
both observers provide similar bad performance. This is caused by the residuals f̂ext,b and f̂ext,c, which are
the ones mostly affected by the explained issue.245

On the other hand, the simulation shown in Fig. 4, in which f̂ext,b and f̂ext,c are not used in the estimation
process, highlights the advantage of using the proposed observer based on the centroid-joints dynamics.
Indeed, it provides a definitely more accurate estimate of the external force, especially during the contact. It
is worth stressing that the superior performance of the proposed method derives from the complete decoupling
of m̂ext,c and ˆ̄τ ext from the linear velocity vb. The estimation through (25) turns out to be more practical250

and robust since it requires the use of only reliable, high-rate, and accurate direct measurements, as the ones
provided by gyros, encoders and torque sensors. Moreover, the capability of these sensors of working at high
rate, allow achieving high observer bandwidths and thus faster contact detection. The estimation based on
a centroid-joints dynamics does not depend on the performance of the filter which can even deteriorates due
to occlusions of the camera or adverse light conditions, here not simulated.255
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(a) x component. (b) y component.

(c) z component.

Figure 4: Comparison between the observer [15] and the proposed one, without using f̂ext,b and f̂ext,c in the estimation process.

Finally, the residuals m̂ext,c and ˆ̄τ ext turn out to be more adequate monitoring signals for the detection of
the contact. Indeed, they are less prone to false positive than the residuals in (5), which show some spikes
(visible in Fig. 4 in the force reconstruction) due to the uncertainty in the linear velocity estimation.

6.4. Reconstruction of the contact force on a generic point

In this section, it is shown that the proposed observer based on a centroid-joint dynamics can be used to260

detect and reconstruct a contact force acting on a generic point along the robot. First, the contact is detected
using the residuals m̂ext,c and ˆ̄τ ext. Then, in order to estimate the force, the contact point is isolated through
the method explained in Section 5. Finally, the external force is estimated using Eq. (25). The space robot
is commanded to keep the initial attitude and manipulator’s configuration, i.e., q0 = [0 40 0 110 0 45 0] deg.
Similarly to the previous case, a constant external wrench is applied between t = 2.5 s and t = 3.5 s and it265

consists of only a linear force fext = [−10 5 8] N and no torque. In this case, the external wrench acts on a
mid-section on the link 4. In this simulation, the observer’s gains are set equal to 20 s−1.
The contact point is isolated with a maximum error norm of 4 cm, which is acceptable for a good recontruction
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of the contact force. Then, Eq. (25) is used to estimate the contact force fext. Fig. 5 shows that the proposed
method provides good estimation performance even in the case of a contact on a generic point along the robot.270

Figure 5: Reconstruction of the external force acting on a generic point along the robot.

7. Experimental validation

Both observers (5) and (20) have been validated on the On-Orbit Servicing Simulator (OOS-Sim) hardware-
in-the-loop facility [18] at the DLR. This is a robotic simulator reproducing the in-orbit dynamics of a space
robot. Thanks to the OOS-Sim, it is possible to test the algorithms, which will run on the space robot,
on ground, before the actual deployment in orbit. The facility is made up of two parts (see Fig. 6): a275

simulator arm and a test arm. The former one is a position-controlled KUKA KR120 industrial robot on top
of which a mock-up of a satellite is mounted. The simulator arm reproduces the spacecraft’s dynamics based
on a real-time model integration. The test arm is a KUKA KR4+ lightweight robot with seven degrees of
freedom, which is equipped with torque sensors and can be controlled both in position and torque. In the
test arm, the joint gravity torques are compensated based on an identified model, thereby replicating the280

microgravity conditions. Note that in this way the observers are validated taking into account real dynamics,
sensor noise, time delay, discretization, and model uncertainties of the test arm. On the other hand, the
dynamics of the spacecraft is simulated based on a model, and its states are reconstructed from the forward
kinematics of the KUKA KR120 industrial robot. The satellite parameters can be adapted depending on the
scenario. In this study, they are m = 150 kg, Ix = 21.8 kgm2, Iy = 15.0 kgm2, and Iz = 18.88 kgm2. The285

simulated dynamics runs on a Linux real-time computer at 4 ms, while the space robot controller runs on a
separate Linux real-time computer at 1 ms. The dynamics matrices used in the observers’ implementation
are computed at 5 ms. Further information on the facility setup and model integration can be found in
[10][18]. Since the satellite’s dynamics is simulated and its state reconstructed, they feature very low level
of noise and uncertainties compared to the ones expected in space. For this reason, the experiments here290

presented are relevant to validate the applicability of the observers on real hardware, but not to compare
them. Indeed, as already shown via simulation results, the better performance of the proposed method are
evident when more realistic noise conditions for the spacecraft’s states acquisition are considered. Finally, it
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(a) Experiment with a known force. (b) Experiment with consecutive con-
tacts.

Figure 6: Pictures of the experimental tests on the OOS-Sim hardware-in-the-loop facility.

is pointed out that the observer based on a base-joints dynamics [15] has not been tested on real hardware
so far.295

In order to verify the accuracy of the observers, first, an experiment in which a known constant force is
applied at the end-effector has been performed. Then, the end-effector has been hit multiple times simulating
a condition in which consecutive contacts occur close in time, and the correct behavior of the observers is
checked. In both experiments, a compliant controller is implemented to control the end-effector position, the
space robot’s CM and the base attitude. A complete description of the control method is reported in [27].300

7.1. Experiments with a known force

In these experiments, the gripper mounted on the test manipulator holds a container initially empty. A
known mass is laid down in the container and it is removed after a certain time (see Fig. 6a). The resulting
action on the space robot is a step-like constant disturbance force acting at the end-effector along the gravity
direction. Especially, the disturbance force in the inertial frame is equal to fext,t = [0 0 − 8.373]T N. The305

observers are required to reconstruct this force correctly. In both observers, the gains are set equal to 30 s−1.
Figs. 7a and 7b show the reconstruction of the external force, expressed in E3, by the observers (5) and (20),
respectively, using all the residuals. Both the observers are able to estimate the external wrench accurately
and no significant differences can be noticed between them. When the mass is laid down and then removed,
it can be noticed a small peak along the z direction of the end-effector frame. This can be explained by the310

fact that during these two phases the mass hits the container’s wall along that direction, providing a small
force.
In Figs. 8a and 8b, the results using only the joint and angular momentum residuals in the estimation process
are reported, for the observers (5) and (20), respectively. Again, the observers show a similar behavior. They
estimate the external force satisfactorily. It can be noticed that the accuracy decreases with respect to the315

estimation using all the residual vectors. This is due to the fact that the gravity disturbance, affecting the
test arm, is not compensated exactly because of uncertainties in the gravity model used for the compensation.
Therefore, this introduces an error in the estimates τ̂ext and ˆ̄τ ext which is propagated to the estimate f̂ext.
In the previous case, Figs. 7a and 7b, this error is mitigated by using the translational momentum residuals

3Note that in the experiment the y direction of the E frame is almost aligned with the -z direction of the inertial frame.
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(a) Observer [15]. (b) Proposed observer.

Figure 7: External force estimate including f̂ext,b and f̂ext,c in the estimation process.

(a) Observer [15]. (b) Proposed observer.

Figure 8: External force estimate without including f̂ext,b and f̂ext,c in the estimation process.

in the estimation process, which is a direct estimate of the force, and thus introduces further information in320

the reconstruction. Note that this error is induced by the simulation facility via its artificial model-based
compensation of the terrestrial gravity torques. This effect is not present in orbit, in which the robot acts in
true microgravity conditions.
The present experiment validates the applicability of the observers (5) and (20) when considering a real arm.
No spacecraft sensors are simulated in the current experiments, thus the experiment does not reproduce325

the advantage of the observer (20) in presence of measurement noise, which was validated via numerical
simulation. Thus, it is remarked that the experimental results cannot be used for comparing the noise
behavior of the observers. In future work the experiments will be repeated with sensor models.
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7.2. Experiment with consecutive contacts

In this experiment, the test arm was hit with a stick multiple times at the end-effector along different330

directions (see Fig. 6b). Short and long contacts were simulated and the behavior of the observers was
analyzed. Only the results related to the observer (20) are reported here, for the sake of brevity. However,
similar results were obtained for the observer (5). The gains for the computation of the translational and
angular momentum residuals were set equal to 30 s−1, while they were increased to 100 s−1 for the joint
momentum residuals.335

Figure 9: Force at the end-effector of the test arm in the consecutive contacts experiment.

The direction of the impacts can be seen in Fig. 9, which shows the reconstructed contact force at the
end-effector, expressed in E . In Figs. 10b and 10c the residuals f̂ext,c and m̂ext,c are reported. It can be
noted that, when the force is mostly along the z direction of the end-effector frame, the contact can be easily
detected on the x and z components of f̂ext,c and on the y component of m̂ext,c. On the other hand, between
t = 230 s and t = 330 s, the external force acts along the y-axis of E and the contact can be detected on the340

y component of f̂ext,c and on the x and z components of m̂ext,c. Finally, Fig. 10a illustrates the residuals
ˆ̄τ ext. The contacts are detected mostly by the monitoring signals at the first four joints, while the other
three remain around zero. Especially, the contacts along the z-axis of E are detected by the signals at joint
2 and joint 4. Conversely, the contacts along the y-axis of E are seen by the signals at joint 1 and joint 3.

8. Conclusions345

In this paper, the problem of estimating a contact wrench acting on a generic point along a space robot was
addressed. The observer presented in [15] was reviewed and analyzed considering the issues related to a space
robot. Then, a new observer was proposed introducing a new set of generalized velocities, including the linear
velocity of the spacecraft-manipulator’s CM, the angular momentum around the CM and the joint velocities.
This observer turned out to provide a more accurate estimation of the external wrench when realistic noise350

conditions are considered. Indeed, the new angular and joint momentum residuals can be used to isolate and
estimate the contact relying only on accurate sensors working at high frequency, since they do not depend on
the base linear velocity. The superior performance of the proposed method was shown through a simulation
example, including realistic measurement noise and the reconstruction of the base linear velocity using a
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(a) Joints momentum residuals ˆ̄τext.

(b) Translation momentum residuals f̂ext,c.

(c) Angular momentum residuals m̂ext,c.

Figure 10: Momentum residuals of the proposed observer in the consecutive contacts experiment.
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Kalman filter. Finally, the applicability of both observers on hardware was successfully validated using the355

the OOS-Sim hardware-in-the-loop facility at the DLR.
Future works may perform the hardware validation of the method, including noise on the spacecraft’s state
measurements and the reconstruction of the base velocity. Moreover, they may also validate the isolation
strategy on hardware.

APPENDIX360

A. Derivation of the relations (17)

In this section, the mathematical derivation of the relations (17) is reported.
Deriving the relations (17a) and (17b) is straightforward. Indeed, the differentiation of the momenta htc and
hrc , which are expressed in frame C, rotating with an angular velocity ωb, results in

ḣtc + [ωb]
∧htc = fc,tot (40)

ḣrc + [ωb]
∧hrc = mc,tot (41)

where fc,tot ∈ R3, mc,tot ∈ R3 are the total centroidal force and moment acting on the system. Recalling
that htc = mvc and comparing Eq. (40) with the first row of Eq. (15), the first relation (17a) is obtained.
Similarly, comparing Eq. (41) with the second row of Eq. (15), the second relation (17b) is obtained.
For what concerns the third relation (17c), a quasi-Lagrangian approach [28] is used to rederive the joint
equation in (15). Then, the relation (17c) is obtained by comparison of the quasi-Lagrangian joint dynamics
formulation with the third row of Eq. (15). In the quasi-Lagrangian formulation, the generalized velocities vc
and hrc are called quasi-velocities since they are not integrable. In order to derive the dynamic equations, some
integrable generalized coordinates y ∈ R6+n are defined, whose derivatives are related to the quasi-velocities
as follows:  vc

hr
c

q̇

 =

 E −[rc]
∧J−1

Φ 0
0 IcJ

−1
Φ IcJ̄ω

0 0 E

 ṙc
Φ̇
q̇

 = ΞT ẏ, (42)

where rc ∈ R3, ṙc ∈ R3 are the position of the CM of the whole system expressed in C and its time derivative,
respectively; Φ ∈ R3, Φ̇ ∈ R3 are the Euler angle vector and its time derivative, respectively; JΦ ∈ R3×3 is
the Jacobian mapping ωb in Φ̇. The matrix Ξ is function of the generalized coordinates y. Note that any
rotation parameterization different from the Euler angles can be used without affecting the following joints
dynamics derivation.
Introducing x = [vTc h

rT
c q̇T ]T ∈ R6+n and assuming that ΞT is invertible, the following relation can be

written:
ẏ = Ωx (43)

where Ω = Ξ−T ∈ R(6+n)×(6+n).
Exploiting Eqs. (42)-(43), the quasi-Lagrangian formulation can be derived from the standard one [28],
resulting in

δyT
(

Ξ
d

dt

[
∂T

∂x

]
+ Ξ̇

∂T

∂x
− ∂T

∂y
−H ∂T

∂x
−Q

)
= 0, (44)
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where

H =

 xTΩT ∂Ξ
∂y1

...
xTΩT ∂Ξ

∂y6+n

 ∈ R(6+n)×(6+n); (45)

Q ∈ R6+n is the vector of the generalized forces; T ∈ R is the kinetic energy of the system expressed in terms
of x. The potential energy is assumed to be zero. T can be computed as follows

T =
1

2

(
mvTc vc + q̇TM∗

mq̇ + hrTc I
−T
c hrc

)
. (46)

The matrices Ξ̇ and ΩT ∂Ξ
∂yi

, appearing in Eqs. (44)-(45), can be expanded as365

Ξ̇ =

 0 0 0

J̇−T
Φ [rc]

∧+J−T
Φ [ṙc]

∧ J̇−T
Φ ITc +J−T

Φ İTc 0

0 ˙̄JT
ωI

T
c + J̄T

ω İ
T
c 0

 (47)

ΩT ∂Ξ

∂yi
=


0 0 0

I−T
c JT

Φ
∂(J−T

Φ [rc]∧)

∂yi
I−T
c JT

Φ
∂(J−T

Φ IT
c )

∂yi
0

−J̄T
ω J

T
Φ

∂(J−T
Φ [rc]∧)

∂yi
−J̄T

ω J
T
Φ

∂(J−T
Φ IT

c )

∂yi
+

∂(J̄T
ω IT

c )

∂yi
0

 (48)

Therefore, the matrix H has this form:

H =

 xTΩT ∂Ξ
∂y1

...
xTΩT ∂Ξ

∂y6+n

 =

 Ht Htr 0
Hrt Hr 0
Hmt Hmr 0

 (49)

Since the joints dynamics is of interest, only the last n rows of the Lagrangian system can be considered.
Hence, only the last n rows of H are expanded. It can be noted that Hmt = 0 because neither JΦ nor rc
depends on q, while Hmr can be expanded as follows

Hmr =


hrTc I

−T
c

∂IT
c

∂q1
+ q̇T

∂J̄T
ω

∂q1
ITc

...

hrTc I
−T
c

∂IT
c

∂qn
+ q̇T

∂J̄T
ω

∂qn
ITc

 =

=− I−Tc/q I
T
c + J̄Tω/qI

T
c ,

(50)

where I−Tc/q , J̄Tω/q are reported in Eqs. (18), respectively.

Considering that

∂T

∂x
=

 mvc
I−Tc hrc
M∗

mq̇

 , ∂T

∂y
= 0, (51)

after some simplification, the joints dynamic equation turns out to be

J̄Tω I
T
c (I−Tc ḣrc + İ−Tc hrc) +M∗

mq̈ + Ṁ∗
mq̇ + ˙̄JTωh

r
c −

1

2
(M∗

m/qq̇ − I
−T
c/qh

r
c)− J̄Tω/qh

r
c+

+J̄Tω İ
T
c I
−T
c hrc = τtot − J̄Tv fb,tot

(52)
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where τtot ∈ Rn are the total torques acting on the joints, i.e., including commanded torques and disturbance
torques; fb,tot ∈ Rn are the total forces acting on the base, i.e., including commanded forces and disturbance
forces.
Substituting ḣrc from Eq. (41) and İTc = −ITc İ−Tc ITc , and using relations (13) and (14), the dynamics (52)
can be rewritten as

M∗
mq̈ + (Ṁ∗

m −
1

2
M∗

m/q)q̇ + ( ˙̄JTω − J̄Tω [ωb]
∧

+
1

2
I−Tc/q − J̄

T
ω/q)h

r
c = τ̄tot, (53)

where τ̄tot = τ̄ + τ̄ext ∈ Rn.
Finally, comparing Eq. (53) and the third row of Eq. (15), the relation (17c) can be obtained.

B. A note on the computation of the partial derivatives in Eqs. (18)370

The matrix Ic can be written using the inertia model (2) as it has been done for J̄ω and M∗
m in Eqs. (11)

and (16), respectively, and it results in

Ic = Mr −
1

m
MT

trMtr. (54)

Therefore, the partial derivatives of I−Tc , J̄Tω and M∗
m with respect to q, required in the Eqs. (18), can be

easily computed knowing the partial derivative with respect to q of the inertia matrix M in Eq. (2). To
this aim, an efficient algorithm, that can run in real-time, has been proposed in [29] and used here in both375

simulative and hardware validation of the proposed observer.
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