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Abstract 14 

We introduce original sensitivity analysis metrics with the aim of assisting diagnosis of the 15 
functioning of a given model. We do so by characterizing model-induced dependencies between a 16 
target model output and selected model input(s) through the associated bivariate copula density. The 17 
latter fully characterizes the dependencies between two random variables at any order (i.e., without 18 
being limited to linear dependence), independent of the marginal behavior of the two variables. As a 19 
metric to assess sensitivity, we rely on the absolute distance between the copula density associated 20 
with the target model output and a model input and its counterpart associated with two independent 21 
variables. We then provide two sensitivity indices which allow characterizing (i) the global (with 22 
respect to the input) value of the sensitivity and (ii) the degree of variability (across the range of the 23 
input values) of the sensitivity for each value that the prescribed model output can possibly undertake, 24 
as driven by the governing model. In this sense, our approach to sensitivity is global with respect to 25 
model input(s) and local with respect to model output, thus enabling one to discriminate the relevance 26 
of an input across the entire range of values of the modeling goal of interest. We exemplify the use 27 
of our approach and illustrate the type of information it can provide by focusing on an analytical test 28 
function and on two scenarios related to flow and transport in porous media. 29 

Plain Language Summary 30 

Modern models of environmental systems have reached a relatively high level of complexity. The 31 
latter aspect could hamper a clear understanding of the way a model functions, i.e., how it drives 32 
relationships and dependencies among inputs and outputs of interest. A rigorous Sensitivity Analysis 33 
can contribute to solve this issue. We propose here to characterize the nature of pairwise model input-34 
output dependencies through their copula density. The latter enables one to identify the strength of 35 
(nonlinear) dependencies between two variables and is independent from the format of their marginal 36 
distributions. We also provide two sensitivity indices to characterize, for each value of the model 37 
output: (a) the average strength of the model-induced dependencies and (b) the variability of such 38 
dependences across the space of any model input parameter. Our methodology can be viewed as 39 
global with respect to the input and local with respect to the output, in the sense that it allows to 40 
naturally characterize sensitivity across the entire range of the target model outcomes. 41 

 42 

1.Introduction 43 

One of the main goals of a Global Sensitivity Analysis (GSA) is to provide enhanced 44 
understanding of the model considered to represent a target physical system (e.g., Gupta and Razavi, 45 
2018 and references therein). Within the context of a GSA, the sensitivity of a modeling goal (or 46 
model output) to the (often uncertain) model input(s) is evaluated across the entire range(s) of 47 
variability of the latter, i.e., globally. This is in contrast to Local Sensitivity Analyses (LSA), where 48 
sensitivity is evaluated in the neighborhood of a set of model inputs, i.e., locally (e.g., Pianosi et al., 49 
2016; Razavi and Gupta, 2015). As such, a GSA approach enables us to naturally account for model 50 
input uncertainties that are typically encountered in geophysical and hydrological models (e.g., 51 
Ceriotti et al., 2019; Di Fusco et al., 2018; Porta et al., 2018; Di Palma et al., 2017; Oladyshkin et al., 52 
2012; Delfs et al., 2009; van Werkhoven et al., 2009; Tebes-Steven and Valocchi, 2000). 53 

The variance-based Sobol’ Indices (e.g., Sobol, 2001) represent one of the most widespread 54 
GSA metrics. The Principal Sobol’ Index associated with a model input is defined as the average 55 
(hence its global nature) reduction in the variance of a model output stemming from knowledge of 56 
the input, normalized by the unconditional output variance. In this sense, the variance of the model 57 



output is at the core of the definition of sensitivity based on Sobol’ indices. As such, the latter could 58 
provide at best an incomplete picture of a model behavior in the presence of skewed and/or heavy 59 
tailed probability density functions (pdf) of the output of interest, i.e., when the variance is an 60 
incomplete descriptor of the output uncertainty. Moment-independent GSAs (e.g., Pianosi and 61 
Wagner, 2015; Borgonovo, 2007) have been developed to cope with this issue. These approaches 62 
introduce a sensitivity metric which corresponds to a suitable distance between the unconditional pdf 63 
(or the cumulative distribution function, CDF) and its counterpart conditional to model input(s) 64 
values. The global nature of the sensitivity analysis is ensured by averaging this sensitivity metric 65 
across the support of the (random) model input(s). Along the same lines, an Information Theory-66 
based GSA (Krzykacz-Hausmann, 2001) identifies sensitivity as the mutual information (i.e., a 67 
measure of the dependence among two variables; see e.g., Chang et al., 2016) between a model input 68 
and an output, normalized by the entropy of the latter. Mutual Information coincides with the 69 
difference between (a) the entropy of the unconditional model output pdf and (b) the averaged (with 70 
respect to the input) entropy of the model output pdf conditional to the input. The recently developed 71 
moment-based GSA (Dell’Oca et al., 2017) allows characterizing global sensitivity in terms of 72 
diverse features of the pdf of the output, as rendered by its statistical moments. Note that all of the 73 
methodologies illustrated above ground sensitivity on the comparison between conditional and 74 
unconditional features of the pdf (or CDF) of the modeling goal of interest. 75 

Another aspect of sensitivity is tackled through the evaluation of a measure of the variations of 76 
the model output associated with corresponding changes in the model input(s). For example, 77 
approaches based on the Morris’ Indices (Morris, 1991) or on the Distributed Evaluation of LSA 78 
(DELSA; Rakovec et al., 2014) essentially rest on the (local) concept of derivative to evaluate the 79 
strength of the variations imprinted to model outputs by input variations. The resulting metric is then 80 
subject to averaging across the input(s) space of variability, to render a global nature of the analysis. 81 
The VARS (Razavi and Gupta, 2016) approach introduces a measure of the variations by relying on 82 
the concept of variogram, as applied to the model response surface. The latter approach allows 83 
discerning the output-input(s) sensitivity over diverse scales of input(s) variability. 84 

A third category of GSAs relies on the concept of correlation (e.g., Pearson Correlation 85 
Coefficient (CC), partial CC, Spearman Rank CC, or partial Rank CC; see e.g., Marino et al., 2009) 86 
between input and output. Along a similar line of approach, regression-based GSAs rescale the 87 
coefficient(s) of a regression expression between input(s) and model output to quantify the sensitivity 88 
of the latter with respect to the former (e.g., Pianosi et al., 2016 and reference therein). Xiao et al., 89 
(2018) introduce a correlation index relying on the concept of distance correlation (Székely et al., 90 
2007) to assist sensitivity analyses in the case of multivariate model output. Da Veiga (2015) 91 
illustrates how diverse sensitivity indices (e.g., the principal Sobol’ index, the moment-independent 92 
index of Borgonovo (2007), or the index proposed by Krzykacz-Hausmann (2001) and grounded on 93 
mutual information) can be obtained as special cases of a general dissimilarity measure between 94 
unconditional and conditional pdfs of a model output Lozzo and Marrel (2016) provide a study of 95 
diverse measures of dependence in the context of sensitivity analyses, focusing on the screening of 96 
model inputs. 97 

Crick et al. (1987) highlight the distinction between important and sensitive model inputs, 98 
where the former are those whose uncertainty has the largest contributions to the output uncertainty, 99 
the latter being those having a significant influence on the output. Hamby (1994) remarks that an 100 
important input is always a sensitive one, while the opposite may not hold in case there is only little 101 
uncertainty about the input. In this context, GSA methodologies of the first category illustrated above 102 
could be viewed as more oriented towards quantification of importance of input(s), while 103 



methodologies of the other categories are interpreted as more oriented towards a characterization of 104 
the input influence, even as this type of distinction might not always be sharply delineated. 105 

All of the GSA approaches illustrated above quantify the global sensitivity (or importance) of 106 
a model input to an output through summary indices/coefficients. In this sense, there is a unique value 107 
for a sensitivity index across the whole range of values the model output (y) can possible undertake 108 
and these GSA approaches do not enable one to answer questions such as “Is sensitivity stronger for 109 
low or high values of the output?”, or “Are there regions (or values) in the space of variability of the 110 
output, as driven by the structure of the model employed, that are not sensitive to one or more model 111 
inputs?”. Answer to these kinds of questions are intimately tied to a variety of studies (e.g., risk 112 
assessment and decision making under uncertainty) which are routinely conducted for hydrological 113 
systems. Here, we propose an original complement to the category of GSA approaches, aimed at 114 
characterizing sensitivity (following the definition of Crick et al., 1987) for each specific value that 115 
y can be possibly undertaken. We accomplish this by defining two sensitivity indices (for each value 116 
of y) grounded on the intensity/strength of the dependencies that the employed model induces 117 
between input and target output. 118 

To characterize the input-output dependencies, we rely on elements of the theory underpinning 119 
bivariate copula. The latter has the key advantage of revealing the dependencies between two 120 
variables at any order (i.e., without being limited to a linear dependence) and regardless of the format 121 
of their marginal CDFs. We leverage on the bivariate copula density (e.g., Nelsen 2013; Bárdossy, 122 
2006) between the target model output and each of the model inputs to quantify the dependencies 123 
induced by the model of choice. We define a suitable metric to measure sensitivity in this context and 124 
provide two distinct SA indices that allow characterizing (i) the global (with respect to the space of 125 
variability of model input) intensity of the sensitivity and (ii) the degree of variability of the output 126 
sensitivity across the range of values of the input, both aspects being evaluated for each value that the 127 
model output can assume. 128 

While the approach we present can be transferred to diagnose models describing various 129 
hydrological and environmental scenarios, we exemplify its salient elements by (i) considering an 130 
analytical test function, which enables us to illustrate the type of information we can obtain under 131 
completely controlled conditions, and then (ii) focusing on two relatively simple scenarios which 132 
have been previously studied and are associated with the evaluation of the critical pumping rate that 133 
can be extracted from a well placed in a coastal aquifer (Pool and Carrera, 2011) and a laboratory-134 
scale setting employed to analyze conservative transport within a heterogeneous porous medium 135 
(Esfandiar et al., 2015). 136 

2. Methodology 137 

Here we recall some basic concepts of bivariate copula (Section 2.1) and illustrate the main 138 
theoretical and operational elements of our GSA approach (Section 2.2). 139 

2.1 Bivariate Copula 140 

A function [ ] [ ]2: 0,1 0,1C →  is defined as a bivariate copula when C is a joint CDF of a two-141 

dimensional random vector ( 1u , 2u ) on the support [0, 1]2 with uniform marginals (e.g., Nelsen, 2013) 142 

1 2 1 1 2 2( , ) Pr( , )C u u U u U u= ≤ ≤ ,  (1) 143 

where 1U  and 2U  are two random variables whose marginal CDFs are uniform. 144 



Following Sklar (1973), a continuous bivariate joint CDF, 1 2( , )F ψ ψ , between two random 145 

variables 1ψ  and 2ψ  can be represented through a bivariate copula, i.e., 146 

1 21 2 1 2( , ) ( ( ), ( ))F C F Fψ ψ ψ ψΨ Ψ= , (2) 147 

1 1( )F ψΨ  and 
2 2( )F ψΨ  being the marginal CDFs of 1ψ  and 2ψ , respectively. 148 

The copula C in (2) is unique only if 
1 1( )F ψΨ  and 

2 2( )F ψΨ  are continuous, being otherwise 149 

uniquely determined on the support 
1 2

Ran F Ran FΨ Ψ× , Ran denoting range (e.g., Sklar, 1996). 150 

Considering the equivalence between iu  (i = 1, 2) in (1) and ( )
i iF ψΨ  in (2), one can see that a given 151 

bivariate copula 1 2( , )C u u  can be associated with diverse formats for the marginal CDFs, i.e., 152 

1 1( )F ψΨ  and 
2 2( )F ψΨ . In other words, a bivariate copula encapsulates the dependences between two 153 

random variables regardless the format of their marginal distributions. Additionally, a bivariate 154 
copula can be used to describe dependencies between two random variables at any order, without 155 
being confined to first-order or linear relationships (as embedded, e.g., in the Pearson correlation 156 
coefficient; see e.g., Most et al., 2016). According to Bárdossy (2006), inspection of the bivariate 157 
copula density, i.e., 158 

1 2

1 2

1 2

2
1 2

1 2
1 2

( ( ), ( ))
( ( ), ( ))

( ) ( )
C F F

c F F
F F

ψ ψ
ψ ψ

ψ ψ
Ψ Ψ

Ψ Ψ
Ψ Ψ

∂
=

∂ ∂
, (3) 159 

yields improved and straightforward understanding of the dependencies between 
1 1( )F ψΨ  and 160 

2 2( )F ψΨ  (and thus between 1ψ  and 2ψ ). Regions of high/low value of the copula density are 161 

characterized by a strong/weak dependence between the corresponding values of the two random 162 
variables. Given its powerful and convenient properties to characterize a model-induced dependence 163 
between uncertain model inputs and a target output, we select the copula density as the basic 164 
descriptor upon which we ground our GSA. 165 

2.2 Global Sensitivity Metrics based on copula density 166 

In this study we structure our GSA according to the following four steps: 167 

(i) we select the bivariate copula density, i.e., ( ( ), ( ))
n n Yc F F yθΘ , between the n-th uncertain 168 

model input parameter, nΘ , and the model output of interest, Y, as the descriptor underpinning SA; 169 

(ii) we take the copula density associated with two statistically independent random variables, 170 
i.e., 1c = , as the reference value for the descriptor. Note that this choice renders a general, i.e., model 171 
independent, value for the reference descriptor; 172 

(iii) we propose a simple metric to quantify sensitivity, i.e., 1 ( ( ), ( ))
n n Yc F F yθΘ− . Note that 173 

this metric has a local nature w.r.t. both the input and the output, i.e., it is defined for each ( )
n nF θΘ  174 

and ( )YF y ; 175 

(iv) we provide and evaluate two copula-based Global (w.r.t. the input) Sensitivity indices, as 176 
described in the following by (4) and (6). 177 



The first copula-based Global Sensitivity index, 
n

IΘ , is defined as 178 

( )1 1 ( ), ( )
2n nnF n YI E c F F yθ

ΘΘ Θ
 = −   with [ ]

[ ]0,1

( )
nnF nE dFξ ξ θ

Θ Θ= ∫ . (4) 179 

Index 
n

IΘ  is directly related to the expected value (w.r.t. ( )
n nF θΘ ) of the absolute distance between 180 

the copula density of two independent random variables and the copula density of the random 181 
variables nΘ  and Y, ( ( ), ( ))

n n Yc F F yθΘ . Note that ( ( ), ( ))
n n Yc F F yθΘ  quantifies the dependencies 182 

between nΘ  and Y, as imprinted by the selected model. One can see that 
n

IΘ  is a function of ( )YF y , 183 

i.e., 
n

IΘ  enables us to quantify the averaged (across all values of ( )
n nF θΘ ) dependencies between Y 184 

and nΘ  when varying ( )YF y . For example, if 0
n

IΘ =  for some values of ( )YF y , the associated values 185 

of Y are not sensitive to any of the values of nΘ  (i.e., the former are independent from the latter). 186 

Otherwise, if 1
n

IΘ =  for some ( )YF y , then the copula exhibits singular components for these ( )YF y  187 

(e.g., Nelsen, 2013; Chang et al., 2016; Durante et al., 2013), i.e., for these ( )YF y , the specific value 188 

of the model output, Y, is dictated by that of nΘ . Correspondences of the latter kind can be readily 189 

detected by (a) the direct analysis of the model at hand and/or (b) visual inspection of the scatter plot 190 
among the Grades of nΘ , Grade( nθ ), and of Y, Grade(y) (see also Section 3.1). We recall that Grades 191 

are the population analogs of ranks (see also Section 2.1) and a scatterplot among Grades can be 192 
reconstructed also when the copula density displays singularities. 193 

Note that index 
n

IΘ  does not provide information about the degree of variability of the 194 

sensitivity metric, i.e., 1 ( ( ), ( ))
n n Yc F F yθΘ− , across ( )

n nF θΘ  for diverse values of ( )YF y . For 195 

example, it is possible that the same value 
n

IΘ  can be associated with two distinct values of ( )YF y , 196 

one of which being characterized by a strong dependency that is concentrated within a narrow range 197 
of ( )

n nF θΘ  (i.e., given ( )YF y , ( ( ), ( ))
n n Yc F F yθΘ  displays high values only for a narrow range of 198 

( )
n nF θΘ ), the other one displaying a milder dependence that is otherwise more uniformly distributed 199 

across the entire range of ( )
n nF θΘ  (i.e., given ( )YF y , ( ( ), ( ))

n n Yc F F yθΘ  exhibits a mild 200 

strength/intensity over a broad range of ( )
n nF θΘ ). 201 

A straightforward quantification of the degree of variability in the sensitivity of ( )YF y  across 202 

the range of values of ( )
n nF θΘ  can be obtained by considering a companion index, defined as the 203 

standard deviation (in the space of ( )
n nF θΘ ) of 1 ( ( ), ( ))

n n Yc F F yθΘ− , i.e., 204 

*
1 ( ( ), ( ))n nnF n YI c F F yσ θ

Θ
Θ Θ

 = − 
  with [ ] [ ]( )

[ ]

2

0,1

( )
nn nF F nE dFσ ξ ξ ξ θ

Θ Θ Θ= −∫ . (5) 205 

As a limiting case, one can note that 
*

0nI Θ =  when ( )YF y  is insensitive to all ( )
n nF θΘ  (i.e., 206 

1 ( ( ), ( )) 0,
n n Yc F F yθΘ− = ∀  ( )

n nF θΘ ). Otherwise, 
*

nI Θ →∞  for values ( )YF y  for which the copula 207 

exhibits singular components. The latter aspect prompts us to introduce the following index 208 



*
* 1 n

n

II e Θ−
Θ = −

 . (6) 209 

The latter ranges between zero (when 
*

0nI Θ = ) and one (when 
*

nI Θ →∞ ), thus allowing a 210 
straightforward comparison among values of the indices related to diverse (uncertain) model inputs. 211 

Note that indices described by (4) and (6) provide a way to characterize sensitivity (a) in a local 212 
fashion (i.e., for each ( )YF y  with respect to model output) and (b) globally (i.e., across all values of 213 

( )
n nF θΘ ) with respect to model input(s). Note that, even as the indices (4) and (6) are defined in terms 214 

of ( )YF y , the information they provide can be readily mapped in terms of y. For completeness, it is 215 

worth noting that averaging index 
n

IΘ  w.r.t. ( )YF y  yields the copula-based coefficient of correlation 216 

proposed by Chang et al. (2016). 217 

We remark that the sensitivity metric introduced in the context of the density-based sensitivity 218 
analysis (see, e.g., Borgonovo, 2007; Borgonovo et al., 2016) is defined as 219 

,( ) ( ) ( , )
n nn Y Y np p y p yθ θΘ Θ− , where , ( , )

n Y np yθΘ  is the bivariate pdf between the input nΘ  and the 220 

output Y and ( ) ( )
n n Yp p yθΘ  is its counterpart under the assumption that nΘ  and Y are independent. 221 

Such a metric is then averaged (and multiplied by 1/2) with respect to both nΘ  and Y, resulting in the 222 

so-called 
n

δΘ  index (see Appendix B). Thus, index 
n

δΘ  is rooted in the concept of model-induced 223 

dependences between input and output (e.g., 
n

δΘ  = 0 if nΘ  and Y are uncorrelated), similar to 
n

IΘ  224 

and *
n

IΘ . Whereas dependences in the former are defined in the ( , )n Yθ  space, the latter considers the 225 

( ( ), ( ))
n n YF F yθΘ  space. Otherwise, we note that 

n
δΘ  is a global sensitivity index w.r.t. both the input 226 

and the output and focuses on the averaged value of the sensitivity metric, while not being conducive 227 
to capturing possible variations of the latter as a function of either nΘ  or Y. As such, indices 

n
δΘ , 

n
IΘ  228 

and *
n

IΘ  are not overlapping and can be employed in conjunction for a comprehensive characterization 229 

of input-output sensitivity. 230 

3. Examples of Applications 231 

This section is devoted to the exemplification of the GSA methodology illustrated in Section 2 232 
to provide evidence of its added value with respect to traditional GSA approaches. We do so through 233 
three simplified models, corresponding to an analytical test function, and two scenarios previously 234 
presented in the literature and related to flow and transport in porous media. These correspond to a 235 
setting representing pumping in a coastal aquifer and a laboratory-scale solute transport experiment 236 
within a heterogeneous porous medium. These examples enable us to clearly document the salient 237 
features and capabilities of the GSA approach we present. 238 

While applications of our GSA methodology to scenarios of flow and transport in porous media 239 
characterized by an increased level of complexity will be considered in future studies, we recall that 240 
a possible constrain to the efficiency of our (as well as any other) GSA methodology could be related 241 
to computational issues. These are expected to pose some constraints depending on the interplay 242 
between (a) the degree of complexity of the physical setting analyzed, and/or (b) the number of 243 
uncertain model input parameters considered. As such, in some cases the development of a reduced-244 
complexity (or surrogate) model might be required to represent the relationship between uncertain 245 
model input(s) and modeling goals at an affordable cost. 246 



Evaluation of the bivariate copula density, ( ( ), ( ))
n n Yc F F yθΘ , relies on the following steps. 247 

We start by drawing (within the input parameter space) a set of Monte Carlo samples at which the 248 
output of interest is evaluated through the model considered. The two-dimensional space 249 
( ( ), ( ))

n n YF F yθΘ  is then populated and the associated numerical bivariate copula density is evaluated 250 

through a kernel density estimator. Here, we employ the diffusion-kernel method of Botev et al. 251 
(2010) which provides high quality results at affordable computational costs, other methodologies 252 
being fully compatible with our framework of analysis. We note that an analytical formulation for the 253 
bivariate copula could also be employed, given that the input-output dependences induced by the 254 
model are satisfactorily captured. Once the bivariate copula density is evaluated, indices 

n
IΘ  and *

n
IΘ  255 

can be readily computed through (4)-(6). For completeness, in Appendix B we also evaluate diverse 256 
GSA indices for the three models we consider and illustrate in the following. Results for each of these 257 
models are grounded on a set of 106 Monte Carlo samples. 258 

3.1. Analytical Test Function 259 

As a first illustrative example, we focus on the following analytical test model 260 

1 2 1 2

3 1 2

1
1 1
X X if X X

Y
X if X X
+ + ≤

=  + + >
, (7) 261 

1 2 3( , , )X X X  being independent random variables uniformly distributed within the support [0,1]. We 262 

choose model (7) in light of its simplicity and to exemplify our methodology in the case where an 263 
input-output copula exhibits singular components, i.e., the bivariate copula between 

3 3( )XF x  and 264 

( )YF y  in this setting. Note that, according to (7), 
1 21 2( ( ), ( )) ( ( ), ( ))X Y X Yc F x F y c F x F y= , and therefore 265 

1 2X XI I= , 
1 2

* *
X XI I= .   266 

Fig. 1 depicts (a) 
iXI (with i = 1, 2, 3) versus ( )YF y ; (b) ( )YF y  versus y; (c) *

iXI versus ( )YF y ; 267 

(d) the empirical copula densities 
1 1( ( ), ( ))X Yc F x F y ; (e) the sensitivity descriptor 268 

1 11 ( ( ), ( ))X Yc F x F y−  versus 
1 1( )XF x  for three selected value of ( )YF y ; and (f) the scatter plot of 269 

Grade( 3x ) versus Grade(y). 270 

The structure of model (7) reveals that Y does not depend on 3X  when Y < 1. This observation 271 

is supported by joint inspection of Fig. 1b, which reveals that ( 1) 0.5YF y = = , and of Fig. 1f, which 272 

indicates that values of Grade(y) < 0.5 (i.e., Y < 1) are independent from Grade( 3x ). Otherwise, when 273 

Grade(y) > 0.5 (i.e., Y > 1) there is a one-to-one correspondence between values of Grade(y) and 274 
Grade( 3x ) (i.e., between Y and 3X ), as expected from the structure of model (7). This means that the 275 

copula between ( )YF y  and 
3 3( )XF x  exhibits singular components for ( ) 0.5YF y > . These 276 

observations lead us to conclude that 
3
( ( ) 0.5) 0X YI F y ≤ =  and 

3
( ( ) 0.5) 1X YI F y > =  as displayed by 277 

Fig. 1a, i.e., Y values associated with ( ) 0.5YF y ≤  are not sensitive to 3X , while the ensuing values 278 

of Y associated with ( ) 0.5YF y >  depend solely on 3X . At the same time, it is possible to recognize 279 

that 
3

* ( ( ) 0.5) 0X YI F y ≤ =  and 
3

* ( ( ) 0.5) 1X YI F y > =  (see Fig. 1c), i.e., Y values associated with 280 

( ) 0.5YF y ≤  have a uniform level of (null) sensitivity to 3X  while the level of inhomogeneity in the 281 



sensitivity of each Y > 1 (i.e., ( ) 0.5YF y > ) across the range of 3X  is largest, because model (7) 282 

induces a one-to-one correspondence between 3X  (i.e., 
3 3( )XF x ) and Y > 1 (i.e., ( ) 0.5YF y > ). We 283 

underline that our numerical evaluation of 
3 3( ( ), ( ))X Yc F x F y  is in agreement with its theoretical 284 

counterpart (i.e., for ( ) 0.5YF y ≤ , 
3 3( ( ), ( ))X Yc F x F y =1 

3 3( )XF x∀ ; and for ( ) 0.5YF y > , 285 

3 3( ( ), ( ))X Yc F x F y →∞  for 
3 3( ) 2 ( ) 1X YF x F y= − , while 

3 3( ( ), ( )) 0X Yc F x F y =  elsewhere), despite the 286 

challenges posed by the numerical evaluation of the singular components of the copula density in this 287 
case (details not shown). These findings provide further support to the robustness of the numerical 288 
procedure employed to estimate the empirical copula densities. 289 

Inspection of Fig.s 1a, c reveals that indices 
1XI  (and therefore 

2XI ) and 
1

*
XI  (and 

2

*
XI ) have a 290 

non-zero constant value for ( ) 0.5YF y > . This behavior descends from the observation that even as 291 

3X  dictates the specific value of Y when Y > 1 (i.e., the value of ( )YF y  for ( ) 0.5YF y > ), the latter is 292 

sensitive to 1X  and 2X  (i.e., to 
1 1( )XF x  and 

2 2( )XF x ) through the fulfillment of the condition 293 

1 2 1X X+ >  in (7). The constant value of 
1XI  (or 

2XI ) for all ( ) 0.5YF y >  stems from the threshold-294 

nature of this condition, i.e., the values of Y associated with ( ) 0.5YF y >  are all equally sensitive to 295 

the fulfillment of the threshold condition in (7). The non-zero constant value of 
1

*
XI  (or 

2

*
XI ) for 296 

( ) 0.5YF y >  is related to the observation that the threshold condition is more easily satisfied for a 297 

high rather than for a low value of 1X  (or 2X ) (i.e., the strength of the sensitivity of each Y > 1 varies 298 

across the support of 1X  (or 2X ), see also Fig. 1d for ( ) 0.5YF y > ). 299 

The behavior of 
1XI  and 

1

*
XI  (as well as 

2XI  and 
2

*
XI ) for ( ) 0.5YF y ≤  is related to the 300 

admissible values of 1X  (or 2X ) for which Y < 1 is fulfilled. Model (7) dictates that values of both 301 

inputs 1X  and 2X  must be low to yield low values of Y (i.e., low ( )YF y ), this feature yielding a 302 

strong dependence only for few values of the inputs. As Y increases towards unity, 
1XI  decreases 303 

because there is an increase of the number of values of 1X  that are compatible with the condition Y 304 

< 1  (thus leading to a decreased strength of the dependence between specific value of Y and 1X , as 305 

also shown in Fig. 1d). At the same time, index 
1

*
XI  first decreases (i.e., the sensitivity metric 306 

1 11 ( ( ), ( ))X Yc F x F y−  becomes more uniform across the whole range of 1X  values), and then 307 

increase until ( ) 0.3YF y = , to then decrease again upon approaching ( ) 0.5YF y = . This behavior 308 

stems from the fact that, as ( )YF y  increases (from 0 to 0.5) the copula density 
1 1( ( ), ( ))X Yc F x F y  (i) 309 

is larger than zero for a widening range of 
1 1( )XF x  values. At the same time, 

1 1( ( ), ( ))X Yc F x F y  (i) is 310 

independent of 
1 1( )XF x  for a given 0.0 < ( )YF y  < 0.5 and (ii) decreases monotonically towards 1.0 311 

as ( )YF y  approaches 0.5. This aspect is further elucidated by Fig. 1e, showing that the variability of 312 

the descriptor 
1 11 ( ( ), ( ))X Yc F x F y−  around its mean value does not monotonically increase/decrease 313 

with ( )YF y . 314 

3.2 Critical Pumping Rate in a Coastal Aquifer 315 



We consider here the critical pumping rate ( cQ′ ) that can be extracted from a fully penetrating 316 
pumping well operating in a homogenous confined coastal aquifer of uniform thickness ( 'b ) to ensure 317 
that a concentration of dissolved salt not exceeding 1% is detected at the well. The well is placed at 318 
a distance wX ′  from the coastline and a constant freshwater flux ( fq′ ) is flowing from the inland to 319 

the coastline. The (dimensionless) critical pumping rate ( / ( ' )c c w fQ Q b X q′ ′ ′= ) can then be 320 

approximated through (Pool and Carrera, 2011) 321 
1/2 1/2

1/2

1 (1 / )2 1 ln
1 (1 / )

c c c
D

c

Q Q Q
Q

πλ
π π π

− − = − +  + − 
 with  

1/61 ( )' T
D

f w

PE
X J

ρλ
ρ

−−∆
=

′
, (8) 322 

where / 'w wX X b′= ; / 'fJ q K′= ; '/T TPE b α′= ; 'K  is the hydraulic conductivity of the aquifer; Tα′  323 

is transverse dispersivitiy; ' s fρ ρ ρ′ ′∆ = − , fρ′  and sρ′  being the density of freshwater and saltwater, 324 

respectively. Note that (8) has been derived in the range of [0 10]Dλ ∈ − . Further details about the 325 
problem setting, boundary and initial conditions, as well as geometrical configuration of the system, 326 
can be found in Pool and Carrera (2011). 327 

Our scope here is to investigate the results of our copula density-based GSA for cQ . We 328 

consider [0.01 0.1]TPE ∈ − , 3[0.8 2.5] 10J −∈ − × , and [10 33]wX ∈ −  as uncertain model parameters 329 

in (8). It should be noted that in practical applications the values of TPE  and J are difficult to assess 330 
experimentally, the variability in the well location being considered as an operational/design variable. 331 
The selected ranges of parameter uncertainty have also been used by Dell’Oca et al. (2017) in the 332 
context of their moment-based GSA and are designed to (i) resemble realistic field values and (ii) 333 
obey the above-mentioned constraint about Dλ . 334 

Fig. 2 depicts (a) 
n

IΘ  (with nΘ  = TPE , wX , and J) versus ( )
cQ cF q ; (b) ( )

cQ cF q  versus cq ; 335 

(c) *
n

IΘ  versus ( )
cQ cF q ; and the empirical copula densities (d) ( ( ), ( ))

T cPE T Q cc F pe F q , (e) 336 

( ( ), ( ))
w cX w Q cc F x F q , and (f) ( ( ), ( ))

cJ Q cc F j F q . Fig.s 2a, c show that 
wJ XI I≈  and * *

wJ XI I≈  for any 337 

value of ( )
cQ cF q . This result is consistent with (i) the format of (8), showing that cQ  varies in the 338 

same (nonlinear) way due to variability of wX  or J, and (ii) the adoption of a very similar coefficient 339 

of variation for both wX  and J (≈ 0.31 and 0.30 for wX  and J, respectively.). A similar reasoning 340 
underpins the observation that ( ( ), ( )) ( ( ), ( ))

c w cJ Q c X w Q cc F j F q c F x F q≈  (see Fig.s 2e, f). It is also noted 341 

that the sensitivity of the intermediate values of ( )
cQ cF q  is less intense (i.e., with reduced values for 342 

JI  and 
wXI ) and more uniform with respect to either ( )JF j  or ( )

wX wF x  (note the low values of *
JI  343 

and *
wXI ) as compared to the behavior displayed for high and low values of ( )

cQ cF q . As an additional 344 

result, we note that 
TPEI < JI  (or 

wXI ), and *
TPEI  < *

JI  (or *
wXI ) for all ( )

cQ cF q , i.e., the sensitivity of 345 

each ( )
cQ cF q  to ( )

TPE TF pe  is always less strong and more uniform than its counterpart associated 346 

with ( )JF j  or ( )
wX wF x  despite the large coefficient of variation adopted for TPE  (≈ 0.47). This result 347 

is due to the format of the model employed (8). Finally, it is also worth noting that values of indices 348 

TPEI  and *
TPEI  are highest for ( ) 0

cQ cF q → , such values being quite close to their counterparts 349 

associated with ( )JF j  and ( )
wX wF x . This aspect is linked to the high intensity of 350 

( ( ), ( ))
T cPE T Q cc F pe F q  for low ( )

TPE TF pe  (see Fig. 2d). 351 

Our results are consistent with an interpretation of the system behavior according to which the 352 
intensity of the dispersion mechanism does not play a marked role in comparison to the role of J and 353 

wX  when high values of the pumping rate at the well can be extracted. This observation is in 354 



agreement with the intuition that high values of pumping flow rate are allowed only when the intensity 355 
of the incoming freshwater, the overall thickness of the system and/or the well distance from the coast 356 
are sufficiently high to hamper well contamination, despite the level of transverse dispersion of the 357 
dissolved salt. Otherwise, the strength of the transverse dispersive mechanism becomes a relevant 358 
factor, together with J and wX , for low values of cQ . This result is consistent with the observation 359 

that there can be an enhanced well contamination in case of high level of (dimensionless) solute 360 
dispersion (i.e., very low TPE ), low (dimensionless) incoming freshwater flux, and for well locations 361 

that are relatively close to the coastline.  362 

Outcomes of the copula-based SA illustrated above are in line with the findings of Dell’Oca 363 
et al. (2017). These authors grounded their analysis on a moment-based GSA, which revealed that the 364 
first four statistical moments of the pdf of cQ  are mostly equally sensitive to J and wX , a diminished 365 

sensitivity being displayed with respect to TPE . Otherwise, the added value of the results stemming 366 

from the copula-based SA lies in the characterization of the sensitivity of cQ  across its entire range 367 

of values, supporting enhanced understanding of the way model (8) drives the relationship between 368 
inputs (i.e., J, wX  and TPE ) and output of interest (i.e., cQ ). 369 

3.3 Laboratory-scale solute transport within a heterogeneous porous medium 370 

We consider the laboratory-scale setting illustrated by Esfandiar et al. (2015). These authors 371 
analyze the results of a solute transport experiment performed within a rectangular flow cell filled 372 
with two distinct uniform materials, i.e., a coarse and a fine sand. A sketch of the experimental setup 373 
and of the geometrical arrangement of the two types of sand employed in the experiment is depicted 374 
in Fig. 3a. A unit step injection of a non-reactive solute is imposed at the inlet of the flow cell, within 375 
which a steady-state strongly nonuniform flow takes place. The temporal evolution of solute 376 
concentration at the flow cell outlet (normalized by the concentration of the injected solution), i.e., 377 

( )C t , t being time, is measured. Esfandiar et al. (2015) model ( )C t  by numerically solving the 378 
classical advection-dispersion equation within the porous domain, employing an efficient space-time 379 
grid adaptation strategy. The authors consider longitudinal dispersivities (i.e., 

iLα  with i = 1, 2 for 380 

the coarse and fine sand, respectively) of the sands as uncertain system parameters to be estimated 381 
against the experimental breakthrough curve. In order to reduce the computational burden of the 382 
model calibration procedure, Esfandiar et al. (2015) rely on a representation of ( )C t  through a 383 
generalized Polynomial Chaos Expansion (gPCE) as a surrogate model (see Appendix A), 384 

considering the ( )10log
iLα  (with i = 1, 2) as two indipendent random variables, uniformly distributed 385 

within the support [-6, -2]. Here, we leverage on the gPCE representation of Esfandiar et al. (2015) 386 

and assess the sensitivity of ( )C t  with respect to ( )10log
iLα  according to the methodology detailed in 387 

Section 2. 388 
Fig. 3b depicts the time evolution of a collection of 100 samples (grey curves; randomly 389 

selected from the 106 Monte Carlo realizations) of ( )C t  at the outlet of the system and the ensuing 390 

expected value, i.e., ( )E C t    (black curve). The narrowing of the spread of the Monte Carlo 391 

realizations at times corresponding to ( ) 0.4E C t  ≈   suggests that ( )C t  is mainly controlled by the 392 

intensity of advective processes (here considered as deterministic) at such times (i.e., the deterministic 393 
advective transport component is a key driver of the displacement of the center of mass of the solute 394 
plume). Otherwise, the behavior of ( )C t  at earlier and later times is tied to the intensity of the 395 



dispersion processes within the coarse and fine material (i.e., to 
1Lα  and 

2Lα , respectively), as further 396 

discussed in the following. 397 

Fig. 4 depicts a color scale representation of ( )10log Li
I

α
(a, b) and ( )10

*
log Li

I
α

 (c, d) against ( ) ( ( ))C tF c t  398 

and ( )E C t   . Note that we plot results against ( )E C t    rather than time t, for ease of interpretation 399 

of outcomes (see our discussion of Fig. 3b).  400 

Joint inspection of Fig.s 4a, b indicates that at early breakthrough times (i.e., ( ) 0.2E C t  <   401 

approximately) ( )10 1log L
I

α
 is larger than ( )10 2log L

I
α

 for all ( ) ( ( ))C tF c t  values. This result supports a major 402 

importance of 
1Lα  (as opposed to 

2Lα ) for early times and is linked to the observation that at these 403 

times the solute has traveled primarily through the coarse sand, which resides in the largest portion 404 
of the domain. Considering such a strong sensitivity of the solute concentration at the outlet (in the 405 
presence of a material characterized by 

2Lα ) to 
1Lα , is also consistent with a non-locality of the 406 

transport mechanism within the heterogenous system under investigation (i.e., solute concentration 407 
at a given point is influenced by the system properties at other locations). The relevance of the coarse 408 
medium dispersivity is also documented through inspection of Fig. 4c where high values of ( )10 1

*
log L

I
α

 409 

are seen for ( ) 0.2E C t  <   (approximately) across all ( ) ( ( ))C tF c t , i.e., the bivariate copula densities 410 

(see Fig. SM1a) exhibit high values for each ( ) ( ( ))C tF c t  within a narrow range of values of 
1Lα , 411 

suggesting a nearly one-to-one correspondence between the former and the latter. Yet, inspection of 412 

Fig.s 4a-d reveal that the output ( )C t  at early times (i.e., for ( ) 0.2E C t  <  ) tends to be equally 413 

sensitive (in terms of ( )10log Li
I

α
 and ( )10

*
log Li

I
α

) to the dispersivities of both materials in the range 414 

( )0.4 ( ( )) 0.6C tF c t< <  (i.e., within the latter range the ensuing value of ( )C t  is governed by the 415 

intensity of the dispersive process within both materials). Otherwise, low and high values of ( ) ( ( ))C tF c t  416 

are more sensitive to the value of the dispersivity of the coarse sand (across which the solute tends to 417 
travel/spread the most). 418 

Focusing on the range 0.2 ( ) 0.4E C t < <  , inspection of Fig.s 4a, b suggests an equal 419 

importance of both 
1Lα  and 

2Lα , the former and the latter displaying a strong dependence on the high 420 

and low values of ( ) ( ( ))C tF c t , respectively. At the same time, Fig.s 4c, d document that in this setting 421 

high values for ( )10 1

*
log L

I
α

 and ( )10 2

*
log L

I
α

 correspond to high values of ( )10 1log L
I

α
 and ( )10 2log L

I
α

. These 422 

observations suggest that the dispersivities of both materials affect ( )C t  before the arrival of the 423 
plume center of mass. This result descends from the observation that an increasing amount of solute 424 
has traveled through the coarse medium and is conveyed through the fine material at these times, thus 425 
yielding an increased relevance of the intensity of the dispersion process within the fine material. We 426 

note that the high values of ( )10 1log L
I

α
 (and of ( )10 1

*
log L

I
α

) corresponding to high ( ) ( ( ))C tF c t  are due to a 427 

strong dependence of ( ) ( ( ))C tF c t  on low values of 
1Lα  (see Fig. SM1c), i.e., high values of ( )C t  are 428 

associated with a relatively low dispersion of the plume as it migrates across the coarse material, 429 



resulting in a less diluted plume at the outlet. On the other hand, the high values of ( )10 2log L
I

α
 (and of 430 

( )10 2

*
log L

I
α

) corresponding to low ( ) ( ( ))C tF c t  are associated with a strong dependence between ( ) ( ( ))C tF c t  431 

and high values of 
2Lα  (see Fig. SM1d), i.e., an intense dispersion of the plume within the fine 432 

material is key to lead to relatively low ( )C t . 433 

Considering ( ) 0.4E C t  >  , Fig.s 4a, b highlights that, overall, ( )10 2log L
I

α
 tends to increase with 434 

( )E C t    (this is especially evident for the lowest values of ( ) ( ( ))C tF c t , see previous discussion). 435 

Otherwise, ( )10 1log L
I

α
 tends to decrease with ( )E C t   , with the exception of the region of high values 436 

of ( ) ( ( ))C tF c t , i.e., ( ) ( ( )) 0.9C tF c t >  (approximately), and for ( )0.2 ( ( )) 0.5C tF c t< <  (approximately). 437 

We note that the high values of ( )10 2log L
I

α
 ( ( )10 1log L

I
α

) and of ( )10 2

*
log L

I
α

 ( ( )10 1

*
log L

I
α

) corresponding to low 438 

(high) ( ) ( ( ))C tF c t  are due to a strong dependence of ( ) ( ( ))C tF c t  on low (high) values of 
2Lα  (

1Lα ), as 439 

also seen in Fig. SM1f and SM1e, respectively. This finding may reflect the tendency (at late times) 440 
to hinder (enhance) solute entering from the coarse to the fine medium and to subsequently being 441 
transported through it, as the dispersivity of the fine (coarse) medium decreases (increases). These 442 
results are in agreement with the observation that the intensity of the dispersion process in the fine 443 
material becomes the most relevant factor determining the monitored concentration at the outlet as 444 
time increases, even as the highest values of concentration still show some dependency on the 445 
dispersivity of the coarse medium (see previous discussion about non-locality of transport).  446 

The width of the two segments of ( ) ( ( ))C tF c t  values (approximately corresponding to 447 

( ) ( ( )) 0.9C tF c t >  and ( )0.2 ( ( )) 0.5C tF c t< < ) associated with large ( )10 1log L
I

α
 values tends to narrow as 448 

time increases. This behavior can be linked to the loss of memory of solute transport dynamics with 449 
respect to the influence of dispersive properties of the coarse sand region as the intensity of the 450 
dispersion process in the second material gain relevance (see also Dell’Oca et al., 2019). At the same 451 

time, Fig. 4d reveals that ( )10 2

*
log L

I
α

 is quite strong across the entire range of ( )( ) ( )C tF c t  (with the 452 

exception of very high values of the latter), suggesting that there is a direct correspondence between 453 
a given value of ( )C t  and 

2Lα  (see Fig. SM1f). A similar feature is suggested by inspection of Fig. 454 

4c, where one can observe that ( )10 1

*
log L

I
α

 is high within the regions ( )0.2 ( ( )) 0.5C tF c t< <  455 

(approximately) and ( ) ( ( )) 0.9C tF c t > , whereas the analysis of bivariate copula (see Fig. SM1e) 456 

indicates intense values of the copula density for intermediate and high values of 
1Lα  when 457 

( )0.2 ( ( )) 0.5C tF c t< <  or ( ) ( ( )) 0.9C tF c t > , respectively. 458 

The main findings provided by the application of our copula-based SA to this laboratory-scale 459 
solute transport scenario are in overall agreement with the moment-based GSA illustrated by 460 
Dell’Oca et al. (2017), i.e., the sensitivity of ( )C t  to the dispersivity of the fine material tends to 461 
increase with time, while the influence of the dispersivity of the coarse material decreases. Moreover, 462 
assisting GSA through our copula-based analysis has the added value of providing a quantitative 463 



characterization of the nature of the ensuing sensitivity across the entire range of ( ) ( ( ))C tF c t  values, 464 

thus linking our understanding of the system functioning to the documented features of the sensitivity 465 
of ( )C t  to the dispersivities of the two materials. 466 

4. Conclusions 467 

We propose an original approach to Sensitivity Analysis which is Global with respect to the 468 
model input(s) and Local with respect to the model output, i.e., it enables one to characterize 469 
sensitivity for each of the possible values undertaken by the model output of interest. In this sense, 470 
one can then quantify the influence of model uncertain parameters on the quantiles of the distribution 471 
of the modeling goal of interest. 472 

At the hearth of our methodology there is the copula density between selected model input and 473 
the targeted output. As a descriptor for sensitivity, we select the absolute distance between such 474 
copula density and its counterpart associated with two independent random variables. We then 475 
characterize the sensitivity of a model output locally (i.e., for each possible value of the output) with 476 
respect to an uncertain input by relying on two indices, each summarizing a global behavior (with 477 
respect to the variability of the input) of sensitivity. Specifically, we evaluate (i) the averaged (across 478 
all values of an input, i.e., globally) value and (ii) the degree of variability (across all values of an 479 
input, i.e., again globally) of the introduced sensitivity descriptor. 480 

Relying on the copula density enables one to assess model-induced dependences at any order 481 
(i.e., without being limited to linear dependences) among a model input and a given modeling output, 482 
independent from the marginal behavior of the latter. As opposed to typically employed GSA 483 
approaches, where one evaluates the importance of a model input to an output through summary 484 
indices, our copula density technique enables one to quantify the sensitivity of a model input to the 485 
entire range of the quantiles of the distribution of the output. This aspect is particular critical in risk 486 
assessment procedures, allowing to quantify the impact of a given model parameter for low or high 487 
values of the output of interest (as seen, e.g., with reference to a well pumping rate or the temporal 488 
behavior of solute concentrations), or if there are regions (or values) in the space of variability of the 489 
output that are not influenced by one or more model inputs. As such, our copula density Sensitivity 490 
Analysis can contribute to enhance our ability to diagnose the functioning of a given model. 491 

We provide evidence of the type of information that our approach ensures by focusing on an 492 
analytical test function, on a setting associated with the determination of the critical pumping rate at 493 
a well placed in a coastal aquifer, and on a laboratory-scale solute transport experiment performed 494 
within a heterogeneous porous medium.  495 
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Appendix A. Generalized Polynomial Chaos Expansion approximation of the solute 620 
breakthrough curve associated with the laboratory-scale solute transport experimental set-up. 621 

In order to reduce the computational burden associated with the copula-based SA in Section 622 
3.3, we leverage on the surrogate model of the (normalized) concentrations measured at the flow cell 623 
outlet (i.e., ( )C t ) introduced by Esfandiar et al. (2015). These authors rely on the generalized 624 
Polynomial Chaos Expansion (gPCE) (see, e.g., Sochala and Le Maître, 2013 and reference therein) 625 
of ( )C t , which can be cast as 626 

( ) ( )( )1 210 10
1

( ) log , log
N

j i L L
j

C t β ψ α α
=

≈∑   (A.1) 627 

where jβ  are the so-called polynomial coefficients, iψ  is a set of multivariate Legendre polynomials 628 

and N is the total number of employed polynomials. Esfandiar et al. (2015) evaluate the coefficients 629 

jβ  through a sparse-grid procedure (see, e.g., Formaggia et al., 2013). They rely on the total degree 630 

rule for the selection of the set of multivariate Legendre polynomials, the total degree being set equal 631 
to 3, which leads to N = 69. 632 

 633 
Appendix B. Evaluation of density-based, Morris, and Sobol’ indices 634 

We consider the three settings introduced in Section 3 and, in addition to the results presented 635 
in Section 3, we also evaluate (i) the density-based 

n
δΘ  index (Borgonovo, 2007; Borgonovo et al., 636 

2016), (ii) the Morris indices *
n

µΘ  and 
n

σΘ  (Morris, 1991), and (c) the principal Sobol’ indices. A 637 

brief summary of the definitions of these global sensitivity metrics is included in the following. 638 

The 
n

δΘ  index is defined as (see also Section 2) 639 

,
1 ( ) ( ) ( , )
2n n n nY n Y Y nE E p p y p yδ θ θΘ Θ Θ Θ

 = −  , (B.1) 640 

where , ( , )
n Y np yθΘ  is the bivariate pdf between the input nΘ  and the output Y, ( ) ( )

n n Yp p yθΘ  is its 641 

counterpart under the assumption that nΘ  and Y are independent, [ ]
n

EΘ −  and [ ]YE −  denoting 642 

expectation w.r.t. nΘ  and Y, respectively. 643 

The Morris index *
n

µΘ  is defined as 644 

*

1

1
n n

r

jr
µΘ Θ

=

= Ξ∑ ,  with 1 1 1( ,..., ,... ) ( ,..., ,... )
n

j j j j j j
n n N n

j
n

Y Y
Θ

Θ Θ + ∆ Θ − Θ Θ Θ
Ξ =

∆
,   (B.2) 645 

where the so-called elementary effects (
nΘΞ ) represent approximations of the Y derivative w.r.t. nΘ , 646 

evaluated relying on increment j
n∆  for diverse values (i.e., r times) of the remaining model inputs 647 

and (see Pianosi et al., 2016 and reference therein for a review of strategies for the definition of the 648 
combinations of input parameters suited for the evaluation of *

n
µΘ ). According to (B.2), a high 649 

average variation in the model output due to model input perturbations corresponds to a high *
n

µΘ  650 

value. 651 

The Morris index 
n

σΘ  reads 652 



( )2*

1

1
n n n

r

jr
σ µΘ Θ Θ

=

= Ξ −∑ .  (B.3) 653 

Higher values of 
n

σΘ  correspond to higher nonlinearity effects. This can be due to either a non-654 

linearity in the relationship between Y and nΘ  or to interactions among nΘ  and other model inputs. 655 

Inspection of (B.2) and (B.3) suggests that in the Morris method the output-input sensitivity 656 
is characterized in terms of both (i) an average value and (ii) a measure of the variability of the 657 
selected sensitivity metric (i.e., 

nΘΞ ). In the methodology introduced in Section 2, we follow a similar 658 

rationale in the definition of (4)-(6). 659 

The principal Sobol’ index is defined as 660 

[ ]|
n

n

nE V V Y
S

V
θΘ

Θ

 − = ,  (B.4) 661 

Here, V is the model output variance and ( | )nV Y θ  is its counterpart conditional to a given value ( nθ662 

) of the input nΘ . Expression (B.4) serves as a measure of the (normalized) contribution to the output 663 

variance due to the variability in the input parameter nΘ . In other words, the higher is the (average) 664 

reduction of the model output variance due to the knowledge of nΘ , the higher is 
n

SΘ . As such, in 665 

the Sobol’ method the sensitivity (rendered through the metric [ ]| nV V Y θ− ) is grounded on the 666 

behavior of the model output variability, as quantified through its variance. In this context, we note 667 
that the variance may be an incomplete descriptor of the output variability (see, e.g., Pianosi et al., 668 
2016; Borgonovo et al., 2007; Dell’Oca et al., 2017). 669 

A distinctive feature typically shared by all global sensitivity indices is an integration across 670 
the support of the model input and/or output, the information provided by each index being 671 
characterized by the quantity being subject to integration (i.e., the sensitivity metric). In this context, 672 
it is noted that the approaches listed above ground sensitivity on diverse descriptors. These 673 
encapsulate the level of dependence between uncertain model input and output through (i) the 674 
bivariate pdf in 

n
δΘ , (ii) variations of model output due to input variations in the Morris approach, or 675 

(iii) the contribution of an input variability to the output variance for the Sobol’ index. All of these 676 
approaches thus introduce a set of scalar indices resting on diverse strategies. For example, the Morris 677 
approach focuses on the average value and on the standard deviation of the sensitivity metric, whereas 678 
the focus in the pdf-based methodology is solely on the average value. It is then of interest to analyze 679 
possible similarities/discrepancies between results quantifying/ranking parameter sensitivity with 680 
these approaches and corresponding results stemming from 

n
IΘ  (4) and *

n
IΘ  (6), while recalling that 681 

each index emphasizes a diverse aspect of the output sensitivity to model input(s). 682 

The results reported in the following are based on the same 106 Monte Carlo realizations 683 
employed for the evaluation of the copula densities in Section 3. Morris indices are computed by 684 
setting r = 800 and following the scheme presented by Campolongo et al. (2011). 685 

Considering the analytical test function introduced in Section 3.1, we obtain 
1 2

* * 1.06X Xµ µ= =686 

, 
3

* 0.445Xµ =  and 
1 2

1.22X Xσ σ= = , 
3

0.498Xσ = . The ensuing values of *
n

µΘ  suggest that variations 687 

in X1 and X2 lead to larger variations in the value of the output than those induced by variations in X3. 688 
Values of 

n
σΘ  indicate of a stronger level of nonlinearity (due to parameters interaction, see (7)) in 689 

the relationship between Y and X1 (or X2) than between Y and X3. Principal Sobol’ indices are 690 



1 2
0.38X XS S= =  and 

3
0.09XS = , these results being conducive to an ordering of input parameter 691 

relevance similar to what resulting from the Morris indices. Interestingly, relying on the density-based 692 
index yields a diverse ordering of the parameter relevance, since 

1 2
0.61X Xδ δ= =  and 

3
1.01Xδ = . 693 

These latter results are in agreement with those depicted in Fig. 1a, where we observe that the area 694 
below 

1XI  and 
2XI  is smaller than its counterpart corresponding to 

3XI . The set of outcomes here 695 

summarized is a stark example of the recognized multifaceted nature of the concept of sensitivity. 696 
Therefore, diverse methodologies focused on differing aspects of the output-input(s) sensitivity 697 
should be jointly investigated. In this context, we remark that 

n
IΘ  and *

n
IΘ  serve our understanding 698 

of the sensitivity of model outputs to parameters across the full range of outputs variability. 699 

Results for the scenario targeting the critical pumping rate in a coastal aquifer (see Section 700 
3.2) are: 0.31

TPEδ = , 0.64
wXδ =  and 0.57Jδ = ; * 0.44

TPEµ = , * 1.01
wXµ = , * 0.93Jµ =  and 701 

0.17
TPEσ = , 0.21

wXσ = , 0.20Jσ = ; and 0.09
TPES = , 0.48

wXS =  and 0.41JS = . On the basis of this 702 

set of results and those illustrated in Section 3.2, one can note a consistency in the way the relevance 703 
of the uncertain model inputs is rendered across the diverse Sensitivity Analysis methodologies, each 704 
with its own distinctive metric and specific aims. All of the results reveal that the critical pumping 705 
rate tends to be more sensitive to Xw, slightly less to J, and only to a minor extent to PET 706 

With reference to the laboratory-scale solute transport scenario, Fig. B1 depicts (a) 
10log ( )Liαδ , 707 

(b) 
10

*
log ( )Liαµ  and (c) 

10log ( )Liασ , as well as (d) 
10log ( )Li

S α  versus ( )E C t    for i = (1, 2) (blue and red 708 

curves, respectively). Overall inspection of Fig. B1 reveals that: (i) ( )C t  is more sensitive to the 709 

dispersivity of the coarse sand for ( ) 0.4E C t  <   (approximately); (ii) for values ( ) 0.4E C t  ≈  , ( )C t  710 

has a similar relative sensitivity to the dispersivities of the two sands; (iii) for ( ) 0.4E C t  >   the 711 

sensitivity of ( )C t  to the dispersivity of the fine sand is larger than that associated with the coarse 712 

sand (an exception is noted for 
10log ( )Liαδ , approximately within the range 0.5 ( ) 0.7E C t < <  ). It is 713 

here of interest to note that 
10 2log ( )Lα

δ  and 
10 2log ( )L

S α  tend to increase with ( )E C t   , 
10 1log ( )Lα

δ  and 714 

10 1log ( )L
S α  being characterized by the opposite behavior. These results are in line with those discussed 715 

in Section 3.3 for our copula-based indices. Indices 
10

*
log ( )Liαµ  and 

10log ( )Liασ  (i = 1, 2) exhibit a bimodal 716 

behavior (the two peaks respectively occurring at ( ) 0.15E C t  ≈   and ( ) 0.70E C t  ≈  ) and display a 717 

decreasing trend for (approximately) 0.70 ( ) 1E C t < <  , with similar values for i = 1 or 2. This set 718 

of results contributes to further highlight the different nature of the various sensitivity indices 719 
analyzed. 720 

While the comparison of diverse methodologies here illustrated might not be exhaustive, it 721 
clearly documents how diverse strategies are keyed to diverse aspects of the output sensitivity. In this 722 
context, we recall that the copula-density based indices we propose are tied to the unique feature of 723 
detailing the output sensitivity across its range of variability (in terms of ( )YF y ). 724 

With reference to the computational costs associated with the evaluation of the various indices 725 
here analyzed, we found that the pdf- and copula density-based analyses require a number of Monte 726 
Carlo iterations of the order of 105 to obtain stable results (in our computational examples we used a 727 



collection of 106 samples), while 104 and 103 realizations can be sufficient for the Sobol’ and Morris 728 
indices, respectively. As a side remark, we note that we rely here on a straightforward Monte Carlo 729 
sampling for the evaluation of the pdf-based, copula density-based and Sobol’ indices, while we use 730 
the strategy of Campolongo et al. (2011) for the Morris indices. It is then important to note that a 731 
variety of sampling strategies have been developed to reduce computational costs associated with the 732 
evaluation of the Morris, Sobol’, and pdf-based (see e.g., Pianosi et al., 2016 and reference therein) 733 
indices. In this context, a future study will explore the possibility of employing an adaptive kernel 734 
estimation method (such as the one proposed by Sole-Mari et al., 2019) for the estimation of the 735 
model induced empirical copula density. 736 

  737 



Figures 738 

 739 

Fig. 1. Results of the Copula-density GSA for the output, i.e., Y, of the analytical test function in (7): 740 
(a) 

n
IΘ  and (c) *

n
IΘ  for nΘ  = 1X , 2X , 3X  against ( )YF y ; (b) ( )YF y  versus y; (d) copula-density 741 

between ( )YF y  and 
1 1( )XF x ; (e) sensitivity descriptor 

1 11 ( ( ), ( ))X Yc F x F y−  versus 
1 1( )XF x  for three 742 

values of ( )YF y ; and (f) scatter plot among the Grade of 3x  and Grade of y.  743 



 744 

Fig. 2. Results of the copula-density GSA for the critical pumping rate, i.e., cQ , on the basis of model 745 

(8): (a) 
n

IΘ  and (c) *
n

IΘ  for nΘ  = TPE , wX , or J against ( )
cQ cF q ; (b) ( )

cQ cF q  versus cq ; copula-746 

density between ( )
cQ cF q  and (d) ( )

TPE TF pe , (e) ( )
wX wF x , or (f) ( )JF j .  747 



 748 

Fig. 3. (a) Sketch of the laboratory experimental set-up; (b) expected value of the solute concentration 749 

at the outlet, i.e., ( )E C t    (black curve), and a sub set of 100 Monte Carlo realizations (grey curves) 750 

versus time, t.  751 



 752 

Fig. 4. Results of the copula-density GSA for the solute breakthrough curve, i.e., ( )C t : (a) ( )10 1log L
I

α
, 753 

(b) ( )10 2log L
I

α
, (c) ( )10 1

*
log L

I
α

 and (d) ( )10 2

*
log L

I
α

 as a function of ( ) ( ( ))C tF c t  and of the expected value of 754 

( )C t , i.e., ( )E C t   .   755 

  756 



 757 

Fig. B1. GSA indices for the solute breakthrough curve, i.e., ( )C t : (a) distribution-based index 
n

δΘ ; 758 

Morris’ indices (b) *
n

µΘ  and (c) 
n

σΘ ; principal Sobol’ index (d) 
n

SΘ  versus the expected value of 759 

( )C t , i.e., ( )E C t   . Outcomes for the coarse (blue curves) and fine (red curves) sands are depicted.  760 
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