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Abstract

The main motivation for applying capacity planning
techniques to the design of Internet-based video services is
that very often these systems incur significant delays that
decrease the offered Quality of Service below an accept-
able level. However, the very high fluctuations of the Inter-
net traffic make the identification of the correct capacity of
the server and network components a very hard task to be
accomplished.

In this paper we analyze the metrics used to evaluate the
performance perceived by users of video streaming appli-
cations and we introduce and validate some new metrics.
These variables may be used to parameterize the models
required by capacity planning studies. A characterization
of users’ behavior for live and stored video streams is pre-
sented. The knowledge of the behavior of these two streams
is important to identify the capacity to be allocated in order
to satisfy the QoS requirements. Several issues concerning
the security of video streaming are also discussed.

1. Introduction

The latest technical advances in high-speed networks,
data compression and signal processing techniques make it
possible the delivery of video/audio streaming through In-
ternet to a very high number of concurrent users. However,
the highly dynamic environment typical of Internet, either
in terms of number or type of processing requests compet-
ing for the resources, make the achievement of the perfor-
mance levels needed by streaming applications a very diffi-
cult task to be accomplished.

Usually a degradation in the performance, e.g. a very
high response time, of a typical web-based application does
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not affect the results of the application itself, but ratherin-
fluences the user’s perception of the QoS. This is not the
case of video streaming workload. Indeed, when severe
degradations in throughput and response time are present,
not only the QoS decreases, but also the visual represen-
tation of the streaming could degrade below an acceptable
level.

The bursty behavior of the Internet and web traffic is
a main source of server congestion and lack of network
bandwidth and thus ofperformance degradation. Unfor-
tunately, skews in data access that create very high load
spikes are typical oflive and stored streaming transmis-
sion. For example (as we will show in the following) dur-
ing events like live shows or sport matches, spikes of re-
quests up to twenty times larger than the average values
are observed. In such a condition, servers and Internet com-
ponents get overwhelmed and very long delays are experi-
enced. Also the traffic generated by the streaming of stored
media, e.g., Video-on-Demand, exhibits a bursty behavior
showing some periodicity (e.g., daily, weekly) and a dura-
tion of the bursts longer than in live streaming.

The evaluation of the quality of video streaming on the
Internet involves the analysis of a number of specific fac-
tors. Number of delayed and lost packets, rebuffering dur-
ing playback, bandwidth delivered and bandwidth received
are among the variables that should be measured on top
of the usual performance indices like end-to-end response
time, throughput and resource utilization. Furthermore, the
streaming content itself is more complex than the content of
a regular web application: a larger amount of data is trans-
ferred, the data is much more sensitive to latency, multi-
ple data types are considered (audio and video), different
default delivery protocols are involved (UDP vs. TCP) and
multiple software technologies are used (Real Media, Win-
dows Media, QuickTime).

An important concern of a streaming application de-
signer is not only the system performance but rather the
quality of service perceived by its users. Usual metrics are
focused on the static aspect of the video quality (e.g., ar-



tifacts introduced by the compression algorithm) and do
not consider the dynamic aspects of the streaming (e.g.,
video fluidity, audio-video synchronization) that influence
the perceived quality. Typically they compare the reduced
quality of a coded video-stream with a data loss compres-
sion algorithm with respect to the original non-compressed
video-stream and analyze the artifacts introduced in every
frame. Such metrics do not consider the degradation of per-
formance due to network congestion (e.g. insufficient band-
width, packet delay, packet loss).

The most accurate metrics used to evaluate the quality of
media objects received by end users are thesubjective met-
rics. Subjective metrics standardized in ITU-R Recommen-
dation BT.500 [14] have been used for over twenty years
to evaluate video quality in television services. More re-
cently, the ITU-T developed Recommendation P.910 [15]
to standardize metrics for multimedia quality assessment.
Although they are the most realistic evaluations, subjective
metrics are difficult to obtain, since they require the organi-
zation of multiple tests on several subjects.

Alternative to subject metrics are theobjective metrics.
The main purpose of objective quality assessment is to pro-
vide a set of quantitative metrics that can predict the per-
ceived quality from the user’s point of view. The goal is
to develop a metric without requiring access to the origi-
nal media.

In the last two decades, a lot of objective metrics have
been proposed to assess image and video quality. The eas-
iest way to give a quality value is to compute some sim-
ple statistics on the numerical errors between the distorted
video and a reference video.

Widely used statistics are Mean Squared Error (MSE)
and Peak Signal to Noise Ratio (PSNR). However, MSE and
PSNR do not correlate well with subjective quality mea-
sures because human perception of distortions and artifacts
is unaccounted for [8]. A major emphasis in recent research
has been given to a deeper analysis of the Human Visual
System (HVS) features [23]. Although HVS is too com-
plex to fully understand, the incorporation of even a sim-
plified model into objective measures reportedly leads to a
better correlation with the response of the human observers.
Another important factor for the development of any video
quality metric is the flexibility for practical implementa-
tions. Some of the metrics consider only some special types
of distortions or special video coding methods [34, 17]. The
implementation of a practical video quality assessment met-
ric is difficult because of the computational complexity.

Traditional objective measurement systems are focused
on the collection of data concerning the quality of digi-
tally compressed video systems, because video-stream cod-
ing may introduce visually noticeable artifacts [36].

In this paper we address several issues associated with
the problem of the performance prediction and evaluation

of video streaming applications and we analyze their im-
pact on the perceived quality of service [10, 11, 21].

The paper is organized as follows: In Section 2 the met-
rics used to evaluate video streaming are described. New
metrics able to describe the dynamic aspect of a video
streaming are introduced. We correlate subjective metrics
with measured data in order to validate the users’ perceived
quality with respect to the objective metrics.

In Section 3 we present a workload characterization
study based on the traces collected on a popular Italian
video streaming provider. Logs of either live and stored
streaming transmissions have been collected. The qualita-
tive behavior of the traffic and the correlation between live
and stored streaming behavior is also shown.

The security issues typical of video streaming environ-
ments are discussed in Section 4. The problems due to the
use of UDP and the performance degradation introduced by
TCP are considered. Digital rights management techniques
for streaming transmission are also analyzed.

Section 5 concludes the paper with a summary of our
work.

2. Performance Indices

With the shift in technology from local video-streams
(e.g., DVD) to network–transmitted video-streams (e.g.,
Video-on-Demand), a change in the types of objective met-
rics is required. Traditional objective metrics, while still
necessary, are not sufficient to measure the quality of video
streams transmitted over the Internet. In particular, errors or
losses during the transmission introduce distortions whose
effects must be considered together with the influence (e.g.,
delays) of the network system [37, 38].

In sections 2.1 and 2.2 a number of new objective met-
rics are proposed to assess video quality. The metrics are
appealing because they can be collected without the need of
the original video and because they take into account the ef-
fects of network transmission on the quality evaluation tech-
nique. Indeed, packet losses and packet delays have a strong
influence on the reduction in quality of a video-stream. To-
gether with the objective metrics, two new subjective met-
rics are proposed that can be easily derived from the objec-
tive metrics.

In section 2.3 the two derived subjective metrics are
compared against the real subjective metrics obtained from
a panel of users.

2.1. Metrics

Objective measurement methods implement algorithms
that measure video quality usually based on the comparison
of a source and a processed sequence. The algorithms, re-
ferred to as models, may incorporate characteristics of the



human visual system in an attempt to systematically mea-
sure the perceptible degradation occurring in the video.

Objective quality metrics can be classified according to
the amount of information required from both the original
and the received videos. Depending on the side information
required, three generic classes of objective metrics can be
described:

Full reference metrics (FR) The quality evaluation sys-
tem has access to both the original video and the re-
ceived video. Full-reference metrics perform a frame-
by-frame comparison between a reference video and
the video received by the end user. They require the
entire reference video to be available, usually in un-
compressed form. This is quite an important restric-
tion on the applicability of such metrics. Typical met-
rics within this class are the PSNR (Peak Signal-to-
Noise Ratio) and the MSE (Mean Square Error). The
measurement environment of this type of metric is out-
lined in Figure 1.

No-reference metrics (NR) The evaluation system has no
access to any information regarding the original video.
This makes it possible to measure video quality of
any video, anywhere in any existing compression and
transmission system. This type of metrics is the most
promising in the context of video broadcast scenario,
since the original images or video are in practice not
accessible to quality evaluation system. The measure-
ment environment of this type of metric is outlined in
Figure 2).

Reduced reference metrics (RR) Reduced-reference
metrics lie between the two type of metrics previ-
ously described. The evaluation system has access to a
limited number of side information regarding the orig-
inal video, i.e. features or descriptors extracted from
the original media. In Figure 3 the measurement envi-
ronment of this type of metric is outlined.

2.2. Experiments

In order to measure the end-to-end performance
of video-streaming applications, a client-server dis-
tributed measurement tool has been developed (Figure
4). The tool is named VPET (Video Performance Evalua-
tion Tool).

VPET has been used to describe the quality of video-
stream services as a function of the network and video-
stream parameters (e.g., available bandwidth, coding for-
mat, communication protocol, video server, frame rate, per-
centage of packet loss).

A VPET client is composed of a number of Visual Ba-
sic agents for the collection of objective and subjective mea-
surements. Each client is an enhanced and instrumented Mi-
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Figure 4. VPET architecture

crosoft Windows Media Player. The players can be used
to visualize any Microsoft Media Streaming (MMS) video.
During the visualization, the player collects a number of
objective and subjective metrics. Each client is connected
to Internet through a differentconnection type(e.g., ISDN,
xDSL, cable, backbone), from differentgeographical loca-
tionsand through differentproviders.

All the data collected by the players are stored in a cen-
tralized database and analyzed in order to extract statistics.

The metrics collected by the clients can be classified
into two categories: instantaneous and global.Instanta-
neous subjective metricsare events signaled in real-time by
the users during the visualization of a video:

• audio–video de–synchronization

• video is still

• audio is still.

Global subjective metricsare collected by VPET clients at
the end of the video. Users are asked to rate a number of
aspects about the video:

• αstart : start-up time

• αres : video-clip resolution

• αjitter : video-stream fluidity

• αaudio : audio quality

• αoverall : overall quality.

Ratings range from 0 (totally unacceptable) to 1 (complete
satisfaction).
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Figure 2. No–reference video quality measurement environm ent

Instantaneous objective metricsare collected automati-
cally by the VPET client by sampling periodically, e.g., ev-
ery second, the player engine. Consider a set ofn instanta-
neous measurements labelled from 1 ton. Each sample is
collected at time,ti with i ∈ 1 . . . n :

• f(ti): the number of frames per second (fps) received
by the client. Television and movies display video at
30 frames/sec, which is the rate at which humans dis-
cern full motion

• ptot(ti): total number of packets transmitted by the
video server since the beginning of the video up to time
ti. This information can be obtained by the player by
looking at the sequence number of each packet

• prec(ti): number of packets received correctly since the
beginning of the video up to timeti, The difference be-
tween the packets transmitted and the packets received
is caused by late and lost packets. Late packets are re-
ceived by the client’s play buffer but too late to be pro-
cessed: not only the client cannot process the pack-
ets, but also the packets steal bandwidth to other pack-
ets. Lost packets never reach the client. Both late and
lost packets have a very negative effects on audio and
video, including pixelation, jitters, frozen video, audio
popping or audio static

• b(ti): available bandwidth, measured in bits per sec-
ond (bps), at timeti.

• τi: movie time at timeti. Each frame is labelled with a
time stampτ . The player’s goal is to preserve the cor-
respondence between movie timeτ and real wall-clock
time t. In times of plentiful resources, the player can
meet the goal. When bandwidth is scarce, the player
may reduce frame quality and/or drop frames to keep
up to the pace of the movie.

Global objective metricsare measured by the VPET player
at the begin or at the end of the video.

• bmax : encoded bit rate

• fmax : encoded frame rate

• d : integer specifying the width of the video stream, in
pixels.

• tstart : startup time. Video players offers client-side
buffering in order to take into account for network
fluctuations. Buffering results in a delay at start-up
time, while the buffer fills. The startup time is the time
elapsed from the instant in which the user presses the
play button until the video begins

• T : the video duration.

Additional metrics are used as reference metrics:

• fref : reference frame rate

• dref : reference video width.

The values of the reference metrics depends on content and
type of the video clip (e.g., news, movies, sports). Video
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dref fref

(pixels) (fps)

Video conference 352 15
Static video 480 25

Dynamic video 720 25

Table 1. Reference video widths dref and
frame rates fref for three categories of videos

content can vary from static to highly dynamic [1]. Exam-
ple of static videos are video conferences, news clips or in-
terviews, where there are few changes between successive
frames. On the other hand, dynamic videos are fast chang-
ing video sequences, such as action movies or sports scenes.
According to the dynamism of the content, videos can be
classified in

• video conferences (e.g, videophone)

• static videos (e.g., news, drama and comedy movies)

• dynamic videos (e.g., action movies, sports)

The reference metrics for the above classes are shown in
Table 1.

We are now interested in deriving two subjective met-
rics, i.e.,αjitter and αstart, from the VPET objective mea-
surements. These two metrics belong to the subjective cat-
egories, but their values are obtained directly from the ob-
jective VPET measurements.

The first derived metric iŝαjitter which takes into account
the jitter, i.e., quick fluctuations in some aspects of the video
stream resulting in a video frame rate that is not stable. Jit-
ter results in a video stream with frames freezing or accel-
erating with respect to the real wall-clock time. The exam-
ple of Figure 5 shows a video with a small jitter. The video,
after a transient in which the video timeτ is slower with re-
spect to the real timet, becomes stable with video time run-
ning at the same speed as real time. On the contrary, the ex-
ample of Figure 6 shows a highly jittering video. The pro-
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Figure 5. Video with a small jitter
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Figure 6. Video with a large jitter
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Figure 7. Start–up time validation: the linear
regression indicates a value of k = 58 sec-
onds to be used in equation (2)

posed estimate for the jitter quality metric isα̂jitter

r(ti) =
τ(ti) − τ(ti−1)

ti − ti−1

i = 2 . . . n

α̂jitter =

√√√√√√

n∑

i=2

r(ti)
2

n − 1

(1)

wherer(ti) is a measure of the video and real temporal dis-
placement between two consecutive frames.

The second derived metric subjective is

α̂start =





1 −

tstart

k
tstart < k

0 tstart ≥ k
(2)

wherek is a time parameter that needs to be estimated by
real measurements (see the next section).

2.3. Validation

We selected 27 male participants for the evaluation ex-
periment, between 19 and 62 years old. It was essential to
select homogenous group of users. Indeed, users with dif-
ferent background have different expectations: we restricted
our sample to users who declred to use the Internet for at
least 1 hours per day.

Participants were asked to visualize a set of video clips
and rate the performance for each video. Participants gave
feedback on the video clips performance through:

• Interaction with the video player during the visualiza-
tion of the video clip. An interface was developed to
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Figure 8. Jitter validation: equation (1) sug-
gests a value of the coefficient αjitter = 0.4

register ratings during and at the end of the clip. The in-
terface contained grey buttons labelled ”Video is still”,
”Audio is still”, ”Audio and video are not synchro-
nized”. Participants were asked to click one of the but-
tons whenever one of the events happened.

• Compilation of a final evaluation form. A total number
of 132 evaluations have been collected: 106 measure-
ments using the university network, 8 measurements
using an ADSL connection (640 Kbit/s) and 18 mea-
surements using a dial-up connection (56 Kbit/s).

Figure 7 shows the startup subjective indicesαstart mea-
sured with VPET (dots). The linear fitting confirms the
model of (2) and suggests a value ofk = 58 seconds to
be used in thêαstart model.

Figure 8 shows, as an example, the instantaneous indices
τi (vertical axes) andti (horizontal axes) for one video clip.
The jitter model of (1) suggests a value ofα̂jitter = 0.4 con-
sistent with the subjective value ofαjitter metric provided by
the user.

3. Workload Characterization

Capacity planning techniques should be applied in or-
der to identify the adequate capacity of server and network
bandwidth to be allocated to maintain the expected response
time of a streaming application at an acceptable level. Sev-
eral solutions can be adopted. For instance, in order to avoid
site congestion and lack of bandwidth, servers may be dy-
namically added or removed depending on the intensity of
workload peaks. However, dimensioning hardware compo-
nents and the number of media servers can be done prop-
erly only if the workload to be processed is well under-
stood. Since the resource consumption of most audio/video



streams is usually constant, load variabilities in media ser-
vices are often determined only by fluctuations in the in-
put workload. Therefore, the capacity planning of stream-
ing media services requires a comprehensive and accurate
workload characterization activity.

Despite this, only a limited number of papers in the liter-
ature have tried to characterize streaming media workloads
(see e.g. [4, 24, 28, 31, 33]), and most of the research efforts
have focused on services offering stored streams to paying
customers, rather than services that broadcast live events.

In this section we present an analysis of a media service
offeringbothstored and live streams. This is innovative with
respect to previous work since we consider the mutual in-
teractions between these two kinds of workloads. Further-
more, since several companies, e.g., on-demand television
providers, offer both types of streams, we believe that our
analysis may be representative of the actual workload of a
large number of Video-on-Demand (VoD) systems.

3.1. Log Characteristics

We analyzed a set of logs from a popular Italian on-
demand television provider that offers VoD services us-
ing a dedicated WAN. Subscribers receive a set-top box
(STB) and through a graphical interface select the desired
contents. These include either popular live events (mostly
soccer matches) or stored videos. Data was collected from
two groups of servers that handle all stream requests and
monitor the activity of several thousands of STBs in the
metropolitan areas of six major Italian cities, including Mi-
lan, Rome and Turin.

We were able to obtain logs for 4 days where popu-
lar soccer matches were scheduled and for a typical day
where only stored streams were available. The workload un-
der exam consisted of two request classes:streamrequests
andSTBrequests.

Stream requests notify the VoD service that a user is re-
questing a video stream and can be classified inunicastand
multicastrequests. Unicast requests represent users asking
for a stored stream. Multicast requests are instead gener-
ated by users registering to a multicast stream to watch a
live event. It is thus reasonable for unicast requests to be
quite regular during working days, with a general increase
of the number of requests during the weekends. Within a
single day, it is also reasonable to expect an increase of the
load during evening hours. The behavior of multicast re-
quests should instead reflect the characteristics of the broad-
casted event.

Considering STB requests, these are generated by the
STB at power on or power off to register or deregister from
the VoD service. Hence,registrationandderegistrationre-
quests may be considered as an indicator of the user activity
cycle. Nevertheless, the inferred number of active streams

Type # Σ µ/30min σ/30min σ/µ

Uni Sun 48 35654 742.80 430.67 0.58
Uni Mon 48 25868 538.92 358.75 0.67
Multi Sun 48 3418 71.21 192.78 2.71

Uni w-ends 192 146511 763.07 440.02 0.58
Multi w-ends 96 10524 109.62 302.97 2.77

Table 2. Stream requests statistics: number
of requests (#), cumulative sum ( Σ), mean (µ),
standard deviation ( σ) and coefficient of vari-
ation σ/µ

Type # Σ µ/1min σ/1min σ/µ

STB Reg 240 2993 12.47 12.31 0.99
STB Dereg 240 2782 11.59 18.26 1.58
Users Rome 240 93398 389.1583 18.26 1.58
Users Milan 240 52555 218.9792 12.31 0.99
Users Turin 240 38369 159.8708 18.26 1.58

Table 3. STB requests statistics: number of
requests (#), cumulative sum ( Σ), mean (µ),
standard deviation ( σ) and coefficient of vari-
ation σ/µ

should be considered an estimate of the actual value, since
a registered STB may still be inactive without requesting
any download from the VoD service.

The characteristics of our logs are as follows. Most traces
had a coarse sampling interval, reporting cumulative statis-
tics every 30 minutes. However, for selected peak periods
(i.e., those corresponding to soccer matches) we were able
to use a sampling frequency of 1 minute. In both cases, we
did not apply any filter to avoid further reducing the size of
the sample. For some classes of requests, namely for regis-
trations and deregistrations, we were also able to discrimi-
nate the geographic area of origin of the requests. Tables 2
and 3 show the statistics for the requests considered in the
following section.

3.2. Media Workload Analysis

The behavior of stream and STB requests for the con-
sidered VoD system is shown in Figures 9(a)-(b). Figure
9(a) shows the behavior of unicast and multicast requests
for a Sunday where both stored and live streams were avail-
able. The traffic shape can also be compared with the uni-
cast traffic of the following Monday, where no live multi-
cast streams were scheduled.

As expected, for both days the arrival process of unicast
requests is similar during night hours, where the loads con-
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Figure 9. Traffic behavior for a large on-demand television s ervice offering stored and live streams

8PM 9PM 10PM 11PM 12PM
0

50

100

150

200

250

TIME

R
E

Q
U

E
S

T
S

/1
 M

IN

Registrations
Deregistrations

(a) STB requests during and after a live event (samples everyminute)

8 PM 9 PM 10 PM 11 PM 12 PM
0

100

200

300

400

500

600

700

TIME

RE
GI

ST
RA

TI
ON

−D
ER

EG
IS

TR
AT

IO
N

Rome
Turin
Milan

(b) Number of active users during and after a live event (samples ev-
ery minute)

Figure 10. Service registrations and deregistrations duri ng and after a live event

stantly decrease up to a minimum of few hundreds requests
around 6 AM. Despite the different slope of the Sunday and
Monday graphs, the decrease with respect to the maximum
in the period 12AM-6AM is very similar, with a91% de-
crease on Sunday and87% decrease on Monday.

A first significant difference is seen early in the morn-
ing hours (6AM-9.30AM), where Sunday workload shows a
740% relative growth, compared to the much smaller387%
growth on Monday. This may suggest that the large differ-
ence of unicast requests between Sunday and Monday is
due to individuals who are unable to watch TV programs
at morning during week days and with a regular sleep cy-
cle during the weekend (e.g. adult workers or children).
Therefore, such rapid growth must be taken into account
for proper dimensioning of unicast servers. Note that the

gap between Sunday and Monday traffic is partially com-
pensated in the following hours (10AM to 2.30PM), where
the Monday unicast requests grow of129%, compared to a
47% growth on Sunday.

The behavior of unicast requests in the period between
3PM and 5PM on Sunday is instead affected by the broad-
casting of the soccer matches. In fact, as shown by the graph
of multicast requests, the fluctuations of unicast requests
seem to correspond to a similar increase or decrease in the
number of multicast requests. In particular, if we linearlyin-
terpolate the missing unicast requests using the same trend
of the period 10 AM-2.30 PM, we can conclude that ap-
proximately the66% of the over3000 multicast requests
between 3PM and 5PM should be seen as unicast viewers
that moved to the multicast stream of the live event.



Sunday traffic shape after the conclusion of the live event
(5PM-12AM) has a similar behavior to that of Monday, ex-
cept for a burst around 6PM. By interpolating the Sunday
unicast traffic with the slope 10AM-9PM we would have ex-
pected approximately 1250 unicast requests at 5PM, instead
of the observed 1600. This indicates that most of the mul-
ticast population switched to unicast streams after the con-
clusion of the live event. Indeed, this proves that a strong
correlation between stored and live streams workload ex-
ists, and sudden peaks or falls in the arrivals cannot be fully
understood without comparing the two workloads.

Evidence of the burstiness of media traffic is shown in
Figure 9(b) where unicast and multicast traffics are plotted
together with their sum over two consecutive saturdays and
sundays. Among these, two had multiple live events at dif-
ferent times of the day. Once again we see on all four sam-
ples that unicast traffic decreases when the live event starts,
and shows a sudden burst at the end of the multicast stream.
Therefore, we conclude that the observation on the data of
Figure 9(a) are consistent with the behavior shown by the
system on the days of Figure 9(b).

Finally, Figures 10(a)-(b) give an idea of the behavior
of the STB traffic during the period of a live event. Figure
10(a) illustrates the spikes of this type of workload, whichis
strongly correlated to the number of users that power on the
STB to watch the soccer match. Figure 10 (b) illustrates the
number of active users for the same interval of time consid-
ered in Figure 10 (a). Each curve represents a different geo-
graphic area of origin of the requests. The decrease of active
users in the central part of the event around 9.30PM is due
to the interval between the two halves of the soccer match.
As observed above, the impact of live streams on the overall
workload is not limited to the duration of the event, but also
influences the number of active users until late night. In-
deed several customers remain registered to watch unicast
streams after the end of the soccer match. This further en-
forces our conjecture about the mutual correlation between
stored and live streaming services.

4. Security Problems

The solution of security problems is nowaday recognized
as a key enabler to the adoption of any new technology.
There are many unresolved issues in securing digital me-
dia transmissions over public transmission networks [20].

A first range of problems is caused by the fact that nearly
all video streaming protocols require a UDP port to be
opened through any firewall on the transmission path. In ad-
dition, supporting transmission of a UDP stream through a
device which performs Network Address Translation (NAT)
is difficult, since UDP is a stateless protocol. While sup-
port for stateless protocols is being implemented with var-
ious workarounds into most modern firewalls, a number of

streaming protocols and servers can switch to a TCP fall-
back transmission method if UDP is not allowed. Some
gateways for automatic translation have also been proposed
[16]. However, as it is well known, TCP transmission is not
nearly as efficient as UDP transmission. Thus, this fallback
mechanism heavily impacts on end-to-end performance.

A second problem deals with the protection of the con-
tent of the media being streamed. The development of so-
called “digital rights management” (DRM) techniques is
usually considered of foremost interest for commercial con-
tent distribution. We can identify at least two broad goals for
an effective DRM scheme:

1. conditional access to the content, meaning that only
authorized parties (e.g. those who have subscribed to
a service and paid for it) can access the streaming me-
dia

2. copy protection after the content has been delivered,
meaning that the stream cannot be saved, copied or re-
distributed except under well-specified restrictions

While granting conditional access to the media through
an appropriate use of cryptographic or scrambling tech-
niques is not difficult by itself [39], even in multicast en-
vironments [3], satisfying the second constraint is more dif-
ficult. As always, in security, we need to define an attack
model in order to evaluate and weigh the effectiveness of
the control mechanisms proposed. We can roughly distin-
guish three types of threats:

1. the casual aggressor, usually a user who has paid for
access but tries to violate the rules he has agreed to, or
who tries to make more or less legal copies of the con-
tent for a few friends; casual aggressors have limited
resources, limited technical knowledge, and are usu-
ally not highly motivated;

2. the so-called “garage pirates”, creating copies for a
small circle of friends or paying customers; more
skilled than the casual aggressors, their resources are
still limited;

3. large distributors of illegal materials, who have re-
sources and a wide market for reselling illegal copies
of copyrighted contents; skills and resources make it
difficult to design adequate protection schemes.

As of today, most “copy prevention” schemes are easily
bypassed, and work only against the first class of threats.
The only viable solutions against the other classes is to en-
force digital watermarking schemes that allow to trace back
copied works to their original source, such as watermarking
[5]. Watermarking a media means incorporating copyright
and access control informations into it in such a way that
they cannot be removed without substantially deteriorating
the quality of the content itself. This technology can also be
used, in compliant devices and programs, to enforce access



restrictions [6], or in general to trace back the illegal leakage
of information to the original source. However, a number of
attacks demonstrated the fragility of such schemese [25]. It
is still to be seen whether digital watermarking will be ac-
cepted as an element of proof by courts or not. However, in
one recent case (Palladium Music, Inc. vs. EatSleepMusic,
Inc., 398 F.3d 1193, 10th Cir., 2005) the court found dig-
ital watermarks as admissible evidence for tracking copy-
rights.

Consequently, most standards for video and au-
dio streaming and encoding today incorporate capabili-
ties for supporting DRM technologies. For instance, the
MPEG standards for video encoding and streaming spec-
ify a subsystem (IPMP, Intellectual Property Management
& Protection) which allows integration of watermark-
ing, encryption and authorization control into the media
[18]. Watermarking can also be applied on streaming me-
dia by the use of proxies, without interfering with an
existing video server infrastructure [13].

Wireless networks normally show an erratic behavior,
which makes it difficult to design efficient streaming pro-
tocols. In addition, if encryption is added, transmission er-
rors can be amplified to the point that streaming is made im-
possible. In [35] a secure wireless streaming scheme is pro-
posed. The authors use scalable video coding and packeti-
zation to overcome the wide variability in the bandwidth of-
fered by the physical transport layer, and a progressive en-
cryption scheme with resyncronization on the key frames
of an MPEG4-encoded stream, in order to avoid that a sin-
gle lost packet can cause a chain effect on the ability to de-
crypt the rest of the stream.

In [9] the diffusion of DRM technologies is studied, and
requirements and effectiveness of these schemes are dis-
cussed on the basis of an interview with various content
providers.

We can try to identify the key performance metrics for
DRM technologies:

robustness: the resistance of the proposed scheme to tam-
pering, removal and circumvention: this property has
to be evaluated end-to-end, because complex secu-
rity systems may fail to provide the required proper-
ties even if their components and algorithms, by them-
selves, are secure and fit to their role

renewability: the possibility of seamlessly substituting a
broken control technology without extensive redeploy-
ments in the infrastructure; a good example is the use
of smart-cards in satellite receivers, which allows the
substitution of keys and management algorithms and
protocols without replacing the whole receiver

cost: any DRM technology must have a cost which is infe-
rior to the reduction of losses the content provider risks
without deployment of the technology.

While the first two metrics are purely technological, the
key performance indicator is the third: to be economically
convenient, a DRM scheme must demonstrate a ROI (Re-
turn On Investment), which may be difficult to prove, if
we count all the direct and indirect costs of such technolo-
gies: research, development and deployment, but also the
perceived reduction in user freedom which result from ac-
cess control technologies of any kind.

In fact, DRM technologies adoption has been been
slowed down by a widespread discontent by users, who feel
that their fair use rights are threatened by copy and use re-
strictions imposed by DRM technologies. Hardware and
software vendors have also been reluctant to adopt these
measures, fearing that their customers would be very dis-
appointed. In fact, as discussed in [26], DRM technolo-
gies seem more oriented to restricting the rights of users
(i.e. fair use rights) than protecting the real, legal rights
of copyright holders [22]. In fact, in our broad cathe-
gorization of threats, current DRM technologies work
very well against common people, while piracy organiza-
tions are more or less unharmed by them. This fact be-
comes even more disturbing if we take into account the
copyright legislation, and in particular the heavily criti-
cized Digital Millennium Copyright Act (DMCA) [7, 12].
The DMCA, amongst other provisions, grants a spe-
cial status to any “technology” that is being used to protect
copyrighted work. It is illegal under the DMCA to dis-
cuss or develop techniques that can circumvent such
technologies. This basically means that research on vul-
nerabilities of such technologies is de facto illegal [32].A
good example of how such laws can adversely affect re-
search is the Felten case [30], in which researchers where
threatened of prosecution for a work they were present-
ing at a scientific workshop. Another good example is the
querelle between the Motion Picture Association of Amer-
ica and various individuals, concerning the distribution
of DeCSS, a decryption algorithm for the CSS (Con-
tent Scrambling System), the encryption scheme used on
DVDs [27, 29]. The issue here is evidently what Lessig calls
“code as code” [19]: computer code (the one in DRM tech-
nologies) is supported as being legally binding, well beyond
the real legal boundaries of copyright owned by the con-
tent producer.

As a final note, the real economic mechanisms of piracy
are still under dispute [2]. As more and more evidence
grows in support of the fact that online distribution of music
through peer-to-peer networks does not really harm com-
mercial distribution, all the research on Digital Rights Man-
agement techniques could become less important. In the
meanwhile, these issues must be considered as one of the
key enablers for the widespread adoption of video stream-
ing techniques in commercial applications.



5. Conclusions

In this paper we have analyzed several issues of video
streaming transmissions either live or stored. New methods
able to obtain subjective indices of the QoS perceived by
users from objective data measures have been introduced
and validated. We have shown a correlation between uni-
cast and multicast streams that should be accounted in the
design and the capacity planning of a VoD service, as well
as security issues that may impact on design decisions.
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