
Improving Self Organizing Map Performance for Network Intrusion Detection

Stefano Zanero∗

Abstract

The continuous evolution of the types of attacks against com-

puter networks suggests a paradigmatic shift from misuse

based intrusion detection system to anomaly based systems.

Unsupervised learning algorithms are natural candidates for

this task, but while they have been successfully applied in

host-based intrusion detection, network-based applications

are more difficult, for a variety of reasons, including per-

formance. We propose an architecture which implements a

network-based, anomaly based intrusion detection system,

which uses unsupervised learning algorithms. In this paper

we describe the improvements and modifications needed in

order to increase the throughput of a Self Organizing Map

algorithm and make it able to handle high dimensional input

data at a rate suitable for Intrusion Detection purposes at

network speed.

1 Introduction and motivations

The continuous evolution of the threats against com-
puter networks requires a paradigmatic shift from mis-
use based intrusion detection system to anomaly based
systems. The “misuse detection” approach, which tries
to define what constitutes an attack in order to detect
it directly, has been widely successful. Most modern in-
trusion detection tools are misuse based, but they are
increasingly showing the limits of this paradigm.

Whenever a new attack is discovered, the knowledge
base of misuse IDSs must be updated in order to
keep the systems effective. In addition, there is also
an unknown number of discovered, but undisclosed,
vulnerabilities (the so called “zero-days”) that are not
available to the experts for analysis and inclusion in the
knowledge base [1]. Most attacks are also polymorph,
and skilled attackers can exploit this polymorphism to
evade detection [2, 3].

Since, by their own nature, Intrusion Detection Sys-
tems are intended to be a complementary security mea-
sure, which can detect the failures of other measures,
the inability to detect unknown attacks or new ways to
exploit an old vulnerability is an unacceptable limita-
tion. The obvious solution seems then to implement an
anomaly detection approach, modeling what is normal

∗Dipartimento di Elettronica e Informazione - Politecnico di
Milano. E-mail: zanero@elet.polimi.it

instead than what is anomalous. This is surprisingly
similar to the earliest conceptions of what an IDS should
do [4].

However, while a number of host based intru-
sion detection systems have been proposed and imple-
mented, both in literature and in practice, network
based anomaly detection is still an open field for re-
search. In a previous work [5], we proposed a novel ar-
chitecture for applying unsupervised learning and data
mining techniques to a network based IDS. Unsuper-
vised learning techniques are natural candidates for this
type of task, but while they have been successfully ap-
plied in host based intrusion detection [6], their appli-
cation to network based systems is still troublesome,
mainly due to the problems of input selection, data di-
mensionality and throughput.

In this paper we describe the improvements and
modifications we applied to a Self Organizing Map
algorithm in order to increase its throughput to handle
high dimensional data at a speed suitable for Network
Intrusion Detection purposes. We describe various
heuristics that can be used, and their effect on the
accuracy of the algorithms. We also propose some
performance tests that demonstrate that our heuristics
do not diminish the overall effectiveness of the IDS.

The remainder of the paper is organized as follows:
in Section 2 we describe the proposed architecture of
our IDS; in Section 3 we describe how the curse of di-
mensionality affects the performance of the first stage
of the architecture; in Section 4 we describe our heuris-
tics and the associated performance improvements; in
Section 5 we discuss the problem of significance of eu-
clidean metrics in our high-dimensional space; in Sec-
tion 6 we report on the experimental validation results
for the improved algorithms; finally, in Section 7 we
draw our conclusions and outline some future work.

2 The proposed architecture

In [5] we proposed an innovative architecture for a
network based anomaly detection system, based on
unsupervised learning algorithms. We chose to focus on
this class of algorithms because they exhibit properties
that are particularly well suited for anomaly detection,
in particular the ability of detecting outliers and of
building a model of “normality” without the need of

a priori knowledge input.
If we think of the network packet flow as a stream

of observations (packets), then anomaly detection is
an instance of the outlier detection problem. An
outlier is classically defined as follows: “an observation
that deviates so much from other observations as to
arouse suspicions that it was generated by a different
mechanism” [7]. Here, the “different mechanism” is an
attacker who is trying to subvert a network service.

However, outlier detection on the flow of TCP/IP
packets is not an easy task. Each packet has a vari-
able dimension (which over an Ethernet link for instance
varies between 20 and 1500 bytes), while unsupervised
learning algorithms work well on multivariate data with
a fixed number of features. The network and transport
layer headers can be easily normalized and translated to
a fixed number of features. It is important to note, how-
ever, that in the case of connection-oriented protocols
(most notably TCP) the transport layer headers may
need inter-correlation in order to be fully deciphered.

On the contrary, the data carried by the packet
(the payload) cannot be easily translated into a fixed
set of features, since each different application layer
protocol would require its own set of features, increasing
complexity and decreasing generality. In addition it
would require a full reconstruction of traffic sessions,
which would expose the IDS to reconstruction problems,
possibly leading to attack windows [2].

In addition, the computational complexity of unsu-
pervised learning algorithms scales up steeply with the
number of considered features, and the detection capa-
bilities decrease correspondingly (this is known as the
curse of dimensionality). Only a few algorithms can
be optimized to treat data with many thousands of di-
mensions, but only in the case that they are sparse (for
instance, a word/document incidence matrix in a doc-
ument classification and retrieval problem [8]). We are
instead dealing with dense data.

Most of the existing researches on the use of unsu-
pervised learning algorithms for network intrusion de-
tection purposes solve this problem by discarding the
payload and retaining only the information in the packet
header (e.g. [9, 10, 11, 12]) . This is clearly not an op-
timal solution, since it leads to an unacceptable infor-
mation loss: most attacks, in fact, are detectable only
by analyzing the payload of a packet, not the headers
alone. These algorithms show nevertheless interesting,
albeit obviously limited, intrusion detection properties.

In order to solve this problem, we developed the
concept of a two-tier intrusion detection system (shown
in Figure 1), which allows us to retain at least part
of the information related to the payload content. In
the first tier of the system, an unsupervised clustering

algorithm classifies the payload of the packets, observing
one packet at a time and “compressing” it into a single
byte of information. This classification can be added
to the information decoded from the packet header (or
to a subset of this information), and passed on to the
second tier. On most networks, the traffic belongs to
a relatively small number of services and protocols,
regularly used, and a good learning algorithm can map
it onto a relatively small number of clusters.

The second tier algorithm instead takes into consid-
eration the anomalies, both in each single packet and in
a sequence of packets. It is worth noting that most of
the solutions proposed by previous researchers in order
to analyze the sequence of data extracted by the packet
headers could be used as a second tier algorithm, com-
plemented by our first tier of unsupervised clustering.

3 The curse of dimensionality in the first stage

The first tier algorithm receives in input the payload of
a TCP or UDP over IP packet: on an Ethernet segment
this means up to 1460 bytes of data. Its role is to clas-
sify such information in a “sensible” way, which means
that it should, in principle, keep as much information as
possible for the second tier algorithm about the “simi-
larity” between packets. Obviously, since our end goal
is to detect intrusions, the classification should show
mainly the property to separate packets with anoma-
lous or malformed payload from normal packets, and
should also divide the payloads reflecting the divisions
between protocols as closely as possible. “The group-
ing of similar objects from a given set of inputs” [13] is
obviously a typical clustering problem.

We have shown [5] that a Self Organizing Map
(SOM) algorithm [14] is indeed able to sensibly cluster
payload data, discovering interesting information in an
unsupervised manner. Our research is the first attempt
to cluster packet payloads to obtain meaningful results.
A previous research showed that neural algorithms can
recognize protocols automatically [15], while another
paper later independently confirmed that the payload
of the packets indeed shows some interesting statistical
properties [16].

There are multiple reasons for choosing a SOM for
this purpose. A SOM is a hard-competitive, neural
based algorithm, which is capable to map a high-
dimensional input space onto a low-dimensional (usually
bi-dimensional) neuron space. The algorithm is robust
with regard to the choice of the number of classes to
divide the data into, and is also resistant to the presence
of outliers in the training data, which is a desirable
property: in real-world situations, the training data
could already contain attacks or anomalies and the
algorithm must be capable of learning regular patterns

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/ICMP...

PAYLOAD
(upper layer protocol data)
Ethernet: max. 1460 byte

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/ICMP...

PAYLOAD
(upper layer protocol data)
Ethernet: max. 1460 byte

LAYER 3
header

IP

LAYER 4
header

TCP/UDP/ICMP...

PAYLOAD
(upper layer protocol data)
Ethernet: max. 1460 byte

TIM
E

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

Headers are decoded
using domain knowledge

F
IR

S
T

 S
T

A
G

E

An unsupervised
learning algorithm

classifies the payload

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

Decoded
Header Data

(IP, ports, flags)

Payload
Classification

(from first stage)

TIME

A rolling window of packets

SECOND STAGE
(time correlation and anomaly detection)

Figure 1: The two-tier architecture of the IDS, comprising a tier of unsupervised clustering followed by a tier of
outlier detection.

out of a “dirty” training set. In addition, we have
compared various algorithms and shown that the SOM
had the best performance trade-off between speed and
classification quality.

Unluckily, the curse of dimensionality hits heavily
against the first tier. The second tier is not a problem,
being required to handle a multivariate time series with
a comparably small number of features (up to a maxi-
mum of about 30). There are alternative algorithms for
clustering which are much faster in the learning phase
than SOM; for example, the well known K-means algo-
rithm is one of the fastest. But at runtime even K-means
is not more efficient than a SOM, so we cannot solve the
problem by choosing a different algorithm.

A traditional approach to the problem would use di-
mension reduction techniques such as dimension scaling
algorithms [17] or Principal Component Analysis [18].
But our experiments demonstrated that they are quite
ineffective in this particular situation, since by their na-
ture they tend to “compress” outliers onto normal data,
and this is exactly the opposite of what we want to
achieve.

4 Improving the performance of the SOM
algorithm

Since no alternative solution was viable, we developed
various approximate techniques to speed up the SOM
algorithm. The reference machine for our tests is an
Athlon-XP 3200 based computer with 1 GB of DDR
RAM, running GNU/Linux with a 2.6 kernel. All the
tests, unless otherwise stated, refer to a SOM with
square topology, and a size in the space of neurons of
10 × 10. The test are conducted on TCP packets, as
they constitute over 85% of Internet traffic.

The data used for training and testing the proto-
type are subsets of the “1998 DARPA IDS Evaluation
dataset”, which is well commented and described by a
master’s thesis [19]. In [20] there is a detailed analysis of
the shortcomings of this traffic sample set, and we share
many of the author’s observations: no detail is available
on the generation methods, there is no evidence that the
traffic is actually realistic, and that spurious packets, so
common on the Internet today, are not taken into ac-
count. On the other hand, whenever we need to test the
capability of our prototype of detecting attacks mixed
in background data, we need to do this under test condi-

tions, with clearly labeled background data, and in spite
of its shortcomings the DARPA dataset fulfills this func-
tion very well. However, we positively validated most
of our results using also smaller dumps collected on our
own internal network.

As we can see from the first line of values in Table
1, the throughput of an implementation of the Kohonen
algorithm on our hardware and software configuration
is on average of 3400 packets per second, which is not
acceptable for an IDS monitoring a modern network.

We tried to develop heuristics for speeding up the
computation, introducing minimal errors in the classi-
fication. The idea behind our heuristic is simple. Let
N be the number of classes, and d the number of di-
mensions of the data. At runtime, the SOM algorithm
consists simply of N evaluations of the distance func-
tion: in our test implementation, an euclidean distance
function over d dimensions. Since the number of com-
putations is N ·d, in order to speed up the computation
we can try to reduce d by applying any dimensional-
ity reduction technique: this, as we said before, can-
not be done meaningfully via dimensionality reduction
techniques. However, since just a few packets contain
a high number of bytes of payload, we can try to use
just the first d′ < d dimensions. Further experimental
evaluation would then of course be required in order to
understand if the “reduced” payloads carry the same
information value as the complete packets.

If we do not want to reduce d, we must try to reduce
the number of evaluations N . A way to do this is
to pre-compute a grouping of the N centroids of the
classes in K < N super-clusters, and then to select
the winning neuron in a two-step procedure. First, we
determine which of the super-clusters the observation
belongs to; and then we evaluate the distance function
just over the N ′ < N neurons belonging to the winning
super-cluster. The algorithm is heuristic, since it can
happen that the best matching neuron is not in the best
matching super-cluster, but as we will see the error rate
is very low. Obviously the best performance gain with
this heuristic happens if each of the K super-clusters is
formed by ∼ N/K neurons, since the average number
of computations becomes d · (K + N/K) which has a
minimum for n =

√
N . If the clusters are not balanced

the worst case computational cost is higher, and this
leads to a lower overall throughput. For smaller values
of K the algorithm would be on average slower, and the
error rate statistically would be slightly lower.

To form the super-clusters, a first näıve idea would
be to exploit the map structure, which tends to keep
“close” to each other the neurons which are close in the
map space. However, this does not work very well ex-
perimentally, probably because of the high dimension-

ality of the feature space, causing a 35% error rate with
N = 3, and even 60% with N = 10. Thus we resort to
a K-means approach.

However, we must overcome two different issues in
doing this. A first issue has to do with the nature of
K-means, which is inherently initialization dependent,
and prone to create very unbalanced cluster. Experi-
mentally, with N = 100, using K ≥ 4 does not create
a balanced structure of clusters, unless we correct the
randomness of the algorithm. Some authors proposed,
in order to eliminate these weaknesses, the “global K-
means” algorithm [21], which repeats K-means with all
the possible initializations. We use a different and faster
approach, by using the algorithm a fixed number m of
times, and choosing the distribution in classes which
minimizes the average expected number of operations,
roughly approximating the probability that an observa-
tion falls into the i-th super-cluster as proportional to
the fraction Ni/N (where Ni is the number of neurons
in the i-th super-cluster). In Table 1 we refer to our
variant of the K-means algorithm as “K-means+”, and
the column labeled “Crossv.” reports the parameter m
(number of runs of the K-means algorithm).

A second, more difficult issue, is how to deal with
the training phase. During the training phase the
neurons change their position, so theoretically we should
repeat the K-means algorithm once for each training
step. We can avoid to do so, and fix an arbitrary
update frequency, a number of step after which we will
recalculate the position of the centroid. As an additional
attempt to reduce the cost of the K-means step, we
decided to initialize the position of the K centroids to
the same position they held before, even if this could
lead the convergence to a local optimum, creating a
non-optimal clustering. Our tests showed that in each
case the cumulative approximations introduced by the
algorithm make the training very unstable, leading to
results which are not compatible with the ones obtained
by normal training, and in which the properties of
outlier resilience and robustness of the SOM algorithm
are impaired. We are working to find a way to overcome
these problems without sacrificing the throughput gain,
but for now, the only way to speedup the throughput is
to lower the number of dimensions.

In Table 1 we report the runtime throughput and
the error rate of the algorithm, evaluated in packets
per second, depending on different combination of the
parameters, namely the number of bytes considered for
each packet, the usage of an heuristic, the parameter
K for the K-means algorithm used in the heuristic and
the use of cross-validation repetitions. The results have
been validated over multiple “days” of the DARPA
dataset.

Max bytes per packet Heuristics K Crossv. Packets/sec. Error %
1460 None - - 3464.81 -
1460 K-means 10 No 8724.65 0.8
1460 K-means+ 5 10 5485.95 0.4
1460 K-means+ 10 10 10649.20 0.8
800 None - - 4764.11 -
800 K-means+ 5 10 9528.26 0.5
800 K-means+ 10 10 15407.36 1.0
400 None - - 8400.45 -
400 K-means+ 5 10 28965.84 0.6
400 K-means+ 10 10 30172.65 1.2
200 None - - 10494.87 -
200 K-means+ 5 10 51724.70 0.8
200 K-means+ 10 10 65831.45 2.3

Table 1: Throughput and errors during runtime phase, calculated over multiple runs of the algorithm over different
days of the DARPA dataset.

In order to evaluate the results, we refer to a well
known study of the statistical properties of Internet traf-
fic [22]. Analyzing the traffic flowing through an Inter-
net Exchange datacenter, they show that approximately
85% of the traffic is constituted by TCP packets, and
that a large proportion of TCP packets are 40 bytes
long acknowledgments which carry no payload (30% to
40% of the total TCP traffic). Zero-size UDP pack-
ets, on the contrary, are almost non-existant. Since the
first stage analyzes only packets with a non-null pay-
load, almost 30% of the total traffic on the wire will not
even enter it. The average size of a TCP packet is 471
bytes, of a UDP packet 157, and the overall average is
approximately 420 bytes. It is also known from theoret-
ical modeling and practical experience that an Ethernet
network offers approximately 2/3 of its nominal capac-
ity as its peak capacity. This means that a saturated
10 Mbps Ethernet LAN carries about 2.000 packets per
second. Other statistics suggest that this value could
be higher, up to 2.500 pps.

From Table 1, we can see that the original SOM
algorithm, considering the full payload of 1460 maxi-
mum bytes per packet, with no heuristics, operates at a
speed that is acceptable for use on a 10 Mb/s Ethernet
network, but insufficient for a 100 MB/s network. How-
ever, using the K-means algorithm with 10 classes and
no cross-validation, we obtain a much higher through-
put (more than three times higher than the original
one) but also a 0.7% error rate. Introducing K-means+
and crossvalidation, we obtain a better tradeoff between
throughput and error rate, improving the former with-
out compromising the latter. A speed of 10.500 pack-
ets/second is enough to handle a normal 100 Mbps link
(considering also the presence of empty packets).

If necessary, performance could also be improved
by reducing the number of bytes of the payload. This
could evidently impact heavily against the recognition
capabilities of the algorithm.

5 Choosing a meaningful metric

In recent researches, the effect of the curse of dimen-
sionality on the concept of “distance metrics” has been
studied in detail. In high dimensional spaces such as the
one we are considering, the data becomes very sparse.
Recent research results [23, 24] show that in high di-
mensional spaces the concept of proximity and distance
may not be meaningful, even qualitatively.

Let Dmaxd be the maximum distance of a query
point to the points in a d-dimensional dataset, and
Dmind the minimum distance, and let Xd be the
random variable describing the data points. It has been
shown, under broad conditions, that if

limd→∞ var

(‖ Xd ‖
E[‖ Xd ‖]

)

then
Dmaxd −Dmind

Dmind

This means, plainly, that in high dimensional space
the difference between the distance of a query point to
the farthest and to the nearest point in the dataset
tends to be of a smaller order of magnitude than
the minimum distance: in other words, the nearest
neighbor identification is unstable and does not give
much information.

Most of the hypotheses used in the demonstration
do not hold for our type of variables. We have exper-
imentally observed that in our setup the described ef-

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

4

Class

N
um

be
r

of
 P

ac
ke

ts

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

Class

N
um

be
r

of
 P

ac
ke

ts

Figure 2: Comparison between the classification of a window of traffic and the traffic destined to port 21/TCP
by a 10x10 SOM

fect does not happen: most points are extremely well
characterized into dense and compact clusters. In or-
der to better understand if this condition applied to our
dataset, we recursively filtered out the most compact
clusters and the ”farthest” centroids, and analyzed the
results, and in each case the difference between Dmin
and Dmax was still significant. We thus concluded that
the effect observed in the cited articles does not apply to
our particular situation, probably because we are work-
ing in a compact region where the maximum possible
distance between two different points is

√
2552 × 1460.

It has also been reported that in high dimensional
spaces the L1 metric, or “Manhattan distance”, behaves
considerably better than the usual euclidean metric we
applied [24]. In [25] distance metrics with a fractional
index fε(0, 1) are also proposed.

On the basis of these suggestions, we explored
the application of different distance metrics and their
effects on the classification of packets. However, in our
particular application the use of these alternate distance
seems to lump all the data in a few cluster, diminishing
the overall recognition capabilities of the algorithm.

6 Recognition capabilities of the modified
algorithm

In order to evaluate the recognition capabilities of the
new algorithm, we must see if it can still usefully charac-
terize traffic payloads for different protocols, and detect
anomalous attack payloads from normal payloads. In
Figure 2 we present a demonstration of the recognition
capabilities of a 10×10 Self Organizing Map that creates
a division of the data in 100 clusters. The network was

trained for 10.000 epochs on TCP packet payloads. The
histograms represent the number of packets (on y-axis)
present in each cluster (on x-axis). Here and in the fol-
lowing, for graphical reasons, the number of packets on
y-axis may be differently scaled in the various graphs.
In Figure 2 we suppressed from the output the represen-
tation of classes 90 and 93, which are the most crowded
and less characterized clusters in the classification, for
better display.

On the left handside, we can see the classification of
a whole window of traffic. On the right handside, we can
see how the network classifies the subset of the packets
with the destination port set to 21/TCP (FTP service
command channel). It can be observed how all the
packets fall in a narrow group of classes, demonstrating
a strong, unsupervised characterization of the protocol.

In Figure 3 we present the result of the same test
using the modified algorithm for runtime recognition.
Also in this case, we can see the same strong characteri-
zation of the protocol (the similarity between the graphs
is striking, but not surprising, since the error rate is ap-
proximately 1%). The same situation happens for all
the cases we examined and compared, granting that the
protocol characterization property is well preserved by
the heuristics.

The capability to detect anomalous packets is also
preserved. We analyzed how the SOM classifies packets
from the attacks contained in the DARPA datasets.
For example, let us discuss the case of a race condition
and buffer overflow bug in the “ps” command, which is
exploited over a perfectly legitimate telnet connection.
99.76 % of packets destined to TCP port 23 fall in classes

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

4

Class

N
um

be
r

of
 P

ac
ke

ts

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

Class

N
um

be
r

of
 P

ac
ke

ts

Figure 3: Comparison between the classification of a window of traffic and the traffic destined to port 21/TCP
by a 10x10 SOM with our modified algorithm.

91 and 95, and all of them fall between class 90 and 95.
The packets containing the attack fall instead in classes
45, 54, 55, 65, 71, 73 and 82, which are not normally
associated with DPORT 23. This happens consistently
over each instance of the attack.

A similar, albeit less defined, situation happens in
the case of a buffer overflow in the “sendmail” MTA
daemon. The packets destined to port 25 are less
characterized, but over 90 % of them fall into 7 classes.
The attack packets fall instead into three different
classes that contain less than 3% of the normal packets
destined to port 25. This helps us to understand that
an important requirement for the second stage detection
algorithm will be to keep track of anomaly scores in the
recent past.

In order to test the algorithms on newer attacks, we
ran the same SOM on the packet captures of some FTP
server attacks (a format string wu-ftpd bug exploit, a
globbing denial-of-service, a buffer overflow attack). In
each case the anomalous payloads fall outside of the
narrow characterization we have seen in Figures 2 and
3. The results we presented in [5] are thus preserved
while using the modified, faster algorithm.

7 Conclusions and future work

We have described the challenges we met while imple-
menting an innovative model of anomaly based network
intrusion detection system, completely based on unsu-
pervised learning techniques. We have described the
overall architecture of the system and how the curse of
dimensionality requires an appropriate resolution for a
working implementation of the first stage of unsuper-

vised clustering. By the means of various techniques,
we improved the runtime efficiency of the algorithm,
obtaining a throughput rate almost three times higher
than the original one, if we are willing to accept a mis-
classification rate of about 0.8%, and twice as high than
the original one with a very small misclassification rate
of 0.4%, without truncating the number of the bytes
of the payload examined by the algorithm. We have
studied how these errors affect the algorithm detection
capabilities, and concluded that our heuristically modi-
fied implementation works as well as the original version
of the SOM. Having thus solved most of the challenges
for the design of the first tier, our future work will fo-
cus on the choice and implementation of the second tier
of learning, and on the empirical evaluation of the IDS
under practical workloads.

Acknowledgments

This work was partially supported by the Italian FIRB
Project “Performance evaluation for complex systems”.
We need to thank prof. Sergio M. Savaresi, prof.
Salvatore J. Stolfo and the colleagues Giuliano Casale
and Roberto Turrin for their precious suggestions for
improvement over our previous work. We also need
to thank warmly our student Matteo F. Zazzetta for
his invaluable support in software development and lab
testing, and the anonymous reviewers for their helpful
and knowledgeable comments.

References

[1] Stefano Zanero. Detecting 0-day attacks with learning

intrusion detection systems. In Blackhat Briefings USA
2004, 2004.

[2] Thomas H. Ptacek and Timothy N. Newsham. Inser-
tion, evasion, and denial of service: Eluding network
intrusion detection. Technical Report T2R-0Y6, Se-
cure Networks, Calgary, Canada, 1998.

[3] Giovanni Vigna, William Robertson, and Davide
Balzarotti. Testing network-based intrusion detection
signatures using mutant exploits. In CCS ’04: Pro-
ceedings of the 11th ACM conference on Computer and
communications security, pages 21–30. ACM Press,
2004.

[4] J. P. Anderson. Computer security threat monitoring
and surveillance. Technical report, J. P. Anderson Co.,
Ft. Washington, Pennsylvania, Apr 1980.

[5] Stefano Zanero and Sergio Savaresi. Unsupervised
learning techniques for an intrusion detection system.
In Proceedings of the 14th Symposium on Applied
Computing, ACM SAC 2004, 2004.

[6] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On
the detection of anomalous system call arguments. In
Proceedings of ESORICS 2003, Oct. 2003.

[7] D. Hawkins. Identification of Outliers. Chapman and
Hall, London, 1980.

[8] Scott C. Deerwester, Susan T. Dumais, Thomas K.
Landauer, George W. Furnas, and Richard A. Harsh-
man. Indexing by latent semantic analysis. Jour-
nal of the American Society of Information Science,
41(6):391–407, 1990.

[9] M.V. Mahoney and P.K. Chan. Detecting novel at-
tacks by identifying anomalous network packet head-
ers. Technical Report CS-2001-2, Florida Institute of
Technology, 2001.

[10] Dit-Yan Yeung and Calvin Chow. Parzen-window
network intrusion detectors. In Proceedings of the
16th International Conference on Pattern Recognition,
volume 4, pages 385–388, aug 2002.

[11] K. Labib and R. Vemuri. NSOM: A real-time network-
based intrusion detection system using self-organizing
maps. Technical report, Dept. of Applied Science,
University of California, Davis, 2002.

[12] T. Lane and C.E. Brodley. Temporal sequence learning
and data reduction for anomaly detection. ACM
Trans. on Information and System Security, 2(3):295–
331, 1999.

[13] J. A. Hartigan. Clustering Algorithms. Wiley, 1975.
[14] T. Kohonen. Self-Organizing Maps. Springer-Verlag,

Berling, 3 edition, 2001.
[15] K.M.C. Tan and B.S. Collie. Detection and classifi-

cation of TCP/IP network services. In Proc. of the
Computer Security Applications Conf., pages 99–107,
1997.

[16] Ke Wang and Salvatore J. Stolfo. Anomalous payload-
based network intrusion detection. In RAID Sympo-
sium, September 2004.

[17] T. F. Cox and M. A. A. Cox. Multidimensional Scaling.
Monographs on Statistics and Applied Probability.
Chapman & Hall, 1995.

[18] I. T. Jolliffe. Principal Component Analysis. Springer
Verlag, 1986.

[19] K. Kendall. A database of computer attacks for the
evaluation of intrusion detection systems. Master’s
thesis, Massachussets Institute of Technology, 1998.

[20] John McHugh. Testing intrusion detection systems:
a critique of the 1998 and 1999 DARPA intrusion
detection system evaluations as performed by lincoln
laboratory. ACM Transactions on Information and
System Security, 3(4):262–294, 2000.

[21] A. Likas, N. Vlassis, and J. J. Verbeek. The global
k-means clustering algorithm. Pattern Recognition,
36(2), 2003.

[22] S. McCreary and K. Claffy. Trends in wide area ip
traffic patterns - a view from ames internet exchange.
In Proceedings of ITC’2000, 2000.

[23] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrish-
nan, and Uri Shaft. When is “nearest neighbor” mean-
ingful? Lecture Notes in Computer Science, 1540:217–
235, 1999.

[24] Alexander Hinneburg, Charu C. Aggarwal, and
Daniel A. Keim. What is the nearest neighbor in high
dimensional spaces? In The VLDB Journal, pages
506–515, 2000.

[25] Charu C. Aggarwal, Alexander Hinneburg, and
Daniel A. Keim. On the surprising behavior of dis-
tance metrics in high dimensional space. Lecture Notes
in Computer Science, 1973, 2001.

