
A methodology for the repeatable forensic analysis of
encrypted drives∗

Cory Altheide
†

IBM ISS
Mountain View, CA

caltheide@us.ibm.com

Claudio Merloni
Secure Network S.r.l.
Agrate Brianza, Italy

c.merloni@securenetwork.it

Stefano Zanero
‡

DEI - Politecnico di Milano
Milano, Italy

zanero@elet.polimi.it

ABSTRACT
In this paper we propose a sound methodology to perform
the forensic analysis of hard disks protected with whole-disk
encryption software, supposing to be in possession of the
appropriate encryption keys. We demonstrate how to cre-
ate a forensically sound clone-copy of the seized media, and
how to access the information contained in the media in a
repeatable way, minimizing the usage of unverified and pro-
prietary software. We discuss the impact of such encryption
solutions on the capability of forensic analysis software to
reconstruct deleted files. We propose and perform scientific
tests for validating each step of our proposed procedure.

Categories and Subject Descriptors
K.5.m [Legal Aspects of Computing]: Miscellaneous—
computer forensics; K.6.5 [Management of Computing
and Information Systems]: Security and Protection—
Unauthorized access (e.g., hacking, phreaking); E.5 [Files]:
[Organization/structure]

General Terms
Documentation, Experimentation, Legal Aspects

Keywords
Computer forensics, whole disk encryption, cybercrime, data
recovery.

1. INTRODUCTION
The concern for the security of data stored on lost or stolen

laptops brings a growing number of organizations to the use

∗Proceedings of the ACM SIGOPS European Workshop on
System Security (EUROSEC), Glasgow, Scotland, March
31, 2008
†Mr. Altheide was with Google Inc. during part of the work
described in this paper.
‡Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EUROSEC ’08 Glasgow, Scotland
Copyright 2008 ACM 978-1-60558-119-4 ...$5.00.

of whole-disk encryption software. This, in turn, creates a
number of issues for the forensic analysis of such encrypted
media. A first issue is, obviously, that if the keys cannot
be retrieved such evidence is not accessible to the analyst.
Previous research has addressed this problem, suggesting to
capture the keys from memory with live forensics [14], or
through other strategies [7]. However, even once the keys
have been obtained, a proper, standard procedure must be
adopted to properly execute a forensically sound analysis of
the seized encrypted media.

A common way to deal with this issue is to perform foren-
sics in a live fashion [10], however in some legislative frame-
works performing such an analysis may entail unwanted con-
sequences, or may not be fully acceptable in a court of law
because of the issue of repeatability. We found out that, on
the other hand, a proper methodology for handling, decrypt-
ing and accessing the encrypted media once the key has been
obtained was not documented or addressed in literature

Therefore, in this paper we propose a forensic method-
ology to perform such analysis, under the hypothesis that
we are in possession of the keys. We discuss how to create a
forensically sound clone-copy of the seized media and how to
access the information stored inside such copy, while min-
imizing the usage of unverified, proprietary software. We
discuss the impact of the use of encryption software and of
our proposed procedure on the capability of forensic analysis
software to reconstruct deleted files. We also propose tests
that can be used for validation of each step of our proposed
procedure.

The remainder of this document is structured as follows:
in Section 2 we give a clear definition of the problem and
the questions that we want to answer. In Section 3 we out-
line our proposed methodology. In Section 4 we illustrate
our experimental validation results. Finally, in Section 5 we
draw our conclusions.

2. PROBLEM STATEMENT
The problem we needed to address was to determine if and

how it is possible to properly execute a forensically sound
analysis of a seized computer, where the hard-disk has been
protected with whole-disk encryption.

In particular, we were asked three questions (in the con-
text of an investigation conducted by an Italian court):

1. Is it possible to create a forensically sound clone-copy
of the seized media? Which procedure can be adopted
to ensure integrity?

2. Is it possible to access the information contained in

the media? Is it possible to do so in a repeatable,
scientifically sound way? Is it possible to ensure the
integrity of the data extracted from such media?

3. What is the impact of such encryption software on
forensic reconstruction techniques [5, 11], e.g. the re-
trieval and reconstruction of deleted files and data?

It is important to note that we had full access to decryp-
tion keys and passwords, as the party subject to seizure was
cooperating with the law enforcement: this was not the core
issue we were presented with.

In a case where the party subject to seizure is not willing
(or is unable) to cooperate with law enforcement, before ex-
ecuting the procedures outlined below, keys would need to
be retrieved, unless a vulnerable cryptographic algorithm,
or a vulnerable implementation, had been used. Keys could
be captured, for instance, in a live forensics fashion as sug-
gested in [14, 3]. A recent paper also suggests that keys can
be extracted from the hardware of seized computers, even
if shut down, through an unconventional procedure [15]. In
general, we found that a number of previous works have
dealt with the issue of obtaining encryption keys, or at least
noted it, while the issue of proper handling and access to
encrypted media once the key has been obtained was com-
pletely forgotten.

It must also be noted that in the case of encryption ap-
plied to files (as opposed to whole media) detecting that a
file is encrypted, and not simple gibberish, obtaining the
keys, and obtaining an appropriate decryption tool is every-
thing that a forensic analyst needs to do, and this case has
already been examined by a number of authors [21, 7, 13]
which all offer more or less the same suggestions. In some
cases these procedures have been intuitively extended to en-
crypted partitions or drives [9, 8], but without considering
the additional questions on the integrity of the evidence that
this shift entails. For this reason we set out to create a sound
and documented methodology for obtaining a plaintext ver-
sion of the disk, which was evidently missing in literature.

3. PROPOSED METHODOLOGY

3.1 Considerations on cloning
Creating a forensically sound clone copy of the evidence,

in order to minimize the handling of the original, is an ex-
tremely well established procedure [22, 17, 20, 11]. Cloning
an encrypted media is not different, provided that the en-
cryption has not been applied at hardware level. After
properly connecting the original media to a computer, us-
ing write-blocking hardware, using an open source operat-
ing system (completely documented and analyzable in any
part), and open source software validated for forensic use,
the proper sequence of operations is:

• hashing of the source device

• clone-copy of the source device to a bitstream image

• hashing of both the source device and the bitstream
image

The checksums at the end of the process should be all cor-
respondent and correspondent to the original checksums of
the source devices, proving that the evidence has not been

altered, and that the clone-copy is identical to the origi-
nal evidence. From this point on, every operation can and
should be conducted on the clone copy.

If a hardware encryption device has been used the problem
of how to acquire a bitstream image for forensic use is more
complex. For instance, this could very well be the case with
applications of Trusted Computing in the near future [3]. In
[16] the authors, who are discussing the implications of such
technology on forensic investigations, fail to recognize it as
a problem. A solution of this problem is beside the scope of
this paper, but it will be the objective of our future work in
this area.

3.2 Extraction of data: open source software
vs. proprietary software

As it is well known from literature, it is important in
forensic analysis to use only software and hardware which
has been properly and thoroughly validated for forensic use
[12]. In particular, the use of open source software [19, 4, 18]
is commonly recommended in the academic world, since it
makes every step of the reconstruction process verifiable. On
the other hand, proprietary software can lead to verifiable
results, provided that the manufacturer gives a thorough
documentation and test cases demonstrating what their soft-
ware does, and that the forensic community is made able to
verify their claims (e.g. through disclosure of the source
code of the proprietary tools).

However, if a proprietary software solution for whole-disk
encryption is used, the forensic analyst has no option but to
use the corresponding closed source, proprietary application
suites to get a cleartext bit-stream image of the media for
further analysis, if possible; or in the worst case, the analyst
needs to explore the image from within, using the decryption
software itself to access the data. In neither case the vendor
is likely to provide documentation of forensic soundness of
their proprietary tools. Without exploring this issue (which
would lead us away from the focus of the paper), we may
note that customers who are deploying a full-disc encryp-
tion solution should ask their vendor an appropriate answer
to these issues, with certified procedures and verifiable soft-
ware, in order to avoid future problems.

Even in the case that encryption algorithms and formats
used are public (as it is the case, e.g., for SafeGuard Easy),
decrypting such a disk without resorting to the vendor’s own
software is typically unfeasible, as it would entail an intense
reverse engineering work to create a suitable decryptor based
on the available information.

Of course, the principles of minimality and necessity of the
interaction with the evidence should apply here: therefore,
we need to establish a procedure which minimizes the use of
proprietary and unverified software. We also need to make
the access and decryption repeatable, and to verify insofar as
possible the correspondence between the encrypted original
and the decrypted version of the file system.

In many cases (as it is the case with the software we an-
alyzed), the vendor offers a way to permanently decrypt a
drive. Usually, this comes in the form of a boot disk which
can be used, along with the decryption keys of the user or
with a master decryption key, to execute the decryption. If
this is the case, it is possible to use the following procedure
to obtain a cleartext version of the media:

• clone-copy of the encrypted bitstream image to a work
image;

• hashing of both images for verification;

• using appropriate tools, the work image can be con-
verted to a format suitable for execution in a virtual
machine environment; using as an example the open
source virtual machine qemu, it is possible to use di-
rectly the raw images; if vmware is used instead, it
is possible to use the open source tool qemu-img to
convert the raw image to the vmdk format;

• configure the chosen virtual machine to boot a copy
of the emergency disk of the encryption technology in
use, using the transformed work copy of the image as
a connected virtual drive; it is important to check the
boot order of the virtual machine to ensure that it
correctly boots the emergency disk and not the work
image;

• boot the virtualized system, and decrypt the virtual-
ized “hard disk”; the procedure obviously depends on
the encryption technology in use;

• at this point, the decrypted bitstream image should
be converted back to the raw format and hashed, for
future reference.

This sequence of operations is repeatable at any time, with
a deterministic result, limiting the usage of a non-verified
proprietary software to the strict minimum.

At this point we may wish to prove that the decrypted
version of the image has the same contents of the original
system, if it were accessed normally. This implies similar
challenges [6] to ensuring correctness in a live forensics setup
[2]. Since the “normal” access to the original system entails
booting it, it is not possible to ensure a bitwise correspon-
dence. This is an intrinsic limit imposed by the presence
of whole-disk encryption: there is no better way to create
a “plaintext copy” of the encrypted image, because actually
there is no “plaintext original”: encryption and decryption
happens on-the-fly in this type of software, so a plaintext
version of the image did never actually exist. So, the fact
that we cannot ensure “correspondence” of the plaintext im-
age to an ideal “plaintext original” is not really meaningful.
What we can do is to ensure a file-by-file correspondence
between the decrypted image and the image running inside
the live, booted system, excluding the files that are modi-
fied during the boot process of the system itself. This can
be demonstrated through the use of a recursive MD5 calcu-
lation.

Similar issues have been explored in [10] while evaluat-
ing the usefulness of recreating an acquired image in virtual
machine environment. A virtual machine approach allows
booting the acquired image to an almost identical environ-
ment as the originally investigated machine thus allowing for
a fast and efficient analysis. The authors propose a verifica-
tion of the findings using more traditional methods; however,
in our case such a verification is impossible, as there is no
“forensically preserved original” against which to compare.

In the unlikely case that the vendor does not offer any
way to permanently decrypt a drive (i.e., the encryption of
the drive is a non reversible procedure), no procedure can
be used to create a plaintext bitstream image of the media.
In this case, the only possible way to access the media is to
perform a live forensics as described in [2, 6] on the work im-
age created as described above, and booted inside a virtual

machine environment. The sequence of operations will be
repeatable, but the correctness of the operation will suffer
of the usual degradation implied by live forensics. However,
this is once more an intrinsic limit which cannot be bypassed.

In the case of non-system disk encryption, it is possible
that the decryption software comes in the form of a stan-
dalone software, as opposed to a boot disk. The procedure
in this case would be similar:

• clone-copy of the encrypted bitstream image to a work
image;

• hashing of both images for verification;

• appropriate connection of the work image on the host
operating system

• execution of the tool to decrypt the work image; also
in this case, the procedure depends on the encryption
technology in use;

• dump of a bitstream image of the decrypted work im-
age and hashing, for future reference.

Once again, it may be impossible to prove that the de-
crypted version of the image has the same contents of the
original drive, if it were accessed normally while mounted on
the original host operating system. Since the“normal”access
would be mediated by the decryption software, it is probably
impossible to ensure a bitwise correspondence; once again a
recursive MD5 calculation can be used.

This sequence of operation also incidentally demonstrates
that as far as the encryption is purely software-based, the
original hardware is not needed for any of the operations.
Actually, unless the legislation we are operating under oth-
erwise requires to keep the original hardware under seizure,
once the clone-copy of the encrypted media has been ob-
tained, seized hardware can be safely returned to the owner.
This is something we were asked to demonstrate under Ital-
ian procedures for evidence.

3.3 Impact on data reconstruction capabilities
In order to understand the impact that this decryption

phase has on the classic forensic tasks of deleted files re-
construction and recovery, we suggest to take a statistical
approach. We can create, on a test machine, an encrypted
image using the particular software in use. Then we can
create, and delete, a number of test files of known content.
After executing the whole procedure, we can then analyze
the decrypted image with any forensic software of choice
and verify how many of these file are retrievable. Ideally,
almost all of them should be retrievable, except the ones
overwritten by the shutdown procedure of the test machine.
If that is the case, we can conclude that the process does
not, per se, negatively interact with forensic recovery and
reconstruction of deleted files, which is already a statistical
game of luck. This is intuitively true, however, since any
whole-disk encryption software, as they must be as agnostic
as possible with respect to the operating system working on
top of them.

4. EXPERIMENTAL VALIDATION
As a side note, the analyzed machine was a Lenovo ThinkPad

T43P laptop, and the disk encryption software was a pro-
prietary tool, specifically SafeGuard Easy (version 4.40.2),

Table 1: Matching and non matching hashes in the
decrypted file system vs. the live filesystem

Number Percentage
Matching 44423 96.66 %

Non-matching 1535 3.34 %
of which automatic backups 1445 3.14 %
of which other system files 90 0.20 %

Total 45958 100%

produced by Utimaco Software AG. The specific hardware
and software is not relevant, however, while it is relevant to
distinguish between the procedure in case of an open soft-
ware, and in the case of a proprietary software, as we will
see below. Hardware based cryptography could introduce
other issues.

We used, for our experiments, two GNU/Linux “live” dis-
tributions, specifically aimed to forensics, BackTrack v2 and
Helix v1.9a. On such platforms, hashing can be obtained by
use of the standard md5sum and sha1sum command-line util-
ities, while bitwise copy can be obtained by using the dd

tool, which has been validated for this use by the NIST [1].
We installed Windows XP on the laptop, and installed

the encryption software, following the documented proce-
dures. The disk was partitioned and formatted with a sin-
gle partition using the NTFS file system. We activated the
encryption functionality on said partition and rebooted the
machine. We proceeded to create a small number of text files
with known content, for test purposes. In particular, we cre-
ated 60 test files containing the texts of Homer’s “Iliad” and
“Odissey”, and of Dante’s “Commedia” (20 each). Using the
md5deep.exe tool (http://md5deep.sourceforge.net/) we
computed the MD5 hash of each file present, on the live
(booted) system. Of course, a handful of system files could
not be accessed as they are locked by the OS when the sys-
tem is booted. We then deleted the test files, and emptied
the “Recycle Bin”.

We successfully applied the procedure in Section 3.1 to
obtain a clone copy of the drive, and then we proceeded to
create a plaintext image as described in 3.2, using both qemu

and vmware with identical results.
We computed the MD5 of each file in the plaintext image,

using the md5sum tool contained in Helix, accessing the image
in read-only mode. We compared the results with the list of
MD5 obtained from the live system, and we report in Table 1
some statistics on the number of files with a matching hash.
The non-matching files are either temporary or system files,
as expected: in particular, 1445 out of 1535 files are from
the directory c:\system volume information_restore*,
which is an automatic backup of system files that Windows
creates at boot. The small number of files, and the fact that
they are all involved in the boot process, allows to conclude
that the process of conversion to plaintext does not create
any significant alteration.

We then proceeded to analyze the image with the Sleuthkit
toolkit, in particular using the autopsy forensic browser. We
were able to retrieve almost all the test files created and
deleted on the original device. We can therefore conclude
that the process does not, per se, negatively interact with
forensic recovery and reconstruction of deleted files. We can
also conclude that in the specific case of SafeGuard Easy
these capabilities are preserved, as intuition predicted.

5. CONCLUSIONS
We addressed the problem of creating a methodology to

perform a forensically sound analysis of a seized computer,
where the hard disk has been protected with whole-disk
encryption. We supposed to be in possession of proper
decryption keys for the media, and focused on the proce-
dures for properly executing the analysis. In particular,
we demonstrated how it is possible to create a forensically
sound clone-copy of the seized media, ensuring evidence in-
tegrity, in any framework which is purely software based.
We demonstrated a way to access the information contained
in the media in a repeatable, scientifically sound way, min-
imizing the usage of unverified, proprietary software. We
also incidentally demonstrated that, as far as the encryp-
tion is purely software-based, the original hardware is not
needed for any of the operations besides the first extraction
of the clone-copy of the encrypted media. We discussed the
impact of such encryption software on forensic reconstruc-
tion techniques. We proposed scientific tests for validating
each step of our proposed procedure, and we also experimen-
tally demonstrated that our approach work on a specific test
setup.

Future extensions of this work may try to address issues
such as appropriate forensics analysis procedures in the case
of hardware-based encryption. We are also trying to per-
form more extensive tests with other types of encryption
software and host filesystems and operating systems, to bet-
ter demonstrate the general validity of our methodology, and
to discover if in some cases the procedure impacts the recon-
struction capabilities of forensic software.

Acknowledgments
The authors gratefully acknowledge the support of Mr. John
Flynn of Google Inc., and Mr. Manuel Pellizzon, of Google
Italy S.r.l.; we also wish to acknowledge the helpful com-
ments of Mr. Giuseppe Vaciago, a lawyer based in Milan,
Italy.

6. REFERENCES
[1] Test results for disk imaging tools: dd gnu fileutils

4.0.36, provided with red hat linux 7.1. Technical
report, National Institue of Justice, August 2002.

[2] F. Adelstein. Live forensics: diagnosing your system
without killing it first. Commun. ACM, 49(2):63–66,
2006.

[3] M. Burmester and J. Mulholland. The advent of
trusted computing: implications for digital forensics.
In SAC ’06: Proceedings of the 2006 ACM symposium
on Applied computing, pages 283–287, New York, NY,
USA, 2006. ACM.

[4] B. Carrier. Open source digital forensic tools: The
legal argument. Technical report, @stake Research
Report, October 2002.

[5] B. Carrier. File System Forensic Analysis.
Addison-Wesley Professional, 2005.

[6] B. D. Carrier. Risks of live digital forensic analysis.
Commun. ACM, 49(2):56–61, 2006.

[7] E. Casey. Practical Approaches to Recovering
Encrypted Digital Evidence. International Journal of
Digital Evidence, 1(3), 2002.

[8] J. Craiger, M. Pollitt, and J. Swauger. Law

Enforcement and Digital Evidence. John Wiley &
Sons, 2005.

[9] J. Craiger, J. Swauger, and C. Marberry. Digital
evidence obfuscation: recovery techniques. In
Proceedings of SPIE, the International Society for
Optical Engineering. SPIE.

[10] E. H. Derek Bem. Computer forensic analysis in a
virtual environment. International Journal of Digital
Evidence, 6(2), 2007.

[11] D. Farmer and W. Venema. Forensic Discovery.
Addison Wesley Professional, 2004.

[12] G. E. Fisher. Computer forensics tools verification.
Technical report, NIST. available online at
http://www.itl.nist.gov/div897/docs/computer
forensics tools verification.html.

[13] S. Garfinkel. Anti-Forensics: Techniques, Detection
and Countermeasures. In Proceedings of the 2nd
International Conference on i-Warfare and Security
(ICIW), pages 8–9, 2007.

[14] I. Golden G. Richard and V. Roussev. Next-generation
digital forensics. Commun. ACM, 49(2):76–80, 2006.

[15] J. A. Halderman, S. D. Schoen, N. Heninger,
W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, and E. W. Felten. Lest we
remember: Cold boot attacks on encryption keys.
submitted for publication, February 2008.

[16] M. Hannan and T. Wilsdon. The implications of
hardware encryption devices on forensic computing
investigations. In A. Jones, editor, Proceedings of the
3rd European Conference on Information Warfare and
Security, 2004.

[17] K. J. Jones, R. Bejtlich, and C. W. Rose. Real Digital
Forensics: Computer Security and Incident Response.
Addison-Wesley Professional, 2005.

[18] E. E. Kenneally. Gatekeeping out of the box: Open
source software as a mechanism to assess reliability for
digital evidence. Virginia Journal of Law and
Technology, 6(1), 2001.

[19] D. Manson, A. Carlin, S. Ramos, A. Gyger,
M. Kaufman, and J. Treichelt. Is the open way a
better way? digital forensics using open source tools.
In HICSS ’07: Proceedings of the 40th Annual Hawaii
International Conference on System Sciences, page
266b, Washington, DC, USA, 2007. IEEE Computer
Society.

[20] G. M. Mohay, A. Anderson, B. Collie, R. D.
McKemmish, and O. de Vel. Computer and Intrusion
Forensics. Artech House, Inc., Norwood, MA, USA,
2003.

[21] J. Siegfried, C. Siedsma, B.-J. Countryman, and C. D.
Hosmer. Examining the encryption threat.
International Journal of Digital Evidence, 2(3), 2004.

[22] J. R. Vacca. Computer Forensics: Computer Crime
Scene Investigation (Networking Series) (Networking
Series). Charles River Media, Inc., Rockland, MA,
USA, 2005.

