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Abstract. In this paper we describe anomaly-based intrusion detec-
tion as a specialized case of the more general behavior detection prob-
lem. We draw concepts from the field of ethology to help us describe
and characterize behavior and interactions. We briefly introduce a gen-
eral framework for behavior detection and an algorithm for building a
Markov-based model of behavior. We then apply the framework creat-
ing a proof-of-concept intrusion detection system (IDS) that can detect
normal and intrusive behavior.

1 Introduction

The landscape of the threats to the security of computer systems is continuously
evolving. Attacks and viruses are constantly on the rise. For this reason, it is im-
portant to design better systems for detecting infections and intrusions, making
the reaction to security incidents quicker and more efficient.

In particular, we are realizing the limits of the misuse-based approach to
intrusion detection. A misuse detection system tries to define what an attack is,
in order to detect it. While this kind of approach has been widely successful and
is implemented in almost all the modern antivirus and intrusion detection tools,
its main drawback is that it is unable to properly detect previously unknown
attacks (i.e., it is reactive and not proactive).

Antivirus vendors have responded with state of the art research facilities,
round-the-clock response teams, and fast signature distribution methodologies.
However, the diffusion of flash malware [1] is a hard to meet challenge. In the
intrusion detection field maintaining a knowledge base of attack is impossible,
both for the high number of new vulnerabilities that are discovered every day
and for the even higher number of unexposed vulnerabilities that may not be
immediately available to the experts for analysis and inclusion in the knowledge
base (which, in general, does not happen for viral code).

Additionally, since there usually exist a number of ways to exploit the same
vulnerability (polymorphism), it is difficult to develop compact signatures that
detect all the variations of the attack and at the same time do not incur in false
positives. Finally, many intrusions are performed by insiders who are abusing
their privileges. In this case, since no attack against known vulnerabilities is
performed, a misuse-based IDS is useless.
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An obvious solution to all these problems would be to implement an anomaly
detection approach, modeling what is normal instead of what is anomalous, going
back to the earliest conceptions of what an IDS should do [2].

Anomaly detection systems have their own problems and show an alarming
tendency to generate huge volumes of false positives. In addition, it has always
been a difficult task for researchers to understand what to monitor in a com-
puter system, and how to describe and model it. Even if not really successful
in commercial systems anomaly detection has been implemented in a number of
academic projects with various degrees of success.

In this paper, we will try to explore a behavioral approach to anomaly based
intrusion detection. We will leverage an ongoing trend in knowledge engineering,
which is called behavior engineering [3]. We draw concepts from the field of
ethology to help us describe and characterize behavior and interactions. We
briefly introduce a general framework for behavior detection and an algorithm
for building a Markov-based model of multiple classes of behavior. We then apply
the framework creating a proof-of-concept system that can detect normal and
intrusive behavior.

The remainder of the paper is organized as follows. In Section 2 we intro-
duce the problem of behavior detection, and we examine insights coming from
ethology and behavioral sciences. In Section 3 we introduce a general framework
for behavior detection problems, and we describe an algorithm for building a
model of behavior based on Markov chains. In Section 4 we apply the model to
the problem of intrusion detection and give proof-of-concept results. Finally, in
Section 5 we will draw our conclusions and plan for future work.

2 The Problem of Behavior Detection

2.1 Introduction to Behavior Detection problems

We propose to consider anomaly based intrusion detection in the more general
frame of behavior detection problems. This type of problems has been approached
in many different fields: psychology, ethology, sociology. Most of the techniques
applied in these areas are of no immediate use to us, since they are not prone to
be translated into algorithms. However, some useful hints can be drawn forth,
in particular by analyzing the quantitative methods of ethology and behavioral
sciences [4].

In order to understand the problem and to transfer knowledge between these
different fields, we must analyze parallel definitions of concepts we will be deal-
ing with. The first term is “behavior”, which ethology describes as the stable,
coordinated and observable set of reactions an animal shows to some kinds of
stimulations, either inner stimulations (or motivations) or outer stimulations
(or stimuli). The distinction between “stimuli” and “motivations” is as old as
ethology itself, being already present in Lorenz’s work [5].

Our definition of “user behavior” is quite different. We could define it as the
“coordinated, observable set of actions a user takes on a computer system in



order to accomplish some task”. Depending on the observation point we assume,
we can give different definition of actions, but for the scope of this paper we will
define them as the commands, the data communications and the inputs that the
user exchanges with the system. We wish to make clear that our effort is not
focused on the behavior of the computer system (which is by definition entirely
predictable) but on the behavior of the user, which has relevant intentional
components.

We will also make use of the concept of “typical behavior”, which quantitative
ethology would describe as the “most likely” one. In our definition, this behavior
is the “normal” user behavior, as opposed to an “atypical” behavior which is not,
however, always devious or dangerous.

2.2 Motivations for action and action selection

This consideration brings us to the point of analyzing the motivations of behav-
ior. We are interested in detecting any anomalous behavior which is motivated
by the desire to break the security policy of the system. Anomalous behaviour
with no devious motivation is not a problem by itself; on the other hand per-
fectly normal, incospicuous network traffic, motivated by a devious goal, should
in some way be detected by a perfect intrusion detection system.

Even if terminology varies from school to school in behavioral sciences, we can
recognize three broad levels of increasing complexity in the analysis of behavior:
reflex behavior (sensorial stimuli and innate reactions), instinctual behavior (ge-
netically evolved, innate behavior of a species), and finally intentional behavior,
with actions that an animal begins autonomously to reach its own goals.

Clearly, when dealing with computer misuse, we are mostly dealing with
intentional behavior, and we need to define what motivates an action. The con-
cept of motivation is crucial to ethology, and it has been a theme of a number of
philosophical researches as well. Without getting deeply into the philosophical
debate, we can define motivations as the dynamic factors of behaviors, which
trigger actions from an organism and direct it towards a goal. We will try to
recognize which motivations are behind a particular behavior of a user.

2.3 Fixed action patterns, modal action patterns, and ethograms

Closely associated with these concepts are patterns, elements shared by many
slightly different behaviors, which are used to classify them. The concept of
“behavioral pattern” is widely used in ethology.

Ethologists typically define as Fixed Action Patterns (FAP) the atomic units
of instinctual behavior. FAPs have some well defined characteristics: they are
mechanic; they are self-similar (stereotyped) in the same individual and across a
species, and they are extensively present; they usually accomplish some objective.
More importantly, they are atomic: once they begin, they are usually completed
by the animal, and if the animal is interrupted, they are aborted.

A FAP must also be independent from (not correlated with) other behaviors
or situations, except at most one, called a “releasor”, which activates the FAP



through a filter-trigger mechanism, called Innate Release Mechanism (IRM).
The IRM can be purely interior, with no external observable input (emitted
behavior), or it can be external (elicited behavior). In the latter case, sometimes
the strength of the stimulus results in a stronger or weaker performance of the
FAP (response to supernormal stimulus). In other cases, there is no such relation.

In [6], the whole concept of FAPs and IRMs is examined in detail. The author
criticizes the rigid set of criteria defining a FAP, in particular the fact that the
IRM must be different for each FAP; the fact that the IRM has no further effect
on the FAP once it has been activated; and the fact that components of the FAP
must fall into a strict order. Many behaviors do not fall into such criteria. Barlow
proposes then to introduce MAPs, or Modal Action Patterns, action patterns
with both fixed and variable parts, which can occur in a different order and
can be modulated during their execution. Barlow suggests that the environment
can modulate even the most stereotyped behavior. His definition of MAP is a
“spatio temporal pattern of coordinated movement that clusters around some
mode making it recognizable as a distinct behavior pattern”. Unfortunately, the
flexibility of a MAP is difficult to implement in a computer-based model of
behavior.

A subset of FAPs, called “displays”, are actually communication mechanisms.
In an interesting chain of relations, a display can be the releasor of an answer,
creating a communication sequence. An interesting characteristic of displays is
the principle of antithesis, stating that two displays with opposite meanings tend
to be as different as they can be. This is not necessarily true in behavior detection
problems: for example, malicious computer users will try to hide behind a series
of innocent-like activities.

We must also introduce the concept of an ethogram, which is an attempt to
enumerate and describe correctly and completely the possible behavioral pat-
terns of a species. On the field, an ethologist would observe the behavior of
animals and list the different observed behavioral patterns in a list, annotated
with possible interpretations of their meaning. Afterwards, s/he would observe
at fixed interval the animals and “tick” the appropriate squares in an ethogram,
generating a sequence data on the behavior of the observed animals. A similar
discretization will be used also in our framework.

3 A Framework for Behavioral Detection

3.1 A methodology for behavioral detection

We will try to exploit the similarities we have found, in order to propose a
framework for studying behavior detection and classification problems.

First of all, we need to specify which kind of displays of behavior we can detect
and build appropriate sensors for detecting them. It is not difficult to collect
and analyze the logs of a workstation, but detecting the behaviors of users in a
virtual classroom environment could be difficult. For our example architecture
we choose to use the interactions with a terminal. Other likely displays that



could be analyzed are the logs of the interactions between a user and a web
application, the sequence of system calls generated by user processes [7], or
the generation of audit data (using for instance the syslog facilities of UNIX
and similar systems).We refer the reader to one of our previous works [8] for
considerations on network based anomaly detection systems. In this paper we
will focus instead on host based anomaly detection.

As a second step, we must choose an appropriate model for representing the
behavior. We could approach the problem at different levels of abstraction, mak-
ing hypotheses on the action selection problem (as seen in 2.2) and analyzing the
actual process which generates the behavior. However, we will use a traditional
approach in quantitative behavior study, trying to model just the sequence of
the displays of behavior, in order to infer various properties about the subject. In
order to choose an appropriate model, we must understand if we want a binary
classification, or a more complex one with several disjunct classes, or even one
with overlapping categories.

Upon this model we must build an inference metamodel, which can help us
learn actual parameters from observed data in order to tune the model. This is
a classical instance of machine learning problem. Finally, we must set thresholds
and logics that help us extract useful information from the observed behavior.
Due to space constraints, we will now focus our discussion on how to build an
appropriate model for representing the behavior. As a future work we will deal
with the other steps required for building a complete behavior detection system.

3.2 Representing behavior: Markov Models

Markov models are widely used in quantitative behavioral sciences to classify
and report observed behaviors. In particular, in ethology simple Markov Models
are built on field observation results. A time domain process demonstrates a
Markov property if the conditional probability density of the current event, given
all present and past events, depends only on the K most recent events. K is
known as the order of the underlying model. Usually, models of order K = 1 are
considered, because they are simpler to analyze mathematically. Higher-order
models can usually be approximated with first order models, but approaches for
using high-order Markov models in an efficient manner have also been proposed,
even in the intrusion detection field [9].

A first order Markov Model is a finite set of N states S = {s1, s2, . . . sn}, each
of which is associated with a (generally multidimensional) probability distribu-
tion. Transitions among the states are governed by a set of probabilities called
transition probabilities ai,j = P{t = k + 1, sj | t = k, si} (whereas in order K
models the probability depends on the states in the K previous steps, generating
a K + 1-dimensional array of probabilities). We consider a time-homogeneous
model, in which A = ai,j is time-independent.

In a Hidden Markov Model, in any particular state, an outcome or observa-
tion ok can be generated according to a probability distribution associated to
the state (bj,k = P{ok | sj}), in an alphabet of M possible observations. These
probabilities obviously form a matrix B = bj,k which we also suppose to be



time independent. Only the outcome, and not the state, is visible to an exter-
nal observer; therefore states are “hidden” from the outside. The definition also
implies an assumption which is probably not true: the output is assumed to be
statistically independent from the previous outputs. If the observations are con-
tinuous, then a continuous probability density function is used, approximated by
a mixture of Gaussians. However, ethologists discretize animal behavior using
FAPs and MAPs and ethograms, in order to simplify the model. In our case,
user-computer interactions are mostly discrete sequences of events. Obviously,
non hidden Markov models are special, simple cases.

In order to use HMMs in behavior detection, we need to solve two common
problems associated with HMMs [10]. The first is the evaluation problem, which
means, given a sequence of observations and a model, what is the probability that
the observed sequence was generated by the model. The second is the learning
problem: building from data a model, or a set of models, that properly describe
the observed behavior. A third problem, the so called decoding problem, is not
of particular interest to us.

3.3 An algorithm for building Markovian models of behavior

The evaluation problem is trivial to solve in the case of a normal model, more
complex to solve in the case of an HMM: in this case, the naive approach yield
a complexity of NT , where T is the length of the sequence of observations. The
so-called forward algorithm [11] can be used, which has a complexity of N2T .

The learning problem is more complex, in particular if we do not know the
structure of the model. First of all, we need to choose the order of the model
we will use. Often a first-order approximation is used for simplicity, but more
complex models can be considered. A good estimate for an HMM can be ex-
tracted from data using the criteria defined in [12]; for normal Markov models,
a χ2-test for first against second order dependency can be used [13], but also an
information criterion such as BIC or MDL can be used.

In order to estimate the correct number of states for an HMM, in [14] an
interesting approach is proposed, by eliminating the time dependency and con-
structing a classification by means of clustering of the observations, considering
each state as a generation mechanism.

Once we have chosen the model structure, learning a sequence of T observa-
tions means to find the matrices {A, B} that maximize the probability of the
sequence: maxP [o1o2 . . . oT |A,B]. This is computationally unfeasible, however
the Baum-Welch algorithm [15] can give a local maximum for that function.
Another approach to the parameter estimation problem is proposed in [16]. If
the model is not hidden, however, the calculations become simple.

In many earlier proposals for the use of Markovian models in intrusion de-
tection [17] the authors either build a Markov model for each user and then try
to find out masquerading users (users accessing illicitly the account of another
user); or they build a Markov model for the generic user and flag as anomalous
any user who behaves differently. The first approach brings an explosion of mod-
els, lacking generalization or support for users who are not identified uniquely to



the system, while the second approach ignores the existence of different classes
of users on the system.

In order to account for the existence of different classes of user behaviors,
we propose the following algorithm, based on a Bayesian approach. Denoting
with M a generic model and with O a sequence of observations, P (M |O) ∝
P (O|M)P (M). This means that, if we have a set of I models M1,M2 . . . MI , the
most likely model for the sequence of observations O is given by: maxi P (Mi|O) =
maxi P (O|Mi) P (Mi)

We need now to choose an appropriate prior P (Mi) for the models. Let us
suppose that this procedure is iterative, which means that we have built the
existing I models out of K observation sequences O1 . . . OK , iteratively associ-
ating each sequence with the best-fitting model and retraining the model with
the new observations. This also means that we need to define a criterion for
choosing whether it is appropriate to associate the new observations Ok with an
existing model, or to create a new model for representing them.

A common decomposition for studying the prior of the model would be
P (Mi) = P (θi|Ms)P (Ms), denoting with P (θi) the probability of the particular
parameter set of Mi given a basic structure Ms and with P (Ms) the probability
of the structure itself. However, this type of approach leads to very complex
calculations.

Using a simpler approach, we could proceed as follows. Let us call Oi the
union of the observation sequences that have generated model Mi. We can build
a non-informative prior criterion such as:

P (Mi) =
( |Oi|+ |Ok|

(
∑ |Oi|) + |Ok|

)log(|Ok|)

which penalizes more particular models, favoring more general ones. Inserting
the exponent log(|Ok|) is necessary in order to account for the fact that different
length of observation strings will generate different orders of magnitude in pos-
terior probability. This generates also a simple criterion for the creation of new
models. In fact, denoting with MI+1 a new model built on the new observations
Ok, we would choose: maxiP (Mi|Ok) = maxiP (O|Mi)P (Mi) with 1 ≤ i ≤ I+1,
defining:

P (MI+1) =
|Ok|

(
∑ |Oi|) + |Ok|

In this way, the prior biases the probability towards more general models instead
of more fitting but less general ones, averaging out the fact that less general
models tend to have an highet posterior probability P (Mi|Ok). Once we have
selected which model the k-th sequence Ok will be associated with, we re-train
the model including in training data the new sequence.

Afterwards, we may optionally include a merging step, which means we will
try to find couples of models Mi,Mj such that, denoting with Mi,j the “merged”
model and with Oi and Oj the observations associated with Mi and MJ :

P (Oi ∪Oj |Mi,j)P (Mi,j) > P (Oi|Mi)P (Mi)
P (Oi ∪Oj |Mi,j)P (Mi,j) > P (Oj |Mj)P (Mj)
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In this case, a suitable criterion for selecting models to merge and for merging
them must be also researched. There are some examples in literature of criteria
for measuring a distance between two Markov models, for instance in [18] the
following (asymmetric) distance is proposed: D(Mi, Mj) = 1/T [logP (O(i)|Mi)−
logP (O(i)|Mj)], where O(i) is a sequence of observations generated by model
Mi. Criteria for merging HMM models can be found in [19] [20], where they are
proposed as a suitable way to induce the models by aggregation.

If we wish to incorporate the insights from section 2.3 on the presence of FAPs
and MAPs in behavior, we will need to use higher order models, because we need
to express the probability on the base of a history. A suggestion that we may
borrow from Barlow’s studies on modal components of behavior, however, is that
we may also want to detect clusters of states in the Markov chain that exhibit
the following properties: they have “similar” outgoing transition probabilities
and “similar” symbol emission probabilities (if we are dealing with an HMM).
These states can be collapsed together in a single state, with simple probability
calculations that we omit. This method is also applied in quantitative behavioral
science, see [21].

4 Case Study: Behavioral Intrusion Detection

We acquired test data from a limited number of users of two different terminal
systems, with about 10 users for each system and some months of data. We
prepared the data by discarding command options and encoding each different
command with a number. In one of these systems, for example, on 2717 inter-
actions, 150 unique commands were used. However, as we can see in Figure 1, a
significative fraction of the interactions consists of a limited subset of frequently
used commands, so we can set a minimum threshold below which we will group
all the commands together as “other”.

In order to estimate the optimal order for the model, we used both the
BIC and MDL criteria, and both agree on order k = 4 as being the optimal



Commands Our algorithm Naive Markov

Fitting Detection Detection

60 90.0 95.9 90.0
40 89.2 95.6 87.8
30 87.8 94.8 86.3
20 84.8 92.9 78.9
10 67.4 81.1 65.6
8 61.1 78.5 59.3
6 38.1 63.3 51.5
4 20.4 55.9 50.7

Table 1. Performance of our algorithm vs. naive application of Markov Models

value. However, as a first approximation we will use a first-order model to fit the
observations (approximation supported by the steep descent in criteria curves,
which can be observed in Figure 2). Also, since the observations are finite in
number, we use a normal Markov chain and not an HMM, to fit it.

We trained a set of Markov models following the basic algorithm outlined
above. We experimented with various combinations of thresholds and parame-
ters: we show the results in Table 1, compared with a naive application of Markov
models (by pre-labeling the traces and building a transition matrix for each user,
or class of user). For our models, we show also a measure of the overfitting of
the model classes on the training sequences (the higher the fitting, the lower
the generalization capacity of the algorithm). Creating Markov models with a
high number of nodes increases both detection rate (because users are identified
by relatively uncommon commands they perform) and overfitting. Using only 6
types of commands, we obtain a much better generalization and still a 63.3%
detection rate. The rate may seem overall low, but it is still much higher than
the detection rate of a naive application of Markov models. The computation
time for building the model is quite higher than the naive one (about 6 times
higher), but still in the order of seconds. At runtime, there is no difference in
complexity between our model and a naive one.

5 Conclusions

In this paper, we have described a behavioral approach to anomaly detection. By
analyzing and leveraging concepts from the field of ethology, we have presented a
general framework to build behavior detection systems. We have also introduced
a simple algorithm to build a Markov-based model of multiple classes of behavior.
We have shown that a behavior classifier built with this algorithm is capable
of detecting intrusion attempts on computer systems. Future extensions of this
work could include a deeper analysis of the prior for the Bayesian choice between
different models and applications to other problems in the area of behavior
detections.
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