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Transfer learning for informative-frame selection in
laryngoscopic videos through learned features
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Abstract Narrow-band imaging (NBI) laryngoscopy is an optical-biopsy tech-
nique used for screening and diagnosing cancer of the laryngeal tract, reducing
the biopsy risks but at the cost of some drawbacks, such as large amount of
data to review to make the diagnosis. The purpose of this paper is to de-
velop a deep-learning-based strategy for the automatic selection of informa-
tive laryngoscopic-video frames, reducing the amount of data to process for
diagnosis.
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via Brecce Bianche 12
Ancona (Italy)
Department of Advanced Robotics, Istituto Italiano di Tecnologia
via Morego 30
Genoa (Italy)

L. S. Mattos
Department of Advanced Robotics, Istituto Italiano di Tecnologia
via Morego 30
Genoa (Italy)

E. Frontoni
Department of Information Engineering, Università Politecnica delle Marche
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The strategy leans on the transfer learning process that is implemented
to perform learned-features extraction using six different convolutional neural
networks (CNNs) pre-trained on natural images. To test the proposed strategy,
the learned features were extracted from the NBI-InfFrames dataset. Support
vector machines (SVMs) and CNN-based approach were then used to classify
frames as informative (I) and uninformative ones such as blurred (B), with
saliva or specular reflections (S) and underexposed (U).

The best-performing learned-feature set was achieved with VGG 16 re-
sulting in a recall of I of 0.97 when classifying frames with SVMs and 0.98
with the CNN-based classification. This work presents a valuable novel ap-
proach towards the selection of informative frames in laryngoscopic videos
and a demonstration of the potential of transfer learning in medical image
analysis.

Keywords Informative-frame selection · learned features · deep learning ·
transfer learning · laryngoscopy

1 Introduction

Optical imaging, such as microscopy and endoscopy, supports clinicians and
surgeons in performing diagnosis and treatment [1]. Tissue analysis from opti-
cal images is crucial in several fields, such as ophthalmology [2, 3], laryngology
[4, 5], and neurosurgery [6, 7].

In this paper we address the issue of enabling the application of surgical
data science (SDS) methods in laryngology. In this field, the quality of laryn-
goscopic video frames can strongly affect the output of SDS tools. Indeed, the
analysis of low-quality uninformative frames during endoscopy-based diagno-
sis, may increase the overall computational time required by SDS algorithms
without providing any useful information. Moreover, there could be wrong
classification outcomes when processing frames with low informative content,
such as image with insufficient illumination [8].

A possible solution to identify and discard uninformative images consists in
performing preliminary visual assessment of image quality. However, this op-
eration is qualitative, prone to human error and usually time consuming [9]. A
reasonable alternative to visual assessment is the automatic selection of infor-
mative frames, which is however not always trivial due to variability in image
characteristics (e.g., noise level and resolution), image acquisition protocols,
and tissue anatomy [10, 11].

To accomplish this task, several machine-learning (ML) approaches have
been proposed (Sec. 2), which are mainly based on handcrafted features (e.g.,
features based on intensity or textural information). However, deep-learning
algorithms may outperform standard learning approaches for image analysis,
as shown by researchers in other SDS fields [12, 13, 14]. With deep learning,
handcrafted features are replaced by learned features, which are automatically
learned during a training process (i.e. without the need of manually defining
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Table 1 State-of-the-art approaches to informative-frame selection.

Method Year Anatomical district Feature set Classification

Bashar et al. [18] 2010 Gastro-intestinal tract Intensity and texture
Support vector
machines

Atasoy et al. [19] 2012 Gastro-intestinal tract
Image power-spectrum

Clustering
histogram

Park et al. [20] 2012 Colon Anatomy-related
Conditional
random fields

Maghsoudi et al. [21] 2014 Gastro-intestinal tract Intensity k-means

Ishijima et al. [22] 2015 Oral cavity-esophagus
Intensity, entropy Statistical
and keypoints comparison

Armin et al. [23] 2015 Colon
Motion, intensity and

Random forest
image derivatives

Perperidis et al. [11] 2017 Lungs Texture
Gaussian mixture
model

Moccia et al. [10] 2018 Larynx
Intensity, entropy, Support vector
keypoints and texture machines

the mathematical formulation of the feature set) [15]. The most popular ap-
proach to automatic feature learning is using convolutional neural networks
(CNNs), which showed remarkable performance in classifying skin cancers [13]
and predicting cardiovascular risk factors from retinal fundus photographs [16].
A CNN is a neural network that consists of a series of different kinds of special-
ized layers, such as convolutional and pooling. The first (upper) CNN layers
learn how to extract image features directly from the training images, thus
the training set is commonly made of million of images to satisfactorily en-
code variability in the images (e.g., ImageNet [17], a dataset for natural-image
classification, is made of more of 14-million images).

Collecting such a high number of labeled images is challenging in the med-
ical field [1], despite the efforts of international organizations1. This problem
may be overcome through transfer learning, in which CNNs store knowledge
while solving one problem (e.g., natural-image classification) and apply it to a
different one (such as medical-image classification) [16, 13]. Transfer learning
has already been shown to be successful in several medical fields [24, 15, 25]
such as the classification of chronic obstructive pulmonary disease (COPD)
[26] or colorectal polyps [27], but no applications can be found in the field of
informative-frame selection.

Thus, the specific aim of this work is to investigate if features learned with
CNNs (pre-trained on natural images) can be exploited for informative-frame
selection in endoscopic videos. In particular, for feature classification, both
support vector machines (SVMs) and CNN-based approaches are investigated.

The experimental analysis is performed on the NBI-InfFrames dataset,
which has been recently proposed in [10] for NBI endoscopic video-frames
analysis and is available online2. Indeed, to the best of the authors’ knowledge,
it is the only labeled dataset that is publicly available in the field. All codes

1 https://grandchallenges.org/
2 DOI: 10.5281/zenodo.1162784
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Fig. 1 Workflow of the proposed approach to informative frame selection in endoscopic
videos in narrow-band imaging (NBI). Frames composing the videos are I: informative, B:
blurred, S: with saliva and specular reflections, U: underexposed.

and CNN weights will be made publicly available upon publication of this
work.

This paper is organized as follows: Sec. 2 surveys the approaches for informative-
frame selection, Sec. 3 explains the proposed approaches to informative-frame
selection. Sec. 4 deals with the experimental protocol used to test the proposed
methodology. Results are presented in Sec. 5 and discussed in Sec. 6. Finally,
Sec. 7 summarizes the main achievements of this work.

2 Related work

Strategies proposed in literature for informative-frame selection include simple
uniform or random frame sampling (e.g., [28, 29] for bladder images), which are
fast in terms of computational time but do not guarantee that all informative
frames are extracted while removing the non-informative ones.

More recently, learning-based approaches have been proposed. Anatomical
features are used in [20] to classify informative frames in colonoscopy videos
with conditional random fields, while motion, edge and color features, along
with random forests, are used in [23]. Image-frequency features from gastro-
intestinal images are clustered with k-means in [19, 21], while in [18] local
color-histogram features are classified with SVMs. A statistical approach to
informative-frame selection in esophageal microscopy images, which exploits
intensity, entropy and keypoint-based features, is proposed in [22]. Texture-
based features from lung microscopy images are classified with Gaussian mix-
ture models in [11]. In [10], a set of intensity, keypoint-based and textural fea-
tures and multi-class SVMs are used to classify informative and three classes of
uninformative frames in laryngoscopic videos in narrow-band imaging (NBI).

Table 1 summarizes state-of-the-art approaches to informative-frame selec-
tion.
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Fig. 2 Graphical representation of transfer learning approach. The knowledge (features,
weights) that a model has learned from a task (e.g., natural-image classification) where a
lot of labeled training data are available (dataset 1) is exploited and transferred to another
task, such as medical-image classification, with less data (dataset 2).

3 Methods

In this section, the proposed strategies to feature extraction (Sec. 3.1) and
classification (Sec. 3.2) are explained. The workflow of the proposed approach
is shown in Fig. 1.

3.1 Transfer learning for learned-features extraction

In this paper, learned-feature extraction was performed exploiting a transfer-
learning approach. As illustrated in Fig. 2, transfer learning focuses on storing
the knowledge or weights of a trained neural network so that it can be reused
for a further task [30].

Practically, it generalizes the knowledge (features, weights) of an existing
solution to a new problem, leading to promising results also when the new
task has significantly less data. This fits well in the case of problems in the
computer vision domain where certain low-level features (e.g. edges, shapes,
corners and intensity) can be shared across tasks, and thus enable knowledge
transfer among them.

As reported in [31], the formal definition of transfer learning involves the
concepts of a domain and a task. A domain D consists of a feature space X
and a marginal probability distribution P(X) over the feature space, where X
= {x1, . . . ,xn} ∈ X . Given a specific domain, D = {X , P(X)}, a task consists
of two components: a label space Y and an objective predictive function f(·∆)
(denoted by T = {Y , f(·)}), which is not observed but can be learned from
the training data, which consist of pairs {xi , yi}, where xi ∈ X and yi ∈ Y.

Given a source domain DS and learning task TS , a target domain DT and
learning task TT , transfer learning aims to help improve the learning of the
target predictive function fT (·) in DT using the knowledge in DS and TS ,
where DS 6= DT , or TS 6= TT .

Six pre-trained CNNs (Table 2) were investigated to perform learned-
feature extraction. The CNNs used were chosen among the best performing
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Table 2 Tested convolutional neural networks (CNNs) and the corresponding number of
learned features. Top-1 and top-5 accuracies achieved on the ImageNet dataset are reported
too. These accuracies refer to the fractions of test images for which the correct label is
the first (top-1) or among the five labels (top-5) considered most probable by the model,
respectively.

CNNs Number of features Top-1 accuracy Top-5 accuracy
VGG 16 4096 71.5% 89.8%

Inception V4 1536 80.2% 95.2%
ResNet V1 101 2048 76.4% 93.2%
ResNet V1 152 2048 76.8% 92.9%
ResNet V2 152 2048 87.8% 94.1%

Inception - ResNet V2 1536 80.4% 95.3%

in the context of the Large Scale Visual Recognition Challenge (ILSVRC)3.
For fair comparison, all the CNN models were pre-trained on the ImageNet
dataset4.

The tested CNN architectures, hereafter briefly described to highlight their
main peculiarities, were:

VGG 16 VGG 16 was proposed by the Oxford’s Visual Geometry Group
(VGG) in the context of ILSVRC in 2014.

VGG 16 improved the performance of previously proposed deep networks
(e.g., AlexNet [32]) by replacing large-sized kernel filters with stacked kernels
with dimension 3x3 pixels. The multiple stacked small-sized kernels allowed
increased performance by enabling the VGG 16 to learn complex and fine-level
features while making the training convergence easier and faster [33].

VGG 16 has a uniform (serial) architecture with 13 convolutional and 5
(down-sampling) max-pooling layers, followed by 3 fully-connected layers. The
number of layer channels starts from 64 filters and increases by a factor of 2
after every pooling layer.

VGG 16 achieved the top-1 accuracy of 71.5% and the top-5 accuracy of
89.8% on the ImageNet dataset, where the top-1 and top-5 accuracies are the
fractions of test images for which the correct label is the first (top-1) or among
the five labels (top-5) considered most probable by the model, respectively.

Inception V4 The winner of ILSVRC 2014 competition was GoogLeNet (i.e.,
Inception V1) developed by Google LLC.

The innovative idea of GoogLeNet is the introduction of the Inception
module. The input image to the module is convolved with parallel filters of
different sizes (1x1, 3x3, 5x5), thus losing the CNN linear structure (such the
one of VGG 16), to allow a multi-scale feature extraction. Several versions of
the Inception module were proposed and the upgraded version Inception V4
was used here, as it showed the best performance [34].

The Inception V4 architecture is organized in 10 blocks, for a total of 14
inception modules linearly stacked with global average pooling at the end.

3 http://www.image-net.org/challenges/LSVRC/
4 http://www.image-net.org/
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The 14 Inception modules are different in terms of convolutional-kernel size,
number of filters and depth. This allows to process the image at varying scale
when it passes through the CNN modules.

Top-1 and top-5 accuracies of Inception V4 of 80.2% and 95.2% were
achieved on the ImageNet dataset, respectively.

ResNet V1 101 and ResNet V1 152 The Residual Neural Networks
(ResNets) presented in [35] got the first place in the ILSVRC 2015 classifi-
cation competition and the first place in ILSVRC and COCO 2015 competi-
tion in ImageNet Detection, ImageNet localization, Coco detection and Coco
segmentation [35].

ResNets were introduced to solve the vanishing gradient and the gradation
problem that arise when training ultra-deep CNNs. They consist of many
stacked residual units (building blocks) containing skip connections to link
the input and output of each unit. CNNs with residual units were shown to
outperform their plain counterparts [35].

In this work, ResNets with 101 layers and 152 layers were tested. ResNet
101 consists of 4 main layers and the number of building blocks varies in each
layer (3, 4, 23 and 3, respectively). Each building block is made of 3 convo-
lutional kernels with the skip connection. ResNet 152 has the same structure
but with 8 and 36 building blocks in the second and third layer, respectively.
Similarly to Inception V4, both ResNets end with a global average pooling
followed by a classification layer.

ResNet V1 101 and ResNet V1 152 achieved top-1 accuracies of 76.4% and
76.8% and top-5 accuracies of 93.2% and 92.9%, respectively on the ImageNet
dataset.

ResNet V2 152 ResNet V2 was introduced in [36] with the goal of using
pre-activation in ResNets. Pre-activation consists in using activation func-
tions (such as the ReLU) as pre-activation of the convolutional layers, in con-
trast to conventional ResNets where the activation functions are used as post-
activation. Pre-activation was demonstrated to have an impact both in terms
of ease of optimization and improved regularization.

The version of ResNet V2 with 152 layers was tested here, which is ResNet
V1 152 with pre-activation. It achieved top-1 and top-5 accuracy of 87.8% and
94.1% on ImageNet, respectively.

Inception - ResNet V2 A hybrid Inception module was proposed in [34]
by Szegedy et al., which is called Inception - ResNet V2.

This architecture significantly improved the recognition performance of
both ResNet V2 and Inception V4, and dramatically increased the training
speed when tested on ImageNet dataset [34]. Inception - ResNet V2 was built
by adding residual connections to link the input and output of the Inception
V4 blocks.

Top-1 and top-5 validation accuracies of 80.4% and 95.3% were achieved
on ImageNet, respectively.



8 Ilaria Patrini∗ et al.

Table 3 Tested conditions in this work. Condition 1 (C1) exploits the convolutional neural
networks (CNNs) as features extractor and the extracted learned features are then classified
by means of support vector machines (SVMs); in condition 2 (C2) the best performing CNN
resulting in C1 is fine-tuned and it is used both as feature extractor and classifier.

Tested conditions Features extractor Classifier

C1
All CNNs presented Support vector machines

in Sec. 3.1 (SVMs)

C2
Best performing Fine-tuned version of

CNN of C1 the fully connected CNN

Fig. 3 Graphical representation of the fine-tuning technique. Weights of the first layers
are frozen, since they refer to general features, while the weights of the last layers (or at
least the ones of the fully-connected layer) are learnt on the target dataset.

3.2 Frame classification

Learned-feature matrices were standardized before classification [37]. Feature
classification was first performed exploiting SVMs [37] (C1 in Table 3) to
tackle the high-dimensionality of the input features (> 1500) while being ro-
bust to noise in the features [38]. SVMs with Gaussian kernel (Ψ) were used
to prevent parameter proliferation, limiting the computational complexity. To
implement multi-class SVM classification, the one-vs-rest scheme was used.
Thus, when one class was considered positive, the remaining ones were con-
sidered negative.

The SVM hyperparameters, i.e. kernel coefficient (γ) and penality param-
eter (C), were retrieved via grid-search and cross-validation as explained in
Sec. 4.

We also investigated the performance of the CNNs using the best-performing
learned-feature for frame classification (C2 in Table 3). To this goal, fine-
tuning was implemented by freezing the weights of the first CNN layers and
learning the layers of the fully-connected layers [39], as reported in Fig. 3.
Indeed, the first layers contain more generic features (e.g. edge detectors or
color blob detectors) that should be useful to many tasks, while the last layers
become progressively more specific to the details of the classes contained in
the original dataset [12]. In order to accomplish this task, Gradient Descent
Optimizer (GDO) was used.
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(a) B (b) I (c) S (d) U

Fig. 4 Samples of laryngeal video frames in the NBI-InfFrames. Frames were B: blurred,
I: informative, S: with saliva and specular reflections, U: underexposed.

4 Experimental protocol

4.1 Dataset

The performance of the learned features extracted with the CNNs presented in
Sec. 3.1 were evaluated on the NBI-InfFrames (as introduced in Sec. 1), which
was built from 18 NBI endoscopic videos, referring to 18 different patients
affected by squamous cell carcinoma (SCC). All videos were acquired with a
NBI endoscopic system (Olympus Visera Elite S190 video processor and an
ENF-VH rhino-laryngo videoscope) with frame rate of 25 fps and image size
of 1920 × 1072 pixels.

The NBI-InfFrames consists of a total of 720 video frames, which are
equally divided in four classes: informative (I), blurred (B), with saliva or
specular reflections (S), and underexposed (U). The NBI-InfFrames dataset
is balanced both at patient level and frame class level. Sample images for the
four classes are shown in Fig. 4.

To extract learned features with the architectures presented in Sec. 3.1,
all the images were resized to match the input size of the investigated CNN
architectures. The deepest layer of each tested CNN was considered as feature
extractor. The feature length for each feature set is shown in Table 2.

4.2 Parameters Tuning

For performing the classification with SVM, γ and C (the SVM hyper-parameters)
were retrieved via grid-search and 10-fold cross validation. The grid-search
spaces for γ and C were set to [10−8, 10] and [10−3, 106], respectively, with
10 values evenly spaced on log10 scale in both cases.

For performing the CNN-based classification, fine tuning was implemented
using the GDO with a learning rate of 10−5.

To estimate performances, 3-fold cross-validation was performed separating
data at patient level, as suggested in [10].

4.3 Data analysis

The classification performance of each CNN model was evaluated computing
the class-specific recall (Recclass = {Recclassj}j∈[1,4]), the precision (Precclass



10 Ilaria Patrini∗ et al.

= {Precclassj}j∈[1,4]), the F1 score (F1class = {F1classj}j∈[1,4]), where:

Recclassj =
TPj

TPj + FNj
(1)

Precclassj =
TPj

TPj + FPj
(2)

F1classj = 2
Precclassj ×Recclassj
Precclassj +Recclassj

(3)

being TPj the number of true positive of the jth class, FNj the number of
false negative of the jth class and FPj the number of false positive of the jth

class. The area (AUC) under the receiver operating characteristic (ROC) was
also computed. As the classification problem was a multi-class problem (with
a balanced dataset), we computed the macro-average ROC to compare the dif-
ferent CNN approaches to learned-feature extraction. For the best-performing
feature set, i.e. the one that gave the highest recall for I, we performed the
ROC analysis for each class.

The features learned with the investigated CNN architectures were com-
pared with the set of features proposed in [10] in terms of classification perfor-
mance. Only the method presented in [10] was considered, as it had already
been shown to outperform previous literature on the topic. For the sake of com-
pleteness, we used the Wilcoxon signed-rank test (significance level = 0.05) for
paired sample to assess whether the classification achieved with our best per-
forming feature vector significantly differs from the ones achieved with the
other feature sets.

Feature extraction and feature classification were implemented with Ten-
sorflow5 and scikit-learn6, respectively. All the TensorFlow CNN-model files
and the CNN weights were downloaded from the TensorFlow-Slim image clas-
sification model library7.

Experiments were performed on Intel R© Core TM i7-4500 CPU @ 1.80
GHz - 2.40 GHz with 8 GB of available RAM; NVIDIA GeForce GT 740 M;
Microsoft Windows 10 64-bit operating system.

5 Results

For SVM-based classification (C1 in Table 3), the macro-averaging ROC
for the investigated CNN architectures are shown in Fig. 5. With the best-
performing learned-feature set (obtained with VGG 16), an AUC of 0.9856
was achieved.

5 http://www.tensorflow.org
6 http://scikit-learn.org
7 https://github.com/tensorflow/models/tree/master/research/slim
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Table 4 Support vector machines (SVMs)-based classification performance in terms of
class-specific precision (Precclass), recall (Recclass) and F1-score (F1class) are reported
for the four different classes. B: blurred frames, I: informative frames, S: frames with saliva
or specular reflections, U: underexposed frames. Results from the state of art [10] report
only two significant digits.

Precclass Recclass F1class

Moccia et al., 2018 [10]
B 0.76 0.83 0.79
I 0.91 0.91 0.91
S 0.78 0.62 0.69
U 0.76 0.85 0.80

avg/total 0.80 0.80 0.80
Inception V4

B 0.8883 0.9722 0.9284
I 0.9441 0.8444 0.8915
S 0.9012 0.8611 0.8807
U 0.8526 0.9000 0.8757

avg/total 0.8966 0.8944 0.8941
Inception-ResNet V2

B 0.8737 0.9611 0.9153
I 0.9571 0.8667 0.9096
S 0.8824 0.8333 0.8571
U 0.8836 0.9278 0.9051

avg/total 0.8992 0.8972 0.8968
ResNet V1 101

B 0.8947 0.9444 0.9189
I 0.9824 0.9278 0.9543
S 0.9128 0.8722 0.8920
U 0.9415 0.9833 0.9620

avg/total 0.9329 0.9319 0.9318
ResNet V1 152

B 0.9259 0.9722 0.9485
I 0.9881 0.9222 0.9540
S 0.8913 0.9111 0.9011
U 0.9441 0.9389 0.9415

avg/total 0.9374 0.9361 0.9363
ResNet V2 152

B 0.9198 0.9556 0.9373
I 0.9603 0.8056 0.8761
S 0.8316 0.9056 0.8670
U 0.9140 0.9444 0.9290

avg/total 0.9064 0.9028 0.9024
VGG 16

B 0.9202 0.9611 0.9402
I 0.9722 0.9722 0.9722
S 0.9349 0.8778 0.9054
U 0.9180 0.9333 0.9256

avg/total 0.9363 0.9361 0.9359

The ROC curves relative to each of the four frame classes for the VGG
16-based feature set are shown in Fig. 6(a). AUC values were 0.9973 for infor-
mative frames (I), 0.9881 for blurred frames (B), 0.9862 for frames with saliva
or specular reflections (S) and 0.9852 for underexposed frames (U).

From the confusion matrix relative to VGG 16 in Fig. 7(a) , Rec of 0.9722
was achieved for I, 0.9611 for B, 0.8778 for S and 0.9333 for U. The median
Rec among the four classes was 0.9361. Misclassification mainly occurred be-
tween S and I, probably due to the presence of image-intensity edges in S
frames (e.g., saliva blobs and specular reflections) as in I frames.
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Fig. 5 Macro-averaging receiver operating characteristic (ROC) curves for the investi-
gated architectures coupled with support vector machines (SVMs). The area under the
ROC (AUC) for each architecture is reported, too.
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Fig. 6 Receiver operating characteristic (ROC) curves for the four frame classes obtained
with VGG 16. Features learned with VGG 16 are classified with (a) support vector machines
(SVM) and (b) fully-connected layers. The area under the ROC (AUC) for each class is
reported, too. B: blurred frames, I: informative frames, S: frames with saliva or specular
reflections, U: underexposed frames.

The fine-tuned VGG 16-based classification (C2 in Table 3) achieved values
of 0.9778 for the Rec of I, 0.9333 for B, 0.8556 for S and 0.9389 for U. The
ROC curves relative to each of the four frame classes are shown in Fig. 6(b).

Fig. 8 reports the comparison in terms of Recclass for the tested CNN
architectures and the method presented in [10]. Learned features always out-
performed the handcrafted ones proposed in [10]. AUC values obtained with
VGG 16-based classification were 0.9928 for informative frames (I), 0.9736 for
blurred frames (B), 0.9819 for frames with saliva or specular reflections (S)
and 0.9861 for underexposed frames (U).

No significant differences were found when applying the Wilcoxon signed-
rank test (p-value > 0.05) to the Recclass vectors constituted by the Recclass
of each feature sets extracted by means of each tested architecture (C1 in
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(a) (b)

Fig. 7 Normalized confusion matrices for the best performing architecture (i.e., VGG 16):
7(a) SVMs and 7(b) fine-tuned CNN-based classification. B: blurred frames, I: informative
frames, S: frames with saliva or specular reflections, U: underexposed frames. The colorbar
indicates the number of images.
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Fig. 8 Boxplots of classification recall (Recclass) obtained for (a) [10], for features classified
with SVMs and extracted with (b) Inception V4, (c) Inception-ResNet V2, (d) ResNet V1
101, (e) ResNet V1 152, (f) ResNet V2 152, (g) VGG 16, and (h) for features extracted and
classified with VGG 16.

Table 3), including the one of the state of art, with the Recclass vector of the
resulted best feature set. The same for the comparison between the Recclass
vector of the resulted best feature set (C1 in Table 3) and the Recclass vector
of the feature set extracted from the fine-tuned version of the best network
(C2 in Table 3).

6 Discussion

In this paper, we presented and evaluated a strategy for informative frame
selection that exploits learned features automatically extracted from CNNs
that were pre-trained on natural images.
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When comparing the CNN architectures (C1 in Table 3), VGG 16 outper-
formed all the others in terms of Rec of I, as reported in Table 4. A visual
comparison of the classifications of I by the investigated CNN models is re-
ported in Table 5. In Table 6, the number of misclassified I is reported, clearly
showing that VGG 16 lowered the misclassification rate. The reason for this
could be seen in the relatively simple (i.e., serial, without branches or skip
connections) architecture and small depth (16 layers) of the VGG 16 architec-
ture. This resulted in the extraction of more generalizable features and led to
a more successful transfer learning.

From the comparison with the handcrafted-based approaches in the liter-
ature, and in particular with [10] (considered the state-of-the-art up to now
as it outperformed all previously published methods), the learned features ex-
tracted with all the tested architectures showed higher Recclass when classify-
ing blurred frames, frames with saliva or specular reflections and underexposed
frames. Moreover, three out of the six CNN architectures (i.e. ResNet V1 101,
ResNet V1 152, and VGG 16) also showed higher value of Rec for informative
frames. This confirmed considerations asserted in the literature of other SDS
fields. In fact, deep-learning strategies coupled with transfer learning for fea-
ture extraction are often showing higher performance than standard machine
learning for handcrafted-feature classification [40]. This has a crucial role in
the medical field, where achieving high classification performance is necessary
but labeled datasets large enough to train a CNN model from scratch are
challenging to collect [3, 40].

6.1 Impact of fine-tuning technique

The fine-tuned VGG 16-based classification (C2 in Table 3) showed higher
value of Rec for I and of Rec for U compared to SVMs classification, while
the other two classes (i.e., B, S) achieved comparable results. One possible
reason for this could be due to the relative small size of the dataset (less than
a thousand samples), for which SVM may be more suitable [12], because of
the particular ability at drawing decision boundaries on a small dataset.

Hence, as future work, we aim at enlarging the dataset exploiting Genera-
tive Adversarial Networks in order to enable better fine-tuning of the proposed
system to potentially solve misclassification problems.

We are also interested in investigating contentious-learning strategies that
use feedback from clinicians to train and tune the classification model in real
time. Furthermore, we intend to explore the performance of the proposed algo-
rithm when applied to endoscopy and microscopy videos of different anatom-
ical regions, such as the gastro-intestinal tract.

7 Conclusion

This paper presented a method for endoscopic informative-frame classification
that exploited CNN-based learned features through transfer learning and cou-
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Table 5 Sample informative frames (I) and relative classification for each tested convolu-
tional neural network (CNN). The red and green boxes correspond to misclassification and
correct classification, respectively. S: frames with saliva or specular reflections, U: underex-
posed frames.

CNNs
Inception V4 U I U U I
Inception-ResNet V2 S I U U I
ResNet V1 101 S I I U I
ResNet V1 152 S I I U I
ResNet V2 152 S S U U I
VGG 16 I I I U I

Table 6 Tested convolutional neural networks (CNNs) and corresponding number of in-
formative frames (I) misclassified as frames with saliva or specular reflections (S) and as
underexposed (U). No I frame was misclassified as blurred (B) by any CNN. The total
number of informative frames is 180.

CNNs
No. of I No. of I

misclassified as S misclassified as U
Inception V4 6 22

Inception - ResNet V2 9 15
ResNet V1 101 7 6
ResNet V1 152 10 4
ResNet V2 152 22 13

VGG 16 0 5

pled with SVM multi-class classification, and classification after fine-tuning
implementation on the pre-trained CNN. With our experimental protocol, the
overall median classification recall among the four frame classes (i.e. B, I,
S, U) for the best-performing learned features (VGG 16) set, coupled with
transfer learning and SVM multi-class classification, was 93.61% (max recall
= 97.22% for the informative frames). The overall median recall among the
four frame classes achieved with the fine-tuned VGG 16-based classification
was 92.64% (max recall = 97.78% for the informative frames). Both approaches
outperformed the state of the art.

To conclude, this research demonstrated that using learned features ob-
tained through transfer learning, together with SVMs or CNN-based classifi-
cation, is an effective approach for the classification of informative frames in
endoscopic videos.
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