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A B S T R A C T

Building performance analysis changed the way in which buildings are designed and operated. The evaluation of
different design and operation options is becoming more resource intensive than ever before. Although building
dynamic simulation tools are potentially a suitable way for assessing energy performance of buildings accu-
rately, they require adequate training and a careful evaluation of model input data. In Europe, the majority of
buildings were constructed before 1990 and are in urgent need for a significant energy efficiency improvement,
through deep renovation. In this respect, advanced renovation solutions are available, but costly and lengthy
renovation processes and technical complexities hinder the achievement of a large scale impact. Energy re-
furbishment of buildings is an open challenge and essentially requires the adoption of a valid methodological
approach to link design and operational performance analysis transparently, in order to address the potential gap
between simulated and measured results.

The HEART project, funded in the EU Horizon 2020 program, aims to address the increasing need for deep
retrofit interventions and to develop systemic strategies leading to high performance and cost effective solutions.
The research for the cloud platform used in the project is based on two fundamental tools: parametric simulation
to produce a large spectrum of possible building energy performance outcomes (considering realistically the
impact of the user behaviour and variable operating conditions from the very beginning), and model calibration
employing simple, robust and scalable techniques. In this paper we present the preliminary development and
testing of the computational processes that will be implemented in the cloud platform, employing the first pilot
case study of HEART Project in Italy, currently under refurbishment.

1. Introduction

Building performance analysis and standards (de Wilde, 2018)
changed the way in which buildings are designed and operated. The
evaluation of different design and operation options is becoming more
time consuming and computationally intensive than ever before, fol-
lowing workflows that have to account for multiple interconnected
aspects (Hayter, Torcellini, Hayter, & Judkoff, 2000). Although
building dynamic simulation tools are potentially a suitable way for
accurately assessing the energy performance of buildings, they require
adequate training and a careful evaluation of model input data. Further,
a discrepancy between simulated and real behaviour can be observed

for new or existing building (Bordass, 2004; de Wilde, 2014;
Demanuele, Tweddell, & Davies, 2010; Kampelis et al., 2017; Menezes,
Cripps, Bouchlaghem, & Buswell, 2012). While this discrepancy can be
acceptable within reasonable boundaries, this topic is highly debated
(de Wilde, 2017; Imam, Coley, & Walker, 2017).

Additionally, the majority of buildings in Europe were constructed
before 1990; and are in urgent need for a significant energy efficiency
improvement, through deep renovation. Even though the research ef-
fort and the related scientific literature focusing on deep refurbishment
have seen a steep increase in recent years (D’agostino, Zangheri, &
Castellazzi, 2017; D’Oca & op‘t Veld, 2018; Fotopoulou et al., 2018;
Salvalai, Sesana, & Iannaccone, 2017; Sebastian et al., 2018; Semprini,
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Gulli, & Ferrante, 2017), very few works address both the problem of
ensuring the fulfilment of nZEB design standards while reducing the
risk of performance gap. In particular, the few documented case studies
(setting ambitious goals) are frequently related to custom made and
costly interventions (Dodoo, Gustavsson, & Tettey, 2017; Ferreira &
Almeida, 2015; Gustafsson et al., 2017).

The HEART (Holistic Energy and Architectural Retrofit Toolkit)
project, funded in the EU Horizon 2020 program, aims to address the
increasing need for deep retrofit interventions and to develop systemic
strategies leading to high performance and cost effective solutions.
HEART project employs a cloud-based platform that supports decision-
making in the planning and design phase and optimizes energy per-
formance in the operation phase.

More specifically, HEART platform enables the creation of a virtual
model; the model indeed serves as a basis for an iterative evaluation
procedure that simulates different possible combinations and compares
them (as an example: thickness of the thermal insulation of envelope,
heat pump and PV plant peak power, etc.). It should be noted that this
procedure has the ability to significantly reduce the design effort. After
performing a preliminary automatic check on the suitable technological
options, HEART’s cloud-based Decision Support System (DSS) selects
within a predefined shortlist of subcomponents the ones that suit the
retrofit intervention best. This procedure enables to streamline the
design/decision making phase reducing the choices’ processing time by
at least 30 % (Karaguzel, Zhang, & Lam, 2014). The final design con-
figuration is then used to initialize the Building Energy Management
System (BEMS), which will be then progressively calibrated on mea-
sured performance. HEART calculation procedure is based on model
calibration techniques, which are essential to link design and opera-
tional performance analysis. The research for the construction of the
cloud platform is based on two fundamental tools: parametric simula-
tion to produce a large spectrum of possible building energy perfor-
mance outcomes (considering realistically the impact of the user be-
haviour and variable operating conditions from the very beginning),
and model calibration employing simple, robust and scalable techni-
ques. In this paper we present the preliminary development and testing
of the computational process, employing the first pilot case study of
HEART Project in Italy, currently under refurbishment.

2. Background and literature review

Today, the importance of parametric and probabilistic analysis of
building performance is evident (Jaffal, Inard, & Ghiaus, 2009;
Kotireddy, Hoes, & Hensen, 2018; Schlueter & Geyer, 2018; Shiel,

Tarantino, & Fischer, 2018), both in new construction and retrofit in-
terventions (EEFIG, 2015; Saheb, Bodis, Szabo, Ossenbrink, & Panev,
2015), and parametric performance data are used for exploratory
analysis.

Despite the research efforts put in design tools and technical stan-
dards in the last decades, both “re-bound” (Herring & Roy, 2007) and
“pre-bound” (Rosenow & Galvin, 2013) effects are generally present in
buildings and the gap between simulated and measured performance
has been widely investigated (and debated) in recent years (de Wilde,
2014; Imam et al., 2017).

Indeed, we have to consider the robustness of our assumptions and
calculation methodologies from the early design phase, ideally learning
from feedback during the design iterations and, finally, from measured
performance (Coakley, Raftery, & Keane, 2014; Fabrizio & Monetti,
2015), using model calibration techniques in operation phase. Among
other factors influencing performance (Yoshino, Hong, & Nord, 2017),
the impact of occupants’ comfort preferences and behaviour on per-
formance is generally overlooked in the design phase (Cecconi,
Manfren, Tagliabue, Ciribini, & De Angelis, 2017; Tagliabue, Manfren,
& De Angelis, 2015; Tagliabue, Manfren, Ciribini, & De Angelis, 2016).
However, occupants’ comfort preferences and behaviour (Cecconi et al.,
2017; Menezes et al., 2012; Tagliabue et al., 2016) can lead to a re-
levant gap (de Wilde, 2014), undermining the effectiveness of policies
that have (necessarily) to confront with real behaviour (Herring & Roy,
2007; Imam et al., 2017; Sunikka-Blank & Galvin, 2012). This is par-
ticularly evident if we consider the issue of de-risking the investments
in deep refurbishment, which have to guarantee, in principles, cost-
optimal performance levels (Aste, Adhikari, & Manfren, 2013; Fabbri,
Tronchin, & Tarabusi, 2014; Ferrara, Monetti, & Fabrizio, 2018;
Tronchin, Tommasino, & Fabbri, 2014). In order to address this fun-
damental issue, a methodological continuity should be established

Nomenclature

Variables and parameters

A Average value
a,b Regression coefficients
Cv(RMSE) Coefficient of variation of RMSE
E Energy
I Irradiation
H Heat transfer coefficient (transmission and infiltration/

ventilation)
M Measured/simulated data
MAPE Mean absolute percentage error
NMBE Normalized mean bias error
q Energy transfer rate (energy signature)
P Predicted data
R2 Determination coefficient
RMSE Root mean square error
S Simulated

SS Sum of the squares
τ Operating hours
U Thermal transmittance
y Numeric value
θ Temperature
ε Error term

Subscripts and superscripts

‒ Average
^ Predicted value
e External
h Heating
i Index
n Number of points
res Residual
sim Simulation
sol Solar

Table 1
Hierarchical organization of parametric building modelling data.

Category Sub category

Location Climate
Fabric Archetype creation

Geometry

Thermo-physical parameters Envelope

Building operation Activities
Control and operation settings
Operation schedules
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between performance analysis practices across life cycle phases (i.e.
model based analysis), using parametric simulation in design phase and
progressively calibrating building models to measured data (lo learn
from feed-back, as expressed before) (Tronchin, Manfren, & James,
2018). For this reason, in our research we addressed both design and
operation phase performance issues through meta-models (Manfren,
Aste, & Moshksar, 2013) (i.e. surrogate models, reduced-order models),

which are considered among the most promising techniques to over-
come the limitations determined by the dimension of parametric si-
mulations and optimization problems. The choice of a specific tech-
nique can dependent on several factors (Koulamas, Kalogeras, Pacheco-
Torres, Casillas, & Ferrarini, 2018). Meta-models can be very flexible
(Østergård, Jensen, & Maagaard, 2018); however, the trade-offs be-
tween complexity, predictive ability and transparency have to be

Table 2
Parametric simulation data configurations – Level 1.

Category Group Type Unit Baseline Design

Location Climate UNI 10349:2016 –
Fabric Archetype Number of floor – 3.00

creation Net height of each floor m 2.70
Gross height of each floor m 3.00
Length of the building (S/N orientation) m 9.93
Aspect ratio (Width/Length) – 2.75
Window to wall ratio (WWR) for building – 16.00
Orientation angle deg −21.00

Geometry Gross volume m³ 2349
Net volume m³ 1832
Heat loss surface area m² 1013
Net floor area m² 678
Surface/Volume ratio (S/V) 1/m 0.43

Thermo-physical parameters Envelope U value external walls W/(m2K) 0.56a 0.18a

U value basement W/(m2K) 0.46a 0.46a

U value roof W/(m2K) 0.71a 0.29a

U value transparent components W/(m2K) 3.30a 1.40a

SHGC factor glass – 0.60 0.60

Building operation Activities Internal gains (lighting, appliances and occupancy, daily average) W/m2 5c 5
Control and Heating set-point temperature °C 20c 20
operation Cooling set-point temperature °C 26 26
settings Air-change rate (infiltration and natural ventilation) vol/h 0.8c 0.5

Shading factor (solar control summer mode) – 0.6 0.6
Schedules – Option 1: IG/VE/H/Cb N. Table 2 0 0
Schedules – Option 2: IG/VE/H/Cb N. Table 2 0/0/1/2 0/0/1/2

a Average U value determined considering calculation methodologies given in standards ISO 6946:2017, ISO 13789:2017, and ISO 13370:2017.
b IG: Internal gains, VE: ventilation, H: Heating, C: Cooling.
c Variations on these parameters are considered as specified in Table 9 in Section 4.2.

Table 3
Parametric simulation data configurations – Level 2.

Category Group Type Unit Baseline Parametric

Location Climate UNI 10349:2016 –
Fabric Archetype Number of floor – 3.00

creation Net height of each floor m 2.70
Gross height of each floor m 3.00
Length of the building (S/N orientation) m 10.95
Aspect ratio (Width/Length) – 2.5
Window to wall ratio (WWR) for building – 15.80
Orientation angle deg −21.00

Geometry Gross volume m³ 3923
Net volume m³ 2746
Heat loss surface area m² 1300
Net floor area m² 898
Surface/Volume ratio (S/V) 1/m 0.47

Thermo-physical parameters Envelope U value external walls W/(m2K) 0.56 0.115−1.37
U value basement W/(m2K) 0.46 0.15−1.4
U value roof W/(m2K) 0.71 0.156−1.67
U value transparent components W/(m2K) 3.30 0.8−4.8
SHGC factor glass – 0.60 0.60

Building operation Activities Internal gains (lighting, appliances and occupancy, daily average) W/m2 4 1.0−6.0
Control and Heating set-point temperature °C 20 18−24
operation Cooling set-point temperature °C 26 26−28
settings Air-change rate (infiltration and natural ventilation) vol/h 0.8 0.15−1.65

Shading factor (solar control summer mode) – 0.6 0.25−1
Schedules – Option 1a: IG/VE/H/C N. Table 2 0 0

a IG: Internal gains, VE: ventilation, H: Heating, C: Cooling.
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Table 4
Parametric geometric configurations (archetypes) - Level 3.

Archetype number (ID) 0 1 2 3 4

Simulation dataset Unit Single-family buildings, villas, etc. Terraced buildings, large residential buildings, etc. Tower buildings

S/V > = 0.9 S/V >= 0.7 0.7 > S/V > 0.4 S/V > = 0.4 S/V > = 0.2

Number of floors n. 1.00 2.00 3.00 4.00 7.00
Net height m 2.70 2.70 3.00 3.10 3.10
Gross height m 3.10 3.10 3.40 3.60 3.60
Length (S/N orientation) m 12.00 7.90 8.50 11.50 24.90
Aspect ratio – 2.00 2.00 2.00 2.00 2.00
Surface/Volume (S/V) 1/m 0.90 0.70 0.55 0.40 0.20

Geometry
Gross volume m³ 893 774 1474 3809 31,249
Net volume m³ 664 576 1110 2801 22,977
Heat loss surface area m² 799 544 809 1523 6245
Net floor area m² 246 213 370 903 7412

Table 5
Schedules used in parametric simulation.

N. Schedule name Unit Period [gg/month] Hour of the day[(hours) value]

0 Constant – 01/01–31/12 (1−24) 1
1 Heating set point (measured) °C 01/01–15/04

15/10–31/12
(1−6) off, (7−9) 20, (10) off, (11−15) 20, (16) off, (17−22) 20, (23−24) off

2 Cooling set point °C 16/04–12/10 (1−24) 26
3 Internal gains % 01/01–31/12 (1−5) 10, (6) 20, (7) 80, (8) 20, (9−12) 10, (13) 80, (14) 20, (15−17) 10, (18) 20, (19) 80, (20) 100, (21−23)

20, (24) 10
4 Infiltration/Ventilation – 01/01–31/12 (1−24) 1

Fig. 1. 3D views of building models: on the top left Level 1, on the top right Level 2 and at the bottom Level 3 with 5 different archetypes.
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considered (i.e. black-box Vs grey-box models) (Koulamas et al., 2018).
In this research we propose the use of linear multivariate regression as
meta-modelling technique. This choice is determined by the analysis of
several examples of multi-variate regression models to support design
optimization (Al Gharably, DeCarolis, & Ranjithan, 2016; Asadi, Amiri,
& Mottahedi, 2014; Catalina, Virgone, & Blanco, 2008; Hygh,
DeCarolis, Hill, & Ranjithan, 2012; Ipbüker, Valge, Kalbe, Mauring, &
Tkaczyk, 2016) found in recent literature. Further, regression models
are used to address also topics such as performance robustness for en-
ergy performance contracting and cost-optimal analysis (Kavousian &
Rajagopal, 2013; Ligier, Robillart, Schalbart, & Peuportier, 2017). Ad-
ditionally, with respect to operation performance analysis, regression
models are acceptable for calibration if they are able to satisfy the
thresholds of measurement and verification (M&V) protocols (ASHRAE,
2014; EVO, 2003; FEMP, 2008), which constitute the minimal re-
quirements. In particular, regression on energy signature data
(ASHRAE, 2014; ISO, 2013) is largely used (and empirically tested) for
M&V. Finally, in order to render these applications more transparent
and semi-automated, further research should be oriented towards the
definition of multi-scale and multi-level performance metrics
(Tronchin, Manfren, & Tagliabue, 2016; Yang & Becerik-Gerber, 2015)
and corresponding visualization techniques. In this paper we present
the preliminary phase of a research aimed at addressing these issue.

3. Research methodology

The building presented in this research is the first case study of
HEART project, which was built in 1985 in Bagnolo del Piano, in the
Province of Reggio Emilia in Northern Italy. The building is a multi-
storey residential building with 12 apartments.

Heating service is supplied by a hydronic centralized system with a
natural gas boiler and radiators as terminal units. Instead, domestic hot
water service is supplied by decentralized electric boilers in each
apartment. While different performance indicators (e.g. energy demand
for end-uses, primary energy demand, CO2 emissions, cost of energy
services, etc.) will be calculated in the HEART platform according to the
methodology proposed in the standard ISO 52000-1 (ISO, 2017)
(overarching framework for the Energy Performance of Buildings, or
EPB), in this research we start from heating consumption analysis. In
general, this component of energy consumption is the dominating one
in this type of buildings. Therefore we organize our research metho-
dology in this way:

1 in Section 3.1 we report data and describe assumptions for para-
metric performance analysis, organized according to three levels of
detail in modelling;

2 in Section 3.2 we define regression models for the calibration pro-
cess (energy signatures);

3 in Section 3.3 we define statistical indicators to track the goodness
of fit and predictive ability of regression models, from design to
operation phase.

Following this methodology, while we use parametric simulations
(with different levels of detail in modelling, as specified before) for the
creation of the data in the HEART platform, we need also medium/long-
term performance data to define an energy model baseline for the ex-
isting building (i.e. the case study building in this research), using ca-
libration techniques. In this sense, regression models are employed to
link design and operational performance analysis, for the reasons ex-
pressed in Section 2. The changes of regression models are tracked by
means of statistical indicators because (during the analysis process) we
can find multiple different simulation configurations, which can give
relatively similar energy demand results and corresponding regression
models, which can fit the data with similar performance (i.e. statistical
indicators). Finally, we use visualization techniques (i.e. scatterplots
and parallel coordinate plots) to enable an effective comparison of
design phase (simulation) and operation phase (measured) performance
data, in multiple conditions. The ability to compare performance in
multiple conditions and for multiple building configurations is a fun-
damental part of the development of the platform.

3.1. Parametric performance analysis for HEART data platform creation

As anticipated, in this research parametric simulation is used to
generate data for the HEART data platform creation. The construction

Table 6
Regression models for heating demand analysis.

Demand Model type 1 Model type 2

Heating = + +q a a θ εh e,1 0 1 = + + +q b b θ b I εh e sol,2 0 1 2

Table 7
Threshold limits of metrics for model calibration with monthly data for dif-
ferent protocols.

Metric ASHRAE Guidelines 14 IPMVP FEMP

MBE % ±5 ±20 ±5
Cv(RMSE) % 15 – 15

Fig. 2. Natural gas and energy signature for heating consumption at the meter level – Years 2010-2019.
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Fig. 3. Energy signature of heating consumption and thermal demand – Years 2010-2019.

Table 8
Comparison of statistical indicators of energy signature regression of thermal demand for heating.

Data Regression model type 1 Regression model type 2

R2 MAPE NMBE Cv(RMSE) R2 MAPE NMBE Cv(RMSE)
– % % % – % % %

2010−19 0.923 13 −0.18 14.7 0.929 15 −0.15 14.1
2017−19 0.828 18 −0.21 22.6 0.873 14 −0.12 19.4

Fig. 4. Energy signature of heating demand per unit of gross volume – comparison between measured and simulated data.

Table 9
Variations in simulation input parameters considered to evaluate performance variability for Level 1 model – existing building (baseline).

Simulation runs Internal gains (lighting, appliances and occupancy, daily average) Heating set-point temperature Air-change rate (infiltration and natural ventilation)

W/m2 °C vol/h
Simulation 1 5 20 0.80
Simulation 2 5 21 0.70
Simulation 3 6 22 0.60

M. Manfren, et al. Sustainable Cities and Society 61 (2020) 102296
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of building simulation cases follows the hierarchical organization of
information (using categories and sub-categories of inputs) reported in
Table 1.

Three different levels of analysis have been defined to test the si-
mulation and model validation and calibration process:

1 Level 1, detailed building energy model, baseline (existing) and
design (retrofit) configurations;

2 Level 2, simplified building energy model, baseline (existing) and
parametric configurations;

3 Level 3, five archetypal building energy models, parametric con-
figurations.

We start our analysis from the most detailed model, Level 1. The
input data are reported in Table 2.

After that, in Level 2 analysis we simulate baseline (existing
building) and parametric configurations (using ranges for parameters
and 11 steps) of a simplified energy building model derived by Level 1,

with slightly different geometric characteristics. All assumptions are
summarized in Table 3 and, in particular, the simplifications introduced
are the following ones:

1 geometry simplification of the original building fabric;
2 single average representative construction technologies, one for
each surface (vertical wall, floor, roof and windows), with para-
metric configurations from most to least insulated option;

3 operational settings with constant schedules for heating and cooling
(24/24 h operation).

In Level 3 analysis, we maintain essentially the same ranges of
variation of input parameters considered in Level 2 and a similar logic
for the simplification of models, but we reduce the steps considered to 6
(in Level 2 steps are 11), to reduce computation time. However, we
introduce a variability in terms of building geometry using five arche-
types, reported in Table 4, from the least compact (ID = 0) to the most
compact (ID = 4) in term of Surface/Volume (S/V) ratio.

Table 5 shows the data of the schedules adopted in the simulations
across the different levels of detailed defined before. However, while
Level 1 model has been simulated with real operational settings
(identified during the energy audit), Level 2 and Level 3 models have
been simulated (at this stage of development of the project) using
constant operational settings to limit the amount of possible combina-
tions. Finally, Fig. 1 show the different 3D views of models used for
parametric simulations.

3.2. Regression analysis of simulated and measured energy signatures

The linear multivariate regression models used in this research are
derived from scientific literature review (Section 2) and have been used

Table 10
Statistical indicators and regression coefficients of energy signature of thermal demand per unit of gross volume – intermittent operation.

Data Simulation Regression model type 1 Regression model type 2

Hh,sim -a1 R2 MAPE NMBE Cv(RMSE) -b1 R2 MAPE NMBE Cv(RMSE)
W/m3K W/m3K – % % % W/m3K % % %

2010−19 – 0.46± 0.02 0.923 13 −0.18 14.7 0.49±0.02 0.929 15 −0.15 14.1
2017−19 – 0.42± 0.06 0.828 18 −0.21 22.6 0.51±0.07 0.873 14 −0.12 19.4
Sim1 0.60 0.52± 0.02 0.985 19 0.13 8.1 0.48±0.01 0.997 6 0.02 3.4
Sim2 0.57 0.51± 0.02 0.984 18 0.12 7.7 0.47±0.01 0.998 3 0.02 2.8
Sim3 0.53 0.49± 0.02 0.983 18 0.12 7.8 0.45±0.01 0.998 3 0.02 2.8

Table 11
Thermal demand per unit of gross volume predicted with design weather data
UNI 10349:2016 – intermittent operation.

Configuration Thermal demand

Simulation Regression 1 Regression 2
kWh/m3 kWh/m3 kWh/m3

2010−19 – 21.2± 0.22 20.4± 0.38
2017−19 – 20.8± 0.76 18.5± 1.25
Sim1 20.1 20.1± 0.25 20.0± 0.23
Sim2 21.0 21.1± 0.25 21.0± 0.20
Sim3 20.6 20.7± 0.25 20.6± 0.20

Fig. 5. Energy signature of thermal demand per unit of gross volume – comparison between simulated data for intermittent and continuous operation.
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in previous research applications. The models are trained and tested on
energy signature data (ISO, 2013). Energy signature is calculated as
follows:

=q E
τ (1)

where q is the energy signature (energy transfer rate), expressed in kW,
E is the energy demand, expressed in kWh, and τ is the number of op-
erating hours. Energy signature data are then subdivided by building
gross volume to enable the comparison across different building sizes
and end-uses (Arregi & Garay, 2017; Tronchin et al., 2016; Tronchin,
Manfren, & Nastasi, 2019) and plotted against average outdoor air
temperature for the corresponding period of analysis, monthly in this
case. As shown in Table 6, two types of models are considered:

1 type 1, accounting only for external air temperature dependence;
2 type 2, accounting for both external air temperature and solar ra-
diation dependence.

External air temperature is the most important regressor (predictor
variable) to be considered for weather normalization (Lin & Claridge,
2015). Solar irradiation is introduced as an additional regressor because
of the relevant impact that solar gains may have in building with
medium to high level of insulation. By formulating the models in this
way, it is possible substantially to normalize energy consumption with
respect to weather conditions (i.e. creating models independent on the
specific weather data files used and suitable for performance compar-
ison in multiple weather conditions). Beside weather normalization of
energy performance, environment temperature is fundamental for ex-
ergy analysis methods (Meggers, Ritter, Goffin, Baetschmann, &
Leibundgut, 2012; Tronchin & Fabbri, 2008), which may be applied, for
example, to study the performance of heat pump systems. Further,
energy consumption depends also on internal environmental quality
(Fabbri & Tronchin, 2015) and, for this reason, the impact of opera-
tional settings and behaviour should be appropriately weighted (Ligier
et al., 2017).

What we exploit in our analysis is an approximate physical inter-
pretation of regression coefficients a1 and b1, that are substantially
comparable to –Hh,sim (heat transfer coefficient for simulation in heating
mode), as shown in previous research (Allard, Olofsson, & Nair, 2018;
Tronchin et al., 2016, 2019). Finally, while the focus of this research is
calibrating the model considering heating demand, this regression

approach is far more general and may be applied to other energy uses,
e.g. including cooling and base load (DHW, appliances, etc.) (ASHRAE,
2014). In a general case, the overall predictive model will be the
combination of linear submodels (Paulus, Claridge, & Culp, 2015;
Paulus, 2017), respectively for heating, cooling and baseline demand,
creating a piecewise linear multivariate model. In the next section we
illustrate the statistical indicators used for model selection (based on its
performance) and calibration.

3.3. Statistical indicators for model selection and calibration

In order to evaluate and compare properly simulation data in design
phase and measured data in operation phase, we selected basic statis-
tical indicators and specific indicators used at the state-of-the-art of
model calibration procedures (ASHRAE, 2014; EVO, 2003; FEMP,
2008)). We illustrate first some basic statistical indicators, namely R2

and MAPE. The determination coefficient R2 can assume values ranging
from 0 to 1 (or 0–100%, if expressed in percentage), where 1 means that
the model fit perfectly data. R2 is calculated as 1 minus the ratio be-
tween the sum of the square of residuals and total sum of the squares,
with the Formula 2.

= − = −
∑ −

∑ −
ˆR SS

SS
y y
y y

1 1
( )
( )

res

tot

i i i

i i i

2
2

2 (2)

MAPE (Mean Absolute Percentage Error) can be used to account for
the average absolute value of the difference among measured (or si-
mulated, in design phase) and predicted data (by the regression models
in this case), normalized with respect to measured data themselves.
MAPE is calculated as shown in Formula 3.

∑=
−

⋅MAPE
n

M P
M

1 100
i

i i

i (3)

We consider then two indicators for calibration, NMBE (Normalized
Mean Bias Error) and Cv(RMSE) which the Coefficient of Variation of
Root Mean Squared Error (RMSE). NMBE is the total sum of the dif-
ferences between measured (or simulated, in design phase) and pre-
dicted energy consumption (by the regression models in this case) at the
calculation time intervals (monthly in this case), divided by the sum of
the measured (or simulated, in design phase) energy consumption.
NMBE is calculated according to Formula 4. A positive value of NMBE
indicates a model overestimation of energy consumption (a positive
bias), vice versa a negative value indicates an underestimation (a ne-
gative bias).

= −
∑ −

∑
⋅NMBE

M P
M

( )
100i i i

i i (4)

Cv(RMSE) represents a normalized measure of the variability among
measured (or simulated, before operation) and predicted data. It is
based on RMSE, which is a measure of the sample deviation of the
differences between measured values and values predicted by the
model, which is divided by A, which represents measured (or simu-
lated, before operation) energy consumption. Lower Cv(RMSE) values
indicate a better calibrated model. Cv(RMSE) calculation is illustrated

Table 12
Statistical indicators and regression model coefficients of energy signature of thermal demand per unit of gross volume – intermittent and continuous operation.

Data Simulation Regression model type 1 Regression model type 2

Hh,sim -a1 R2 MAPE NMBE Cv(RMSE) -b1 R2 MAPE NMBE Cv(RMSE)
W/m3K W/m3K – % % % W/m3K % % %

Sim2 (intermittent 0.57 0.51± 0.02 0.984 18 0.12 7.7 0.47± 0.01 0.998 3 0.02 2.8
Sim2 (continuous) 0.57 0.58± 0.02 0.986 15 0.11 7.0 0.53± 0.01 0.998 3 0.02 2.6
Design (intermittent) 0.30 0.30± 0.02 0.963 10 0.14 8.0 0.27± 0.01 0.994 2 0.03 3.2
Design (continuous) 0.30 0.32± 0.02 0.966 9 0.14 7.4 0.29± 0.01 0.994 2 0.03 3.1

Table 13
Thermal demand per unit of gross volume predicted with design weather data
UNI 10349:2016 – continuous operation.

Configuration Thermal demand

Simulation 2 (Level
1)

Regression 1 Regression 2

kWh/m3 kWh/m3 kWh/m3

Existing building
(baseline)

24.60 24.70± 0.28 24.60± 0.22

Design 8.60 8.60± 0.17 8.60± 0.15
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in its steps with Formulas 5–7.

=
∑ −

RMSE
M P

n
( )i i i

2

(5)

=
∑

A
M

n
i i

(6)

= ⋅Cv RMSE RMSE
A

( ) 100 (7)

The threshold metrics considered in different protocols at the state-
of-the-art for M&V and calibration (ASHRAE, 2014; EVO, 2003; FEMP,
2008), are summarized in literature (Fabrizio & Monetti, 2015) are
reported in Table 7 for calibration with monthly data. For an in-depth
analysis of indicators for model calibration it is possible to refer to (Ruiz
& Bandera, 2017).

4. Results and discussion

As anticipated, the case study chosen is an apartment block re-
sidential building located in Bagnolo al Piano, in the Province of Reggio
Emilia, in the Emilia Romagna Region in Northern Italy. First, we il-
lustrate the workflow in its main steps. The whole process linking
model calibration to parametric performance simulation is subdivided
into two main phases, following the methodology illustrated in Section
3 and the reasons expressed in Section 2, together with the experience
acquired in previous research (Tronchin et al., 2016, 2019). The first
phase, described in Section 4.1, consists in the use of energy signature
and regression of medium/long-term energy performance monitoring
data to set the basis for the calibration of energy models. The second
one, described in Section 4.2, extends the conventional energy sig-
nature use (and the underlying regression modelling approach) to en-
able the comparison of measured and simulated performance data in
different weather and operating conditions, for parametric building
configurations with multiple levels of detail. This is a necessary part of
the research, connected to the creation of the cloud platform for HEART
project. In brief, the scope of this research is evaluating the robustness
and flexibility of regression-based approaches for multiple scopes
within the HEART data platform. In this sense, the ability to calibrate
models with different levels of detail is crucial, because of the necessity
of evaluating energy performance in multiple ways during building life
cycle phases. The use of statistical indicators and visualization techni-
ques (such as scatterplots and parallel coordinate plots) can help in the
direction of a (regression-based) complete multi-level calibration ap-
proach (Manfren et al., 2013; Yang & Becerik-Gerber, 2015), that will
be the focus of future research efforts, described in the conclusion
section.

4.1. Long-term performance monitoring and model calibration using energy
signature and multivariate regression

The workflow aimed at model calibration starts from long-term
performance monitoring data. The data used in this research consists in
metered natural gas energy consumption for heating and average
monthly external air temperatures, collected in the energy audit. In
Fig. 2, on the left, we plot natural gas consumption in standard cubic
meter with respect to temperature, and, on the right, the corresponding
values in energy (determined by the lower heating value of fuel).

After that, in Fig. 3 we transform the data to obtain an average
power (energy signature (ASHRAE, 2014; ISO, 2013)) using Formula 1
and we fit different regression models (type 1 and 2, described in
Section 3.2), both for natural gas heating consumption (on the left), and
thermal heating demand (on the right), considering the estimated losses
of technical systems (i.e. emission, distribution, control, generation),
calculated using data from energy audit.

The performance of energy signature regressions is reported inTa
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Table 8, using the indicators defined in Section 3.3. The data reported
show how it is possible to reach calibration threshold (Table 7) with
long-term data (2010−19) but also how the last 2 years of data alone
(2017−19) are not sufficient to reach calibration (i.e. in some cases
medium-term data may not be sufficient to guarantee a stable baseline.

4.2. Linking model calibration and parametric performance analysis

The necessity of comparing measured and simulated performance
with different levels of detail (as explained in Section 3.1) and different
conditions (weather, operational settings, etc.) requires an extension of
the conventional energy signature approach (ASHRAE, 2014; ISO,
2013), obtained by scaling the energy data by gross volume, for the
reasons described in recent research (Pistore, Pernigotto, Cappelletti,
Gasparella, & Romagnoni, 2019; Tronchin et al., 2016, 2019). In par-
ticular, this passage enables the comparison across different building
sizes, characteristics and levels of details as well. In our project we
considered three levels of detail in modelling, called Level 1, 2 and 3, as
explained before. Therefore, the workflow proceeds through the

following steps:

1 comparison between measured and simulated data for intermittent
operation (real operational settings) – Level 1 simulation config-
urations (input in Table 2);

2 comparison between simulated data for intermittent and continuous
operation (real and steady-state operation) – Level 1 simulation
configurations (input in Table 2);

3 exploratory analysis of simulation data obtained with continuous
operation conditions for multiple model inputs (multiple building
models/archetypes in different configurations) – Level 2 and 3 si-
mulation configurations (input in Tables 3 and 4).

We start by considering the data reported in Fig. 3. We divide them
by gross volume and we compare them in Fig. 4 with the ones obtained
with three simulation configurations for Level 1 model (Table 2),
varying the three input parameters (internal gains, temperature set-
point, air-change rates) reported in Table 9, to account for the impact of
their variability on thermal demand for heating. The simulation results

Fig. 6. Parallel coordinate plot analysis – data extracted from parametric simulation dataset based on Hsim range 0.44-0.74 W/(m3K) for existing building perfor-
mance comparison.

Fig. 7. Parallel coordinate plot analysis – selection of parametric configurations in Hsim range 0.44-0.74 W/(m3K) that match a heating demand in the range 19.5-
29.5 kW h/m3.
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are very near to the measured ones and the configuration that fits the
data best is simulation 2, considering the statistical indicators reported
in Table 10 and the predicted yearly energy demand (calculated using
design weather file UNI 10349:2016) (UNI, 2016) in Table 11. In
Table 10 we compare also regression coefficients –a1 and –b1 with Hsim,
considering the approximated physical interpretation introduced in
Section 3.2.

As can be noticed, simulated data are in general much less scattered
then real data and, as already reported, regression models created with
the last two years of data are above the calibration threshold reported
in Table 7.

After that, we compare in Fig. 5 energy signature of thermal de-
mand for existing building (baseline) and design configurations both in
intermittent (real measured) and continuous operation conditions.

Also in this case, regression models are able to fit data reasonably
well in both operation modes, as shown by the statistical indicators
reported in Table 12 and by the predicted energy demand (using again
design weather data UNI 10349:2016 (UNI, 2016)) in Table 13. In this
passage of the workflow we considered continuous operation to enable
the comparison with parametric simulation models results for Level 2

(input in Table 3) and Level 3 (input in Table 4) that, at this stage, are
run with constant operational profiles. Including different operational
profiles, as well as othe weather datasets for different locations, will be
part of future research within the HEART project.

The comparison of the simulation results obtained with different
configurations is then performed graphically by means of parallel co-
ordinate plots (i.e. exploratory data analysis), considering variations for
the ranges of data reported in Table 14. The parameters considered for
plotting are a subset of the original parametric data defined in Tables 3
and 4, in Section 3.1.

The building envelope and infiltration/ventilation performance
characteristics have been lumped in the heat transfer coefficient (Allard
et al., 2018; ISO, 2008; Tronchin et al., 2016, 2019) divided by gross
volume Hsim, for the reasons expressed in recent research (Pistore et al.,
2019; Tronchin et al., 2016, 2019) and synthesized in Section 3.2, i.e. to
enable the comparison of different building types, exploiting the ap-
proximated physical interpretation of regression coefficients. In order
to visualize multivariate data, results have been clustered by building
type using surface to volume ratio (S/V) from 0.70 to 0.40, as reported
in Table 14. The clusters represented in Figs. 6–11 follow the same

Fig. 8. Parallel coordinate plot analysis – selection of parametric configurations in Hsim range 0.44-0.74 W/(m3K) that match a heating demand in the range 19.5-
29.5 kW h/m3 and Hsim in the range 0.57-0.61 W/(m3K).

Fig. 9. Parallel coordinate plot analysis – data extracted from parametric simulation dataset based on Hsim range 0.19-0.38 W/(m3K) for design building performance
comparison.
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convention:

1 Green, S/V = 0.7, Level 3 archetype 1, described in Table 4;
2 Yellow, S/V = 0.55, Level 3 archetype 2, described in Table 4;
3 Red, S/V = 0.47, Level 2, described in Table 3;
4 Blue S/V = 0.40, Level 3 archetype 3, described in Table 4.

In Fig. 6, we represent parametric simulation results for Level 2 and
3 data with Hsim in the range 0.44−0.74 W/(m3K) and then, for the
sake of comparison with existing building performance, we limit
thermal demand for heating in the range 19.5–29.5 kW h/m3 (± 20 %
from baseline Level 1 results in Table 13) in Fig. 7, checking the con-
figurations that have similar results and evaluating the impact of var-
iations.

Even after restricting the range of thermal demand to 19.5–29.5 kW
h/m3, there are still many possible configurations and so, in Fig. 8, we
use Hsim in the range 0.57−0.61 W/(m3K) to reduce further the number
of options. Building archetypes with similar S/V ratio and similar Hsim

have similar heating demand as expected. In this way, we aimed to
verify how Hsim could be used to narrow down the number of

parametric configurations with similar energy performance, in order to
link more transparently the calibration process with parametric simu-
lation. In fact, Hsim can be considered as an approximation of –a1 and
–b1 coefficient of regression models in Table 6, as explained before in
this section and this, in turn, guarantees the possibility to use it both in
forward (design) and inverse (calibration) analysis.

After that, in Figs. 9–11 we perform similar steps for the comparison
of design configurations, selecting data with Hsim in the range
0.19−0.38 W/(m3K) and then limiting the thermal demand for heating
in the range 7.0−10.5 kW h/m3 (± 20 % from baseline Level 1 results
in Table 13).

Again in Fig. 10 multiple configurations have similar thermal de-
mand and in Fig. 11 we use Hsim in the range 0.57−0.61 W/(m3K) to
reduce the number of simulation options further. Again, building ar-
chetypes with similar S/V ratio and similar Hsim have similar heating
demand as expected.

In synthesis, the goal of exploratory data analysis with parallel co-
ordinate plots, both for existing and design configurations, was ver-
ifying the possibility of combining multivariate data visualization with
the regression-based approach proposed, maintaining a physical

Fig. 10. Parallel coordinate plot analysis – selection of parametric configurations Hsim range 0.19-0.38 W/(m3K) that match a thermal demand in the range 7.0-10.5
kW h/m3.

Fig. 11. Parallel coordinate plot analysis – selection of parametric configurations Hsim range 0.19-0.38 W/(m3K) that match a thermal demand in the range 7.0-10.5
kW h/m3 and Hsim in the range 0.27-0.33 W/(m3K).
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interpretation of regression coefficients, as indicated in Section 3.2. In
all the simulation cases considered, the use of multivariate visualization
helped detecting similarities or differences among simulation cases
created with different characteristics and levels of detail.

5. Conclusion

In this paper we presented a research essentially focused on testing
the flexibility and scalability of a meta-model based approach to link
design and operational performance analysis. This approach is part of
the ongoing work for the creation of the cloud data platform of the EU
H2020 project HEART (Holistic Energy and Architectural Retrofit
Toolkit). The meta-modelling technique used in this project is linear
multivariate regression, which have been chosen based on the evidence
collected in literature analysis and the experience gained in previous
research on model calibration and performance gap analysis. More in
general, while the research in this case has been based on an energy
audit and detailed data acquisition, the modelling approach proposed
can be applicable even when limited information is available (e.g. basic
building information and monthly utility bills), but data are sufficient
to create a reliable baseline, considering the model calibration thresh-
olds used in state-of-the-art M&V procedures, reported in Section 3.3.
Given the underlying uncertainties of the assumption introduced in the
energy modelling process and the possibility of having multiple models
matching measured data, we used both energy performance indicators
and statistical indicators to track the process of model calibration and a
multi-level structure of the input for building models (i.e. a harmonized
reference/prototype building dataset). This structure is then exploited
also for visualization purpose, using parallel coordinate plot for mul-
tivariate data. Beside detailed (multi-level) model input, we introduced
a lumped parameter Hsim (heat transfer coefficient, accounting for
transmission and infiltration/ventilation in a simplified way) that can
be of help when filtering the data for exploratory analysis, as show in
Section 4.2. Other lumped coefficients may be introduced by exploiting
the approximate physical interpretation of regression model coeffi-
cients, studied in previous research. Further, the approach is scalable
and can be applied at multiple levels in the building, from individual
thermal zones up to the whole building balance. Additionally, the re-
gression approach enables an effective application of Bayesian techni-
ques that can be introduced to test probabilistically the reliability of the
estimates of regression coefficients (e.g. by analyzing statistical dis-
tributions of model inputs/outputs). Finally, the multivariate data
analysis can be enhanced by including variables (either continuous of
discrete/categorical) to represent weather data variability, behavioural
variability (e.g. different occupancy patterns) and different operation
settings (e.g. different operation schedules). These will be part of future
research in the HEART project, which will be focused on the multi-level
analysis and visualization of building energy balance components and
on the definition of representative weather data files for the project
application area, together with an appropriate grid and ranges of si-
mulation inputs to limit the amount of parametric simulations, while
enabling an accurate exploration of the space of possible building de-
sign options and performance outcomes.
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