
Received June 16, 2020, accepted June 27, 2020, date of publication July 3, 2020, date of current version July 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007046

Li-Ion Batteries Parameter Estimation With
Tiny Neural Networks Embedded on Intelligent
IoT Microcontrollers
GIULIA CROCIONI1, DANILO PAU2, (Fellow, IEEE), JEAN-MICHEL DELORME3,
AND GIAMBATTISTA GRUOSSO 1, (Senior Member, IEEE)
1DEIB, Politecnico di Milano, 20133 Milano, Italy
2STMictroelectronics, 20864 Agrate Brianza, Italy
3STMictroelectronics, Cedex 38019 Grenoble, France

Corresponding author: Giambattista Gruosso (giambattista.gruosso@polimi.it)

ABSTRACT Lithium-ion (Li-Ion) batteries are rechargeable batteries which can maximize battery lifespan
thanks to their chemical abilities, at the same time increasing power energy density. For these reasons,
Li-Ion batteries have earned considerable popularity, and they are widely used both in mobile computing
devices (e.g. smartphones and smartwatches) and automotive systems (e.g. hybrid and electric vehicles).
A fundamental parameter for battery health monitoring is the State of Health (SoH), which is computed
from the maximum releasable capacity, and which represents battery functionality in energy storage and
delivery. Among the most used data-driven approaches are Machine Learning (ML) algorithms, such
as Support Vector Machines (SVMs), Random Forest (RF) regressions, and Artificial Neural Networks
(ANNs). This article presents a comparison of different ML algorithms for estimating maximum releasable
capacity of Li-Ion batteries, with a special focus on the implementation of both Forward and Recurrent
ANNs (FNNs and RNNs, respectively), using prognostic Li-Ion battery data sets provided by the National
Aeronautics and Space Administration (NASA). After an evaluation of models performances in terms of
RMSE andMAE, STM32Cube.AI tool was used to convert pre-trained ANNs to optimized ANSI C code for
STM32microcontrollers (MCUs), and to profile their complexity automatically. Finally, in order to decrease
models size with minimal accuracy loss, the implemented ANNs were quantized via STM32Cube.AI,
converting weights and activations from 32-bit floating-point to 8-bit integer precision. TensorFlow Lite
for Microcontrollers (TFLM) was used as benchmark in the analysis and validation of both non-quantized
and quantized models, and the performances obtained via STM32Cube.AI and TFLM were compared.

INDEX TERMS Battery modeling, neural networks, simulation, forecasting, micro-controller, support
vector machine, capacity battery modeling, estimation, data-driven.

I. INTRODUCTION
Lithium-Ion (Li-Ion) batteries are increasingly used to power
many systems, including portable devices, such as smart-
phones, and automotive systems, such as Hybrid Electric
Vehicles (HEV) and Electric Vehicles (EV) [1]. These
rechargeable batteries present several advantages in terms
of high specific energy and power [2], outlasting the lifes-
pan of traditional batteries, such as Nickel Metal Hydride
(NiMH) [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jonghoon Kim .

Evaluation and monitoring of battery health, safety, and
reliability are performed through the Battery Management
System (BMS) [4], in which the State of Health (SoH) is a
fundamental parameter. In fact, SoH represents a measure
of the battery remaining capacity, compared to the nominal
one [5]:

SOH =
Cmax
Crated

100% (1)

In the equation 1, Cmax represents the maximal releasable
capacity (in Ampere Hours) and measures the maximum
amount of charge stored by the battery, while Crated rep-
resents its nominal capacity, provided by the manufacturer.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 122135

https://orcid.org/0000-0001-6417-3750
https://orcid.org/0000-0001-8757-547X


G. Crocioni et al.: Li-Ion Batteries Parameter Estimation With Tiny Neural Networks

The maximal releasable capacity can be computed by inte-
grating the discharge current of the fully charged battery over
time [6]:

Cmax =

tcutoff∫
0

Iddt (2)

During a battery lifespan, its capacity decays even if it is
not used, due to internal aging processes. Due to this phe-
nomenon, performances decrease and the battery is typically
no longer considered reliable after a 20% fading in its nom-
inal value [7], [8]. Therefore, SoH and maximal releasable
capacity estimations are essential to reduce safety risks and
to prevent critical failures, allowing for appropriate battery
replacement [9].

Several data-driven methods based on Machine Learning
(ML) techniques have been developed for estimating SoH
[10], [11]. Measurable battery parameters such as terminal
voltage, current and temperature, can be extracted via the
Controller Area Network (CAN) bus [12], and can be used
for capacity fading and SoH estimation.

Weng et al. [13] developed a model based on Support
Vector Regression (SVR), using partially charging data of a
single Li-Ion cell to estimate capacity fading of other 7 cells.
However, due to the same charge profile used for all data
generation, the complexity of the estimation was reduced.
Wei et al. [14] proposed a SVR-based model for batteries
capacity fading prediction, based on one of the Li-Ion battery
datasets made available by National Aeronautics and Space
Administration (NASA) [15]. Also in this work, the data
used for the forecast were only those generated by the
same load profile. Additionally, although in real-world con-
ditions the charge/discharge may not be complete, the entire
charge/discharge cycles were used as model input. In the
study of Li et al. [16] random forest regression was used to
estimate online the capacity of Li-Ion batteries, again using
complete charge/discharge cycles as model input. A random
decision forest was proposed by Xu et al. [17] for battery
health estimation, using one of the Li-Ion battery prognostic
datasets made available by NASA [15]. The same batteries
used for both training and test sets considerably reduced the
complexity of capacity estimation.

Despite the high performances obtained through traditional
algorithms, Deep Learning (DL) methods have proven to be
more flexible and effective, due to the high non-linearity
and non-direct observability of SoH. For example, a Convo-
lutional Neural Network (CNN) was used to estimate SoH
from raw battery measurements, obtaining excellent results.
Reference [18] However, the same load profile used for data
generation and the entire cycles of charge given as input
limited the algorithm practicality. Then partial charge profiles
were used for State of Charge (SoC) generation, which was
given as input to the model together with voltage, current
and temperature. However, since SoC is not directly observ-
able and estimable, further errors are introduced a priori in
the model [19]. Choi et al. [7] developed a Feedforward

Neural Network (FNN), a CNN and a Long Short-Term
Memory (LSTM) network to estimate the capacity of Li-Ion
batteries from their voltage, current and temperature charge
profiles. The dataset used is one of the Li-Ion battery datasets
made available by NASA [15], and as in other studies the
complexity of the forecast decreased due to the same load pro-
file used for data generation. Another research work [20] pro-
poses an Independently Recurrent Neural Network (IndRNN)
for SOH estimation which uses randomized battery usage
data collected from Li-Ion batteries adopting dynamic load
profiles [15], obtaining a Root Mean Squared Error (RMSE)
of 0.0133 and a Mean Absolute Error (MAE) of 0.0114.
In this case the 18 input features are derived from voltage,
current and temperature measured during a so-called Random
Walk (random charge/discharge load profile). However, in a
real use-case, all data of a Random Walk before being input
to the network should be stored in memory, and then should
be processed (e.g. computation of mean voltage), greatly
limiting the possibility to use resource constrained hardware,
such as microcontrollers (MCUs).

Despite the great success of the neural networks inference,
these models typically contain several millions of parame-
ters [21], making their storage and evaluation a considerable
hardware bottleneck [22]. In fact, the reduction in neural
networks memory requirements has recently aroused great
interests from the ML community [23], [24]. In particular,
running ML inference on MCUs allows to use Artificial
Intelligence (AI) with several hardware devices reducing
energy consumption, latency, processing power, memory and
storage, without data living the device and thus preserving
privacy. TensorFlow Lite for Microcontrollers is an example
of tool found in the state of the art which makes possible
to run ML models on MCUs with only KiloBytes (KB) of
memory. TensorFlow Lite for Microcontrollers (TFLM) is an
experimental port of TensorFlow Lite, a ML framework for
embedded devices develped by Google, and it has been tested
widely with the Arm Cortex-M Series architectures. [25]

In this article, we present different tiny neural networks
architectures to predict the maximum releasable capacity
of Li-Ion batteries, using the datasets made available by
NASA [15], and comparing the models in terms of accu-
racy. Then, the pre-trained NNs were embedded into a
STM32 microcontroller for low power and low memory
embedded applications. The rest of the article is organized as
follows. In Section II the architectures of the proposed tiny
neural networks are described. Section III describes dataset
preparation, predictive models settings and the boards and
tools used for the complexity analysis. Section IV presents
results and their evaluation. Finally, conclusions are summa-
rized in Section V.

II. DESCRIPTION OF THE TINY ARCHITECTURES AND
THEIR MAIN ADVANTAGES
The architectures used for estimating maximum releaseable
capacity were CNN, LSTM, GRU (Gated Recurrent Unit),
CNN LSTM, and CNN GRU. In fact, studies have shown

122136 VOLUME 8, 2020



G. Crocioni et al.: Li-Ion Batteries Parameter Estimation With Tiny Neural Networks

that a CNN applied to time series can extract significant
patterns by reducing noise [26]. Moreover, leveraging tem-
poral and spatial structure of a CNN allows to learn com-
plex input features [27]. Among Recurrent Neural Networks
(RNNs), the LSTM architecture has been very successful
with time series, and in particular with their long-term depen-
dencies [28], [29]. Moreover, LSTM networks overcome
the vanishing gradient problem, experienced by standard
RNNs [30]. Another type of recurring units proposed more
recently are the GRU units [31], which like the LSTM ones
allow the RNNs employing them to perform well in tasks
where long-term dependencies are important, such as time
series [32]. Finally, given the complementarity of architec-
tures that are well suited at temporal modelling (e.g. LSTM
and GRU) and convolutive layers that reduce frequency vari-
ations [33], the aforementioned RNNs were combined with
the CNN architecture.

A. CONVOLUTIONAL NEURAL NETWORK
The implemented CNN consists of a 1D convolutional layer,
two subsequent hidden dense layers, and a last dense output
layer. The input data are provided in the format that CNN
expects, i.e. the three-dimensional one: number of samples,
time steps (20), and features (4). The filters with which the
convolutional layer is initialized are 32, of size 4 × 4. After
this first layer, for internal covariate shift problems reduction
and for regularization, Batch Normalization [34] is applied.
Then, after the Rectified Linear unit (ReLu) activation func-
tion, the flattened output goes through two fully connected
layers, the first one with 32 neurons and the second one
with 16. Both layers use the ReLu activation function. Then,
20% of the dense layers input units were randomly dropped
for overfitting reduction [35]. The last layer consists of only
one node, and gives the network output. The proposed CNN
architecture is shown in Figure 1.

FIGURE 1. The implemented CNN Architecture consists of a 1D
convolutional layer, a flatten layer, two subsequent hidden dense layers,
and a last dense output layer. Input data are provided in three-
dimensional format: number of samples, time steps (20), and features (4).

B. LONG SHORT-TERM MEMORY NETWORK
The proposed LSTM architecture consists of a LSTM layer
and a dense output layer. The input data are provided in the
format that LSTM expects, i.e. the three-dimensional one:

number of samples, time steps (20), and features (4). The
first layer consists of 50 LSTM output units [36], and uses
the Hyperbolic Tangent as activation function. The network
output is given by the dense output layer, which consists of
a single node. The proposed LSTM architecture is shown
in Figure 2.

FIGURE 2. The implemented LSTM Architecture consists of a LSTM layer
and a dense output layer. Input data are provided in three-dimensional
format: number of samples, time steps (20), and features (4).

C. CONVOLUTIONAL AND LONG SHORT-TERM MEMORY
NETWORK
In the implemented CNN LSTM, the convolutional layer
aims at input features extraction, while the LSTM layer
supports sequence prediction. The input data are provided
in the format that CNN expects, i.e. the three-dimensional
one: number of samples, time steps (20), and features (4).
The filters with which the convolutional layer is initialized
are 32, of size 4 × 4, and after output normalization it uses
the ReLu activation function. The obtained feature maps may
be sensitive to the location of the features in the input [38].
Thus, a max pooling layer is used for the selection of the
maximum of each pair of values, halving the featuremaps and
summarizing the features in the input. Then, a LSTM layer
with 32 output units [36] and with TanH activation function
is used. The network output is given by the dense output layer,
which consists of a single node. The proposed CNN LSTM
architecture is shown in Figure 3.

D. GATED RECURRENT UNITS NETWORK
The proposed GRU architecture consists of a GRU layer and
a dense output layer. The input data are provided in the format
that GRU expects, i.e. the three-dimensional one: number of
samples, time steps (20), and features (4). The first layer
consists of 16 GRU output units, and uses the Hyperbolic
Tangent as activation function. The network output is given
by the dense output layer, which consists of a single node.
The proposed GRU architecture is shown in Figure 4.

VOLUME 8, 2020 122137



G. Crocioni et al.: Li-Ion Batteries Parameter Estimation With Tiny Neural Networks

FIGURE 3. The implemented CNN LSTM Architecture consists of a 1D
convolutional layer, a max pooling layer, a LSTM layer and a dense output
layer. Input data are provided in three-dimensional format: number of
samples, time steps (20), and features (4).

FIGURE 4. The implemented GRU Architecture consists of a GRU layer
and a dense output layer. Input data are provided in three-dimensional
format: number of samples, time steps (20), and features (4).

E. CONVOLUTIONAL AND GATED RECURRENT UNITS
NETWORK
The implemented CNNGRUconsists of a convolutional layer
followed by a max pooling layer, a GRU layer and a dense
output layer. The input data are provided in the format that
CNN expects, i.e. the three-dimensional one: number of sam-
ples, time steps (20), and features (4). The filters with which
the convolutional layer is initialized are 32, of size 4 × 4,
and after output normalization it uses the ReLu activation
function. The GRU layer has 32 output units and uses TanH
activation function. The network output is given by the dense
output layer, which consists of a single node. The proposed
CNN GRU architecture is shown in Figure 5.

III. PROPOSED METHODOLOGY
A. PROBLEM DESCRIPTION AND DATA PREPROCESSING
The dataset chosen for the analysis application is one of
those provided by NASA Ames Prognostics Center of Excel-
lence (PCoE) [15], and it contains measurements of voltage,

FIGURE 5. The implemented CNN GRU Architecture consists of a 1D
convolutional layer, a max pooling layer, a GRU layer and a dense output
layer. Input data are provided in three-dimensional format: number of
samples, time steps (20), and features (4).

current, temperature, capacity and impedance of Li-Ion bat-
teries, generated through charge, discharge and impedance
operational profiles. Charge and discharge tests ended when
the batteries reached the 30% fade in rated capacity (from
2Ah to 1.4Ah). The data generation mode used fixed refer-
ence charge and discharge profiles, and the resulting dataset is
particularly suited to the estimation of the remaining capacity,
as evidenced by many studies we have based on, which
used this dataset to estimate the remaining capacity [7], [14],
[17], [37]. Due to the frequent detection of incorrectly entered
or measured values in some sets during qualitative data obser-
vation, battery sets number 1, 2, 3, 4 and 6 were selected for
further analysis. For example, those batteries whose capacity
values assume zero values after the first cycles, but then return
to almost the initial nominal value, were not included in the
case study.

In data generation tests, the charge profile was applied by
keeping the current constant at 1.5A until a voltage of 4.2V
was reached, then keeping the latter constant until 20µA was
reached (as reference see Figure 6). Instead, the discharge
profiles are different for each battery set, and Table 1 shows
their main differences in terms of discharge current [A], cur-
rent shape, and temperature [◦C]. Figure 7 shows discharge
cycles of three different batteries as functions of voltage [V]
and SoC [p.u.].

TABLE 1. Main discharge conditions for each selected dataset.

122138 VOLUME 8, 2020



G. Crocioni et al.: Li-Ion Batteries Parameter Estimation With Tiny Neural Networks

FIGURE 6. Charging cycle used for data generation tests for all the
batteries of the dataset. The charge profile was applied by keeping the
current constant at 1.5 A until a voltage of 4.2 V was reached, then
keeping the latter constant until 20µA was reached.

FIGURE 7. Discharging cycles of three different batteries [15]. The cycles
are shown as functions of voltage [V] and SoC [p.u.].

Because of the greater variability of experimental condi-
tions during the discharge cycles, which makes them closer to
real-use cases and increases the complexity of the modelling,
only these cycles were used for further analysis. In order to
compute battery releasable capacity, the discharge current is
integrated over time starting from a fully charged battery [6].
However, a full discharge may not be possible in real cases.
Therefore, only some samples for each discharge cycle were
selected, and form the dataset for the presented analysis.
In particular, battery output current, terminal voltage, time
difference between samples and temperature are the four
features selected for each discharge cycle. The target of the
estimation is the capacity of the considered cycle.

Considering all the selected batteries, the total number
of observations (discharge cycles and capacity values) was
1462. In order to create an independent test set for model
performance evaluation, one battery per set, namely battery
number 05 (set 1), 27 (set 2), 30 (set 3), and 46 (set 4) was
inserted in the test set (22 % of the total data), while the rest
was used as training set. In addition to it, after data shuffling
20% of the training set was randomly sampled to form the

validation set, used for model loss evaluation and parameters
tuning [39].

B. PREDICTIVE MODELS
Before the NNs embedding in the MCU, the presented
models were trained and tested using the sets described in
Subsection III-A. The Adaptive Moment Estimation (Adam)
optimization algorithm was used to train to networks due
to its efficiency in terms of adaptive learning rate method
and its suitability to non-stationary problems [40]. The Mean
Squared Error (MSE) is the default loss function for regres-
sion problems, and it was chosen as the function to minimize.
Since the datasets used in the state of the art were differ-
ent and had several limitations (as discussed in more detail
in Section IV-A) which influenced the prediction accuracy,
a direct comparison of the results obtained with those of the
state of the art was not possible.

Thus, a Random Forest (RF) model and an SVR model
were evaluated using the aforementioned dataset, and then
were used as a baseline for the developed architectures.
RF model makes predictions using multiple decision trees
that find the partition to which the new input belongs, choos-
ing between subspaces with small variations [41]. The num-
ber of model trees has been set to 4 to make it comparable in
size to the developed neural networks. SVR applies Support
Vector Machine (SVM) theory to regression tasks. In SVMs,
kernel functions map input data to a higher dimensional
feature space, and a separating hyperplane maximizes the
margin [42]. The kernel chosen for the model was the linear
one, since its results were better than ones obtained with the
Polynomial and Radial Basis Function (RBF) kernels. Both
in neural networks and baseline models, MinMaxScaler was
used to scale the features and to preserve the original data
distribution shape [43].

C. COMPLEXITY PROFILING
The trained neural networks were embedded into ARM
Cortex-M4MCU, integrated on a SensorTile Wireless Indus-
trial Node (STWIN). It was chosen since it is very suitable
for industrial applications which need condition monitoring,
being provided with several industrial IoT sensors, an ultra-
low-power MCU (STM32L4R9ZIJ6), modular architecture,
and a 480mAh Li-Po battery. In addition to this, BLE wire-
less andWiFi connectivity on-board are supported. Themem-
ory embedded in the core system MCU consists in 2 Mbytes
of Flash and 640 Kbytes of SRAM. [44] The tool used for
the pre-trained architectures conversion was STM32Cube.AI
software tool (version 5.0.0), which automatically converts
the models into optimized ANSI C code for embedded
MCUs, and allows their performances analysis, running the
validation both on PC and on the chosen MCU.

Then, the tool was used to generate 8-bit integer quantized
models which reduce run-time models size, improving both
hardware latency and power consumption. In particular, each
NN weights and associated activations are converted from
32-bit floating-point to 8-bit integer precision, with little

VOLUME 8, 2020 122139



G. Crocioni et al.: Li-Ion Batteries Parameter Estimation With Tiny Neural Networks

FIGURE 8. Functional Diagram of the main steps of the quantization process in TFLM
and STM32Cube.AI.

degradation in model accuracy. The algorithm used to gen-
erate the quantized tensors is ‘‘Minmax’’, which bases the
quantization process on min and max values of all weights
and activations tensors. The arithmetic used is the inte-
ger arithmetic, which allows a more efficient implementa-
tion than floating point inference, and which is based on
a representative convention used by Google for quantized
models [45]. For the integer arithmetic, the real numbers r are
mapped to 8-bit integer numbers q according to the following
equation, where the scale factor is an arbitrary positive real
number:

q =
r

scale
+ zero_point (3)

The quantized values q are linearly distributed around the
zero point, and precision depends on the scale factor. Weights
format can be asymmetric (i.e. zero point not fixed) or sym-
metric (zero point equal to 0). In the latter case, it is possi-
ble to limit cost of operations by using kernel optimization
implementations. On the other hand, symmetric format for
activations is not supported due to their asymmetric nature.
Post-quantized TensorFlow Lite models use symmetric for-
mat and signed integer type for the weights, and asymmetric
format and signed integer type for the activations. Thus,
the same scheme (ss/sa) was chosen for the quantization
process. Quantization of recursive layers (i.e. LSTM and
GRU layers) is not supported, and therefore their execution
remains in floating-point. Reference [46] Also quantized
models were analysed, running the validation both on PC
and on the chosen MCU, and compared with non-quantized
models performances.

Finally, in order to benchmark TFLM (r2.2), themain state-
of-the-art tool comparable with STM32Cube.AI, CNNmodel
was analysed and validated using both STM32Cube.AI and
TFLM tools. Benchmarking was performed using only the
CNN model, as current versions of STM32Cube.AI and

TFLM do not support recurrent layers. In fact, quantization
of recursive layers resulted in a drastic loss of overall accu-
racy, and for both STM32Cube.AI and TFLM the support
for the 8-bit quantization is still evolving [46], [47]. Both
non-quantized and quantized models were embedded into
three boards (i.e. Nucleo-H743ZI @480MHz, Nucleo-F411
@100MHz, and Nucleo-L4r5ZI @120MHz), and the per-
formances obtained via STM32Cube.AI and TFLM were
compared. In order to perform the analysis with TFLM,
CNN model was converted from .h5 format to TensorFlow
Lite format (.tflite), before being quantized with TensorFlow
post training quantization. In both processes, the quantization
scheme used was ss/sa. The main steps of STM32Cube.AI
and TFLM quantization processes are shown in Figure 8.

IV. RESULTS AND EVALUATION
A. DATA PREPROCESSING
The choices made for the dataset aim to overcome the
limits found in the datasets used in the state of the art.
Among them, Wei et al. [14], Xu et al. [17], Li et al. [16]
used entire charge/discharge cycles. In these cases the esti-
mation of capacity is simplified and does not reproduce
real world conditions, in which a complete cycle may not
be available. In the dataset used for this work, only some
samples were inserted for each signal. Weng et al. [13],
Wei et al. [14], Xu al. [17], Choi et al. [7] used datasets whose
data were generated using the same load profile. Instead,
the dataset used in this work has only the discharge cycles,
due to the greater variability of their experimental condi-
tions. Additionally, Xu et al. [17] reduced the complexity
of capacity prediction by using the same batteries in both
the test and training phases. In contrast, in the dataset used
in this article the batteries inserted in the test set and in
the training set are different from each other, increasing the
prediction complexity and the similarity to a real use case.

122140 VOLUME 8, 2020



G. Crocioni et al.: Li-Ion Batteries Parameter Estimation With Tiny Neural Networks

FIGURE 9. Developed models capacity predictions [Ah], using the test set described in the
Subsection III-A. The predicted values are superimposed on the ground-truth values in black,
which are the ones extracted from the NASA dataset [15].

Finally, the satisfactory results obtained by Prakash and
Vigneswaran [20] cannot be compared to the ones presented
in this work, due to the different methodologies used for
network input features extraction. In fact, while Prakash et al.
collected data during a random charge/discharge load profile
and then processed them to extract input features, implying
large data storage and off-line data processing, in this article
only some samples for each cycle were selected, and they
were directly used as input features for the networks, making
cheap real-time SOH estimation possible.

B. PREDICTIVE MODELS
The prediction accuracy of the developed architectures was
evaluated using RMSE and MAE metrics. Since ML algo-
rithms usually use randomness during the training procedure,
such as in initialization of NNs weights, and in the input
features partitioning for splitting points in RF, they can pro-
duce different results at each run. Thus, the models were
trained and tested 10 times each, using a different value for
the pseudo-random number generator. The metrics obtained
for each model are shown in Table 2 in terms of mean
value and maximum variation obtained from it. NNs gave
better results than the two models chosen as baseline, RF and

TABLE 2. Capacity estimation errors for the proposed neural networks
architectures.

SVM, and in particular CNN GRU outperformed other NNs
architectures, with maximum RMSE andMAE of 0.0488 and
0.0414, respectively, producing errors bellow the acceptable
SOH error range of ±0.05 for EVs [20]. The total number of
parameters for each of the proposed architectures is shown
in Table 3, and it can be noticed that CNN GRU was almost
the model with the lowest number of parameters, exceeded
only by GRU network.

TABLE 3. Number of parameters of the proposed neural networks
architectures.

Capacity predictions obtained during test phase, before
MCU embedding, are shown in Figure 9, superimposed on
the ground-truth values. Figure 10 shows prediction residuals
r = y− ŷ for each developed model, where y represents the
true capacity values, and ŷ the predicted ones. It can be
noticed that the models prediction error of cycles from 167 to
194 is larger than in the rest of the test set, meaning that in
this interval the models are not able to capture relationships
well enough. In fact, these predictions refer to test set battery
number 27 (set 2, see Subsection III-A), whose set is the only
one with a squared discharge current wave, and has the least
data in the training set, representing only 7% of the total.

C. COMPLEXITY PROFILING
The results of NNs complexity analysis obtained via
STM32Cube.AI are shown in Table 4, in terms of Random
Access Memory (RAM), Flash, and Multiplier ACCumula-
tor (MACC) operations in 32-bit floating points. Then the

VOLUME 8, 2020 122141



G. Crocioni et al.: Li-Ion Batteries Parameter Estimation With Tiny Neural Networks

FIGURE 10. Capacity predictions residuals [Ah] of the developed models, using the test set
described in the Subsection III-A.

TABLE 4. Results of Neural Networks complexity analysis.

pre-trained models were loaded to the chosen MCU, and the
test set mentioned in Subsection III-A was used to validate
them. The NNs obtained evaluations are shown in Table 5.
RMSE and MAE for STM32 C-model and for the original
one are shown for each model, together with cross-accuracy,
defined considering the original model outputs as ground
truth values for the C-model outputs. All original models are
correctly converted to ANSI C code, keeping their perfor-
mances unchanged.

Afterwards, the aforementioned models were quantized
and the complexity profiling obtained through the validation
on the chosen MCU was compared with non-quantized mod-
els one. In particular, Figure 11 shows a comparison of the

FIGURE 11. Weights size [KB] for floating-point model in blue and for
quantized model in orange. The results were obtained from the validation
of the models on the MCU described in the Subsection III-C.

TABLE 5. Neural Networks on-board evaluation, using test set data.

weights size [KB] of non-quantized models (floating-point
models) with those of quantized ones. Other comparisons
are shown in Figure 12, in terms of RAM size [KB], and
in Figure 13, in terms of mean CPU cycles needed for a single
inference divided for the number of MACC operations.

In all comparisons, it can be noted that the quantized
CNN model is characterized by a drastic drop in weights and
RAM sizes, and in ratio between CPU cycles and MACC
operations. In particular, in CNN quantized model weights
and RAM size are reduced by more than half compared to
the non-quantized one. Cycles/MACC also decrease con-
siderably, being about halved. Also for the quantized CNN
LSTM and CNN GRU there is an improvement in perfor-
mances, reducing both memory usage and single inference

122142 VOLUME 8, 2020



G. Crocioni et al.: Li-Ion Batteries Parameter Estimation With Tiny Neural Networks

FIGURE 12. Total RAM size [KB] for floating-point model in blue and for
quantized model in orange. The results were obtained from the validation
of the models on the MCU described in the Subsection III-C.

FIGURE 13. Single inference CPU cycles / MACC for floating-point model
in blue and for quantized model in orange. The results were obtained
from the validation of the models on the MCU described in the
Subsection III-C.

mean cycles/MACC required, but in these cases the drop
is less drastic than in CNN model. This behavior is due
to the fact that CNN LSTM and CNN GRU models are
composed of recurrent layers, which as already explained in
the Subsection III-C are not quantized, and therefore their
execution remains in floating-point. Finally, LSTM and GRU
quantized models performances are slightly worse than the
non-quantized ones. In fact, both LSTM and GRU models
are composed of two layers in series: while the first layer is
recurrent, and produces activations in floating-point precision
since its quantization is not supported, the second layer is
dense, and accepts activations in 8-bit integer precision since
it is quantized. Between these two layers, a quantization layer
which converts the activations from floating-point to 8-bit
integer precision is needed, decreasing the quantized models
performances. Table 6 shows that the improvement in terms
of models sizes, CPU cycles and MACC operations required
is at the expense of a slight degradation in the quantized mod-
els accuracy. In particular, the accuracy loss in the quantized
CNN model is the greatest (i.e. 0.0334 additional RMSE and
0.0331 additionalMAE), since the absence of recurrent layers
makes the quantization complete, thus increasing accuracy
loss. In all other networks, the accuracy of the quantized
models decreases by less than 1 percentage point.

TABLE 6. Degradation in quantized models accuracy.

TABLE 7. Inference energy consumption estimation EI for both
non-quantized and quantized CNN models, computed according to [49]
modeling and energy cost data.

TABLE 8. Inference time ([ms], average of 16 iterations) of CNN model,
using TFLM and STM32Cube.AI.

NNs energy consumption is crucial in battery constrained
embedded applications [48], and the use of a quantized model
can be very convenient in reducing energy costs. In order to

VOLUME 8, 2020 122143



G. Crocioni et al.: Li-Ion Batteries Parameter Estimation With Tiny Neural Networks

compare the energy cost of the non-quantized CNN model
with the quantized one, the inference energy consumption
was modeled according to Horowitz [49], considering a typ-
ical processing hardware platform for CNNs [48], [50]. For
the sake of simplicity, we provide a reference numerical com-
parison sourcing the energy cost data of a 45 nm processor
technology from [49]. The energy consumption of the local
SRAM read/write operation is modeled as the energy EMACC
of a single MACC operation, while it models the access to the
main SRAM as EM = 2× EMACC . The cost of bias additions,
batch normalization and similar operations is considerded to
be EMACC . Reference [48] Table 7 shows the inference energy
consumption estimation EI for both non-quantized and quan-
tized CNNmodels. The inference cost of the quantized model
resulted more than one order of magnitude lower than the
non-quantized one.

Finally, Tables 8 and 9 show the performances results
obtained from STM32Cube.AI v5.0.0 and TFLM r2.2 val-
idation for both non-quantized and quantized CNN model,
for each of the three MCUs used. In particular, Table 8
shows the average inference time ([ms], average of 16 iter-
ations), and for all three boards the models processed
with STM32Cube.AI perform slighlty better. Also Table 9
shows that the results obtained via STM32Cube.AI out-
perform TFLM ones, in this case in terms of CNN model
size (RAM [KB] including inputs buffer, and Flash [KB]).
The summary Table 10 shows the gain percentage in
STM32Cube.AI complexity profiling results, compared to
those obtained in TFLM.

TABLE 9. CNN model size in terms of RAM [KB] including inputs buffer,
and Flash [KB], using TFLM and STM32Cube.AI.

TABLE 10. Savings [%] in STM32Cube.AI complexity profiling results
compared to TFLM ones.

V. SUMMARY AND CONCLUSION
In this article, we showed different NNs architectures
(i.e. CNN, LSTM, CNN LSTM, GRU, and CNN GRU) that

predict the maximum releasable capacity of Li-Ion batteries,
from which SoH can be easily computed. Li-Ion batteries
datasets made available by NASA [15] were used for both the
training and the testing phase. The final dataset was created
with the aim of overcoming the limits found in the state of
the art (e.g. the application of the same load profile for data
generation), as widely motivated in the Subsection IV-A.
According to the results of the predictions, CNN GRU

exceeded all other NNs, with maximum RMSE and MAE
of 0.0488 and 0.0414, respectively, and all NNs gave bet-
ter results than the baseline models (i.e. RF and SVM).
Then, via STM32Cube.AI tool, the pre-trained models were
incorporated into ARM Cortex-M4 MCU, and integrated on
a STWIN, converting them into optimized ANSI C code.
The NNs were validated both on PC and MCU, resulting in
unchanged performances. The NNs models were also quan-
tized, converting weights and associated activations from
32-bit floating-point to 8-bit integer precision, with a slight
degradation in the models accuracy. The results obtained
in the complexity profiling showed that weights size [KB],
RAM size [KB], and Cycles/MACC decreased significantly
in the quantized CNN model, and less drastically in the
quantized CNN LSTM and CNN GRU models, due to their
recurrent layer which is not supported for quantization.
Finally, TFLM tool was benchmarked analysing and vali-
dating both non-quantized and quantized CNN models via
STM32Cube.AI, whose results outperformed TFLM ones in
terms of average inference time [ms], RAM size including
inputs buffer [KB], and Flash size [KB].

REFERENCES
[1] Y. Nishi, ‘‘Lithium ion secondary batteries; past 10 years and the future,’’

J. Power Sources, vol. 100, nos. 1–2, pp. 101–106, Nov. 2001.
[2] V.Marano, S. Onori, Y. Guezennec, G. Rizzoni, andN.Madella, ‘‘Lithium-

ion batteries life estimation for plug-in hybrid electric vehicles,’’ in Proc.
IEEE Vehicle Power Propuls. Conf., Dearborn, MI, USA, Sep. 2009,
pp. 536–543.

[3] Q. Miao, L. Xie, H. Cui, W. Liang, and M. Pecht, ‘‘Remaining useful life
prediction of lithium-ion battery with unscented particle filter technique,’’
Microelectron. Rel., vol. 53, no. 6, pp. 805–810, Jun. 2013.

[4] H. Rahimi-Eichi, U. Ojha, F. Baronti, and M.-Y. Chow, ‘‘Battery manage-
ment system: An overview of its application in the smart grid and electric
vehicles,’’ IEEE Ind. Electron. Mag., vol. 7, no. 2, pp. 4–16, Jun. 2013.

[5] M. Murnane and A. Ghazel, ‘‘A closer look at state of charge (SOC) and
state of health (SOH) estimation techniques for batteries,’’ Analog Devices,
vol. 2, pp. 426–436, May 2017.

[6] A. Kirchev, ‘‘Battery management and battery diagnostics,’’ in Electro-
chemical Energy Storage for Renewable Sources and Grid Balancing.
Amsterdam, The Netherlands: Elsevier, 2015, pp. 411–435, ch. 20.

[7] Y. Choi, S. Ryu, K. Park, and H. Kim, ‘‘Machine learning-based lithium-
ion battery capacity estimation exploiting multi-channel charging pro-
files,’’ IEEE Access, vol. 7, pp. 75143–75152, 2019.

[8] Lithium-ion Battery Datasheet, Battery Model, LIR18650 2600mAh,
EEMB Co., Ltd., Moscow, Russia, 2010.

[9] A. Farmann, W. Waag, A. Marongiu, and D. U. Sauer, ‘‘Critical review of
on-board capacity estimation techniques for lithium-ion batteries in elec-
tric and hybrid electric vehicles,’’ J. Power Sources, vol. 281, pp. 114–130,
May 2015.

[10] X. Hu, J. Jiang, D. Cao, and B. Egardt, ‘‘Battery health prognosis for
electric vehicles using sample entropy and sparse Bayesian predictive
modeling,’’ IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2645–2656,
Apr. 2016.

122144 VOLUME 8, 2020



G. Crocioni et al.: Li-Ion Batteries Parameter Estimation With Tiny Neural Networks

[11] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, ‘‘A review on the key issues
for lithium-ion batterymanagement in electric vehicles,’’ J. Power Sources,
vol. 226, pp. 272–288, Mar. 2013.

[12] M. Zheng, B. Qi, and H. Wu, ‘‘A li-ion battery management system based
on CAN-bus for electric vehicle,’’ in Proc. 3rd IEEE Conf. Ind. Electron.
Appl., Jun. 2008, pp. 1180–1184.

[13] C.Weng, Y. Cui, J. Sun, and H. Peng, ‘‘On-board state of health monitoring
of lithium-ion batteries using incremental capacity analysis with support
vector regression,’’ J. Power Sources, vol. 235, pp. 36–44, Aug. 2013.

[14] J. Wei, G. Dong, and Z. Chen, ‘‘Remaining useful life prediction and
state of health diagnosis for lithium-ion batteries using particle filter and
support vector regression,’’ IEEE Trans. Ind. Electron., vol. 65, no. 7,
pp. 5634–5643, Jul. 2018.

[15] B. Saha and K. Goebel. Battery Data Set, NASA Ames Prognos-
tics Data Repository. Accessed: Oct. 10, 2019. [Online]. Available:
http://ti.arc.nasa.gov/project/prognostic-datarepository

[16] Y. Li, C. Zou, M. Berecibar, E. Nanini-Maury, J. C.-W. Chan, P. van den
Bossche, J. Van Mierlo, and N. Omar, ‘‘Random forest regression for
online capacity estimation of lithium-ion batteries,’’Appl. Energy, vol. 232,
pp. 197–210, Dec. 2018.

[17] H. Xu, Y. Peng, and L. Su, ‘‘Health state estimation method of lithium
ion battery based on NASA experimental data set,’’ IOP Conf., Mater. Sci.
Eng., vol. 452, Dec. 2018, Art. no. 032067.

[18] E. Chemali, ‘‘Intelligent state-of-charge and state-of-health estimation
framework for Li-ion batteries in electrified vehicles using deep learning
techniques,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng., McMaster
Univ., Hamilton, ON, Canada, 2018.

[19] R. Zhang, B. Xia, B. Li, L. Cao, Y. Lai, W. Zheng, H. Wang, andW. Wang,
‘‘State of the art of lithium-ion battery SOC estimation for electrical
vehicles,’’ Energies, vol. 11, no. 7, p. 1820, Jul. 2018.

[20] P. Venugopal and V. T., ‘‘State-of-Health estimation of li-ion batteries in
electric vehicle using IndRNN under variable load condition,’’ Energies,
vol. 12, no. 22, p. 4338, Nov. 2019.

[21] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. Xu Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y.Wu, and Z. Chen, ‘‘GPipe: Efficient training of giant
neural networks using pipeline parallelism,’’ 2018, arXiv:1811.06965.
[Online]. Available: http://arxiv.org/abs/1811.06965

[22] S. Nimit Sohoni, R. Christopher Aberger, M. Leszczynski, J. Zhang,
and C. Ré, ‘‘Low-memory neural network training: A technical report,’’
Stanford Univ., Stanford, CA, USA, Tech. Rep., 2019.

[23] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, andW. J. Dally,
‘‘EIE: Efficient inference engine on compressed deep neural network,’’ in
Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 243–254.

[24] M. Zhu and S. Gupta, ‘‘To prune, or not to prune: Exploring the efficacy
of pruning for model compression,’’ 2017, arXiv:1710.01878. [Online].
Available: http://arxiv.org/abs/1710.01878

[25] (Mar. 31, 2020). TensorFlow Lite for Microcontrollers. Accessed:
Apr. 22, 2020. [Online]. Available: https://www.tensorflow.org/
lite/microcontrollers

[26] A. Borovykh, S. Bohte, and C. W. Oosterlee, ‘‘Conditional time series
forecasting with convolutional neural networks,’’ 2017, arXiv:1703.04691.
[Online]. Available: http://arxiv.org/abs/1703.04691

[27] M. Ibrahim, M. Torki, and M. Elnainay, ‘‘CNN based indoor localization
using RSS time-series,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC),
Jun. 2018, pp. 01044–01049.

[28] I. Sutskever, ‘‘Training recurrent neural networks,’’ Ph.D. dissertation,
Univ. Toronto, Toronto, ON, Canada, 2013.

[29] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural-
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[30] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, ‘‘Long short term memory
networks for anomaly detection in time series,’’ in Proc. 23rd Eur. Symp.
Artif. Neural Netw., Comput. Intell. Mach. Learn., 2015.

[31] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder-decoder for statistical machine translation,’’ 2014,
arXiv:1406.1078. [Online]. Available: http://arxiv.org/abs/1406.1078

[32] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,’’ 2014,
arXiv:1412.3555. [Online]. Available: http://arxiv.org/abs/1412.3555

[33] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, ‘‘Convolutional, long
short-term memory, fully connected deep neural networks,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 4580–4584.

[34] R. Ilango. (2019). Batch Normalization—Speed Up Neural
Network Training. Accessed: Oct. 24, 2019. [Online]. Available:
https://medium.com/@ilango100/batch-normalization-speed-up-neural-
network-training-245e39a62f85

[35] J. Xiong, K. Zhang, and H. Zhang, ‘‘A vibrating mechanism to prevent
neural networks from overfitting,’’ in Proc. 15th Int. Wireless Commun.
Mobile Comput. Conf. (IWCMC), Jun. 2019, p. 1929.

[36] S. Verma. (2019). Understanding Input and Output shapes in
LSTM—Keras. Accessed: Mar. 10, 2020. [Online]. Available:
https://medium.com/@shivajbd/understanding-input-and-output-shape-
in-lstm-keras-c501ee95c65e

[37] B. Saha and K. Goebel, ‘‘Modeling Li-ion battery capacity depletion in
a particle filtering framework,’’ in Proc. Annu. Conf. Prognostics Health
Manage. Soc. (PHM), Jan. 2009, pp. 1–10.

[38] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available: http://
www.deeplearningbook.org

[39] C. Bishop,Neural Networks for Pattern Recognition. NewYork, NY, USA:
Oxford Univ. Press, 1995, p. 372.

[40] D. Kingma and J. Ba, ‘‘Adam: A Method for Stochastic Optimization,’’ in
Proc. Int. Conf. Learn. Represent., 2014, pp. 1–15.

[41] L. Breiman, ‘‘Random forests,’’ inMachine Learning. Norwell, MA, USA:
Kluwer, 2001, pp. 5–32.

[42] C.-H. Wu, J.-M. Ho, and D. T. Lee, ‘‘Travel-time prediction with sup-
port vector regression,’’ IEEE Trans. Intell. Transp. Syst., vol. 5, no. 4,
pp. 276–281, Dec. 2004.

[43] J. Hale. (2019). Scale, Standardize, or Normalize With Scikit-Learn.
Accessed: Oct. 31, 2019. [Online]. Available: http://towardsdatascience.
com/scale-standardize-or-normalize-with-scikit-learn-6ccc7d176a02

[44] STWIN SensorTile Wireless Industrial Node Development Kit and Refer-
ence Design for Industrial IoT Applications, Data brief, Rev. 1, STMicro-
electronics, Geneva, Switzerland, 2019.

[45] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks
for efficient integer-arithmetic-only inference,’’ 2017, arXiv:1712.05877.
[Online]. Available: http://arxiv.org/abs/1712.05877

[46] Online Documentation—Command Line Interface X-CUBE-AI
Expansion Package, R1.2 - AI PLATFORM R5.0.0 (Embedded
Inference Client API 1.1.0)—Command Line Interface R1.2.0, 2019,
Available in X-CUBE-AI Expansion Package. [Online]. Available:
http://Documentation/command_line_interface.html

[47] E. Torti, A. Fontanella, M. Musci, N. Blago, D. Pau, F. Leporati, and
M. Piastra, ‘‘Embedded real-time fall detection with deep learning on
wearable devices,’’ in Proc. 21st Euromicro Conf. Digit. Syst. Design
(DSD), Aug. 2018, pp. 405–412.

[48] B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst,
‘‘Minimum energy quantized neural networks,’’ 2017, arXiv:1711.00215.
[Online]. Available: http://arxiv.org/abs/1711.00215

[49] M. Horowitz, ‘‘Energy table for 45 nm process,’’ in Stanford VLSI Wiki.
2014. [Online]. Available: http://vlsiweb.stanford.edu

[50] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, ‘‘14.5 envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28 nm
FDSOI,’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2017, pp. 246–247.

GIULIA CROCIONI was born in Castiglione del
Lago, Italy, in 1995. She received the B.S. and
M.S. degrees in biomedical engineering from the
Politecnico di Milano, Italy, in 2019, and the M.S.
degree in bioengineering from the University of
Illinois at Chicago (UIC), IL, USA, in 2019. She
was a Teaching Assistant in neural engineering
with the Neural Engineering Laboratory, UIC. She
was also an Intern with the Research and Develop-
ment Artificial Intelligence Tools and Application

Team, STMicroelectronics. Since 2020, she has been a Data Scientist with
the Brain Team - Big Data and Analytics, Allianz SpA and specializing with
politecnico di milano as Data scientist. Her main research interests include
advanced data analysis, machine learning, and the IoT.

VOLUME 8, 2020 122145



G. Crocioni et al.: Li-Ion Batteries Parameter Estimation With Tiny Neural Networks

DANILO PAU (Fellow, IEEE) received the B.S.
and M.S. degrees in electronic engineering from
the Politecnico di Milano, Italy, in 1992. In 1991,
he joined the System Research and Applications
Department, STMicroelectronics. He worked on
Research andDevelopment subjects, such asmem-
ory reduced HDMAC and MPEG video decoding,
video coding, video transcoding, embedded 3D
and 2D graphics, computer vision and deep learn-
ing, and transforming them into company prod-

ucts. He founded and served the First Chairman of the STMicroelectronics
Technical Staff Italian Community. Since 2019, he has been an Industry
Ambassador Member with the Action for Industry, the IEEE Region 8 South
Europe. He is currently a Technical Director and a Fellow Member of
Technical Staff position. His scientific production consists of 83 articles.
He holds over 78 granted patents. He has 23 invited talks/seminars at various
universities and conferences. He has contributed with 113 documents to the
development of Compact Descriptors for Visual Search (CDVS), the group
that successfully developed ISO-IEC 15938-13 MPEG Standard. He was the
Funding Chair of MPEG Ad Hoc Group on Compact Descriptor for Video
Analysis (CDVA), formerly Compact Descriptors for Video Search (CDViS).
He is the Vice-Chair with the Task Force on Intelligent Cyber-Physical
Systems, the IEEE Computational Intelligence Society.

JEAN-MICHEL DELORME was born in
Champigny-sur-Marne, France, in 1967. He
received the Engineering degree in electronic
engineering and the master’s degree in vision for
robotic from the University of Clermont-Ferrand
(Clermont II), France, in 1993, and the Ph.D.
degree in implementation of neural network on
massively parallel machine for speaker recogni-
tion application from the Research Laboratory,
University of Clermont-Ferrand. In 1996, he was

a Software Application Engineer with the Hard Disk Drive Control Domain,
STMicroelectronics. From 2001 to 2012, he was a Senior Software Designer
and an Architect in multi-media framework domain for smartphone applica-
tion with STMicroelectronics and ST-Ericsson. In 2013, he was a Security
Software Designer to develop an advanced open-source trusted execution
environment. Since 2016, he has been a Senior Software Designer with
the Research and Development Micro-Controller Department, STMicroelec-
tronics, to support the embedded applications in sensor, machine learning,
and the IoT domains.

GIAMBATTISTA GRUOSSO (Senior Member,
IEEE) was born in 1973. He received the B.S.
and M.S. degrees in electrical engineering and the
Ph.D. degree in electrical engineering from the
Politecnico di Torino, Italy, in 1999 and 2003,
respectively. From 2002 to 2011, he was an Assis-
tant Professor with the Department of Electronics
and Informatics, Politecnico di Milano, where he
has been an Associate Professor, since 2011. He is
the author of more than 80 papers on Journals

and conferences on the topics. He does research in electrical engineering,
electronic engineering, and industrial engineering. His main research inter-
ests include electrical vehicles transportation electrification, electrical power
systems optimization, simulation of electrical systems, digital twins for smart
mobility, factory and city, and how they can be obtained from data.

122146 VOLUME 8, 2020


