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Abstract: Deforestation causes diverse and profound consequences for the environment and species.
Direct or indirect effects can be related to climate change, biodiversity loss, soil erosion, floods,
landslides, etc. As such a significant process, timely and continuous monitoring of forest dynamics is
important, to constantly follow existing policies and develop new mitigation measures. The present
work had the aim of mapping and monitoring the forest change from 2000 to 2019 and of simulating
the future forest development of a rainforest region located in the Pará state, Brazil. The land cover
dynamics were mapped at five-year intervals based on a supervised classification model deployed on
the cloud processing platform Google Earth Engine. Besides the benefits of reduced computational
time, the service is coupled with a vast data catalogue providing useful access to global products,
such as multispectral images of the missions Landsat five, seven, eight and Sentinel-2. The validation
procedures were done through photointerpretation of high-resolution panchromatic images obtained
from CBERS (China–Brazil Earth Resources Satellite). The more than satisfactory results allowed an
estimation of peak deforestation rates for the period 2000–2006; for the period 2006–2015, a significant
decrease and stabilization, followed by a slight increase till 2019. Based on the derived trends a forest
dynamics was simulated for the period 2019–2028, estimating a decrease in the deforestation rate.
These results demonstrate that such a fusion of satellite observations, machine learning, and cloud
processing, benefits the analysis of the forest dynamics and can provide useful information for the
development of forest policies.

Keywords: deforestation; forest change detection; land cover dynamics; Google Earth Engine; landsat;
Sentinel-2; supervised classification

1. Introduction

Deforestation means a long-term reduction in trees due to natural or anthropogenic activities [1].
It occurs worldwide as a result from complex socio-economic processes including population and
inhabitation growth, agricultural expansion and wood extraction in developing countries [2,3].
The economic, political, technological and cultural factors aggravate the occurrences of deforestation,
as well [1]. Many severe problems are caused by deforestation, including biodiversity loss, soil erosion,
water cycle changes, and potential global effects [4]. Due to deforestation, the land is changing too fast,
resulting in the loss of flora and fauna, which impairs ecosystem functioning [5]. One of the typical
consequences of soil erosion is that the trees could be washed away through losing the anchoring
with the soil [6,7]; landslides can also be triggered by soil erosion; moreover, trees absorb more water
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through their roots and prevent sediment runoff in cases of a flood. Vegetation plays a crucial role
in the hydrological cycle regulation, helping the control of the water level content in the atmosphere.
With less forest cover, less water will be returned to the soil, and the inland areas could be more prone
to drought [8,9]. When tropical forests are destroyed, an enormous amount of carbon dioxide stored
by the vegetation is released to the atmosphere which accelerates global warming [10,11]. After the
burning of fossil fuels, deforestation is the second-largest source of carbon emissions [12], making it
a top global concern nowadays. Forest change monitoring through remote sensing can be an effective
and practical way to reveal the deforestation rate, the correlation between human disturbance and forest
clearing, and the effectiveness of regulation-making for forest governance [13]. Moreover, rapid global
change urges the understanding of temporal ecosystem dynamics [14], which—with the use of remote
sensing techniques—helps to control and prevent further deterioration of forest clearing [15,16].

Most of the tracts in the Brazilian Amazon remained intact until the early 1970s [17].
The deforestation rate started to show an upwards trend since 1991, and a high annual deforestation
level in 2004 (27,772 km2) was recorded by Brazil’s National Institute for Space Research (INPE)
through a survey from 2000 to 2015. The human disturbances have accelerated the deforestation
process, including land occupations, cattle ranching, agricultural expansion, fragmentation, etc. [18,19].
Brown et al. [20] conducted a spatial analysis and proved that land occupations in one municipality
had a direct influence on deforestation in adjacent areas. Furthermore, cattle ranching and agriculture
expansion are also significant drivers for deforestation [21]. In the research done by Aldrich et al. [22],
they investigated the role of contentious social processes and the land conflicts in state Pará, and
as an outcome developed a regional-scale statistical model to describe the contentious land change.
Müller et al. [23] and Cabral et al. [24] concluded that most of the losses were in the continuous tropical
forests and along the highway in the Brazilian Amazon. Their results showed that some protected
areas located in the Mato Grosso and the Pará states had suffered more significant fragmentation,
compared with other regions.

Considerable efforts have been made for estimating and monitoring the changes in Amazon
rainforests, for example, the Brazilian government satellite monitoring program PRODES (Program to
Calculate Deforestation in the Amazon) [25] and many individual REDD+ (Reducing emissions from
deforestation and forest degradation) processes through the United Nations Programme on Reducing
Emissions from Deforestation and Forest Degradation [26]. When dealing with time-series monitoring
and mapping of deforested areas, Earth Observation programs are commonly used as main data
sources [14]. Various methodologies based on remote sensing have been implemented to monitor
forest dynamics in the Brazilian Amazon. In the study of Panta et al. [27], an initial unsupervised
iso-clustering of Landsat products was applied, to identify spatial clusters, followed by field surveys
to generate land use/cover training sets for sequent maximum likelihood classifications, while for the
actual classification of the forest canopy, artificial neural networks were used. Shimabukuro et al. [28]
mapped deforestation in the state of Mato Grosso, Brazil, using Landsat and RapidEye imagery
through linear spectral mixing analysis (LSMA), where it is assumed that each pixel value is a linear
combination of the reflectance. A similar study using LSMA [28] also highlighted the importance
of pre-processing the data and the quality of the input, while using a knowledge-based decision
tree classification method. The applied methods were time-consuming, computationally intensive,
and not always appropriate for large areas. The efficiency of the above-mentioned approaches for
pre-processing, classifying, and analyzing massive datasets will raise problems when the objective is to
map a large area through multi-year satellite observations. Three challenges should be considered for
the production of multi-temporal land cover maps [29]. Due to varying weather conditions, the first
one is to obtain useful images with minimal cloud cover. The second one is to establish a suitable
platform for faster image processing. The third one is to satisfy a certain level of accuracy for image
classification. Due to the limitation of data storage and computing speed, it is hard for conventional
tools to fulfil all requirements. In addition, accessing suitable satellite products for time-series analyses
can be a significant issue.
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In the presented work Random Forest (RF) was implemented—a state-of-the-art machine learning
algorithm—on Google Earth Engine (GEE), a cloud computing service, to evaluate nearly 20 years
of forest evolution, through spaceborne multispectral imagery. Random Forest had already proved
its application as a reliable and accurate classification technique [30–33], while GEE has emerged
in recent years as a valuable platform where researchers from different domains can deploy their
models [34–36]. Moreover, GEE gives access to a data catalogue with various global products, as well
as to the most recent satellite observations from NASA Landsat and European Space Agency (ESA)
Sentinels missions. Except for the almost near real-time data distributions, users can access imagery
in a wide time frame allowing them to choose the most suitable ones for temporal analyses. As an
outcome of the implementation of the Random Forest algorithm and GEE, those three challenges,
previously noted in the literature, have been successfully overcome—GEE with its vast data catalogue
and computational power is reducing the time for determining the suitable data and the actual
processing time, while Random Forest is ensuring high quality and reliable image classification.

As a case study, an area in the Brazilian Amazon, in the Pará state, was chosen and the forest
dynamics were assessed from 2000 to 2019 at five-year steps. With the help of cloud processing, it was
possible to easily determine the most suitable cloud-free satellite products and implement the needed
land cover classification, which allowed the quantification of the loss and gain processes. Even though
internal model validations were performed, the obtained classification outputs were validated using
high-resolution satellite images through a surveying open-source software—Collect Earth. In addition
to the temporal analyses, a future deforestation simulation based on past trends through the Modules
for Land Use Change Evaluation (MOLUSCE) tool, was performed. The findings of this work will
overcome the previously mentioned challenges and will introduce a path for local authorities and
decision-makers not only to monitor forest dynamics in near real-time, but also to analyze how the
trends will develop in the future.

The rest of the paper is organized as follows: in Section 2, the materials and used methodology
for generating the land cover maps are presented. Then the results, including accuracy assessments,
land cover maps and future deforestation simulations will be displayed in Section 3. After, all the
experimental results with a reference to previous research and relevant regulations will be discussed
in Section 4. In the end, the framework, the results and the highlights of the study are presented in
Section 5.

2. Materials and Methods

2.1. Study Area

The Brazilian Amazon is one of the most affected areas in the world from deforestation activities.
As such, an area of interest (AOI) was defined in the southern Pará state, Brazil. In particular, an area
was chosen that is located between Araweté Igarapé Ipixuna and Kayapó Indigenous Territory (see
Figure 1), which covers an area of 48,838 km2. The final decision to perform the research on this area
was supported by the evident variation of the rainforest highlighted in the academic literature [37,38].
The region close to São Félix do Xingu, the main city in the AOI, appears as a deforestation hot spot as it
has suffered from pasture expansion, cattle ranching, road construction, land occupations and agrarian
development [39–41]. According to the data collected by INPE [42], in recent years, the highest level
of accumulated deforestation occurred in the Pará state (152,475 km2), Mato Grosso (146,159 km2),
Rondônia (61,677 km2) and Amazonas (26,972 km2). Among these regions, because of deforestation
and extension, the Pará state appeared to be the most suitable for our research purposes. Therefore,
the forest change in the AOI for the period 2000–2019 was modelled, and the possible forest evolution
for the years after was simulated.



ISPRS Int. J. Geo-Inf. 2020, 9, 580 4 of 21

1 
 

 

 

 

Figure 1. Location of the area of interest.

2.2. Data Used

To perform such an extensive multi-temporal analysis, a large amount of spatiotemporal data was
needed. For mapping land cover changes multispectral satellite data are extremely valuable especially
when it is coupled with medium to high spatial and time resolutions. Another important aspect is that
relatively new earth observation missions provide open and free datasets, such as NASA’s Landsat
and the ESA’s Sentinels. Naturally, the products from those missions were first exploited for their
availability and suitability for the current task. Due to the predefined timeframe for monitoring forest
cover change, Sentinel-2 data (operational from 06/2015) could only be used for the last analyzed period
(2019). The Landsat has more past missions that eventually managed to provide suitable datasets
(see Table 1). Landsat 5, 7 and 8 have a 16-day cycle at the equator and Sentinel-2 A/B has a 5-day
revisit time at the equator. The multispectral data collected from Landsat and Sentinel were used for
applying a land cover classification algorithm and for determining the forest change. While Landsat
and Sentinel provide sufficient spatial resolution for classification problems, a higher resolution was
needed to validate the results. For that purpose, the China–Brazilian Earth Resources Satellite (CBERS)
high-resolution panchromatic data for the years 2010, 2015 and 2019 were used, while for the rest of
the cases it was not possible to obtain free and open high-resolution images with low cloud cover.

Table 1. Properties of data source satellites. CBERS: China–Brazil Earth Resources Satellite.

Satellite Operational
(as for 2020) Year Spatial Resolution Bands

Landsat 5 1984–2012 2000
30 m

1(Blue), 2(Green),
3(Red), 4(NIR)Landsat 7 1999–Present 2006 and 2010

Landsat 8 2013–Present 2015 2(Blue), 3(Green),
4(Red), 5(NIR)

Sentinel-2 2015–Present 2019 10 m 2(Blue), 3(Green),
4(Red), 8(NIR)

CBERS 2B 2007–2010 2010 2.7 m
PanchromaticCBERS 4 2014–Present 2015 & 2019 5 m

NIR—Near-infrared.
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2.3. Classification Method

In this study, supervised classification using Random Forest [43] has been applied for binary (forest
and non-forest) land cover classification. The method is widely discussed in the academic literature
and has been proven as a suitable method for the application as a land cover classification strategy
using medium and high resolution satellite data [32,44,45]. The supervised approach for pixel labelling
requires the user to select representative training data for each of the predefined number of classes [46].
The training data should be representative and homogeneous for the classes to be modelled [47] since
the quality of the output directly depends on the quality of the training samples. Random Forest is
constructed by many decision trees systematically operating as an ensemble [48]. Each decision tree is
generated by sampling a random vector independently from a training set, then a classifying vote is
computed, and finally, the most popular class, among the trees, becomes a classification model [43].
Breiman [43] highlights that the Random Forest algorithm has several advantages compared with
other supervised classifiers: the accuracy level of Random Forest is high and can be compared to that
obtained with Adaboost, and sometimes it is even better; it is also faster than bagging and boosting;
it is relatively powerful in terms of outliers and noise, and it can estimate the intrinsic error and the
importance of the variable.

The whole Random Forest classification process was entirely deployed on the GEE—from creating
training data, image classification and evaluating model performance. The definition of training data
was performed through visual interpretation of the satellite images, where was implemented stratified
sampling. The definition of both land cover classes was straightforward since the two classes are easily
distinguishable. In a few cases, where some doubt could occur for the actual class the Normalized
Difference Vegetation Index was used to support the final decision, or simply the current area was
omitted and another better representative was chosen. The training sets were randomly divided
into two partitions—one used for the model training (80%) and one used to assess the performance
(20%). It should be noted the performance assessment done on GEE was considered just as initial step,
where a validation of the classification results was done using high resolution datasets (more in details
in Section 2.5).

2.4. Processing Platform

GEE was utilized as a cloud processing platform. The platform combines vast amount of satellite
datasets and planetary-scale computational capabilities, moreover it is accessible for free (upon
registration) for scientists and non-profit users. Users can run geospatial analysis and process satellite
imagery or other geospatial data from the database on the cloud [29]. The GEE Engine Code Editor
is based on JavaScript application programming interface (API), which can be used for writing and
running scripts for complex geospatial analysis [49]. GEE has a large database of geospatial data
obtained from numerous institutes and satellites that is available for all the users [50], therefore, there is
no need to download the enormous data which is time and storage consuming. Such a platform makes
the use of desktop computing resources impractical to exploit and analyze multi-temporal datasets
covering large areas [51]. Instead, users can access the public data and deploy their processing model on
the cloud, which makes such analyses much more convenient. Nevertheless, GEE gives high flexibility
when dealing with issues such as cloud-cover, having a strict time range and other issues that can occur
during the selection of images and processing them. As a cloud-based platform for planetary-scale
geospatial analyses with massive computational capabilities, GEE can be a valuable tool to analyze
a variety of high-impact societal issues such as monitoring forest change, droughts, hydrogeological
disasters, water management, climate monitoring and determining related environmental protection
measures [52].
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2.5. Validation

For validating the obtained classification maps, a photointerpretation of high-resolution
panchromatic satellite images (HiRes) using the open-source software Collect Earth was performed.
Collect Earth is a tool that enables data collection through Google Earth, Bing Maps and GEE. Users can
analyze high-resolution satellite imagery on the platform for a variety of purposes including validation
of existing maps, quantifying deforestation, monitoring urban and land changes, etc. [53,54]. During the
validation phase, the classified land cover maps are verified against the reference high-resolution
images to obtain the accuracy level of the resulted maps. An equal set of points was generated for both
classes (forest and non-forest) as validation samples. This was followed by cross-validating each point
of the samples with the HiRes reference. A sample can be considered as a subset of area, following a
procedure to select its locations, also known as a sample design [55,56]. A required accuracy level and
priority design criteria need to be considered for each sample design [57]. Stehman [58] summarized
the basic advantages and disadvantages of the basic sampling methods. Stratified land cover random
sampling design has advantages when considering the generation of probability samples, the practical
level, the precise estimate of class-specific accuracy, the ability to estimate standard errors and the
flexibility in changing sample size. In the current study, applied stratified random sampling was used,
since it can ensure a precise estimate for each stratum by specifying a sample size [59]. In the current
work, an approach following the one by [55] was adopted, where simple random samples of pixels
were collected inside each stratum.

The required sample size was estimated according to the formula introduced by Stadelman [60]:

n =
p× q(

E
Z

)2 (1)

where n is the sample size, p is the required accuracy, q = 1− p, E means the allowable error which
indicates the error range we can make with a sampling strategy during the validation phase, and Z is
derived from the standard normal distribution. In the end, 1067 points (534 for the class forest, 533 for
the class non-forest) were validated with the survey capabilities of Collect Earth. The distribution of
the validation sample for the class non-forest in 2019 is given as an example in Figure 2.

Figure 2. Stratified random distributed validation samples generated for class Forest in 2019. AOI:
area of interest.
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2.6. Simulating Forest Evolution

After obtaining past and present forest changes for the AOI, the future state of the land cover
was analyzed, based on the previously derived maps. For this purpose, a free and open-source
plugin for QGIS called Modules for Land Use Change Evaluation (MOLUSCE) was used. It is
designed to incorporate already proven models and to analyze and model potential land use and forest
transitions [61]. The internal workflow is straightforward passing through the six modules—inputs,
evaluating correlation, area changes, transition potential modelling (TPM), cellular automata simulation
(CAS), and validation. After defining two land cover maps of the AOI for two different periods,
the correlation between the variables was derived, followed by the computation of transition
probabilities and the land cover change map. The TPM module based on the probabilities and
artificial neural network (ANN) to compute the potential transition maps. In the following phase,
cellular automata simulation based on Monte Carlo was used to generate simulated land cover maps.
The cellular automata approach first divides the space into a two-dimensional grid of cells, then evolves
the initial class distribution into discrete time-steps according to the predefined evolution rules,
i.e., if a cell is surrounded by forest, it will be covered by forest in the next step with X% probability [62].
After n iterations, the forest distribution is obtained for the target year. The plugin has an implemented
function to validate and compare the simulation result with a reference map. After obtaining past
and present forest changes for the AOI, it was decided to analyze the future state of the land cover,
based on the previously derived maps. For this purpose, a free and open-source plugin for QGIS
called Modules for Land Use Change Evaluation (MOLUSCE) was used. It is designed to incorporate
already proven models and to analyze and model potential land use and forest transitions [61].
The internal workflow is straightforward passes through six modules—inputs, evaluating correlation,
area changes, transition potential modelling (TPM), cellular automata simulation (CAS), and validation.
After defining two land cover maps of the AOI for two different periods, the correlation between the
variables was derived, followed by the computation of transition probabilities and the land cover
change map. The TPM module based on the probabilities and artificial neural network (ANN) to
compute the potential transition maps. In the following phase, cellular automata simulation based on
Monte Carlo was used to generate simulated land cover maps. The cellular automata approach first
divides the space into a two-dimensional grid of cells, then evolves the initial class distribution into
discrete time-steps according to the predefined evolution rules, i.e., if a cell is surrounded by forest,
it will be covered by forest in the next step with X% probability [62]. Aftet n iterations, the forest
distribution is obtained for the target year. The plugin has an implemented function to validate
and compare the simulation result with a reference map. More details about the MOLUSCE’s inner
processing can be found in [61] and the developers’ guide [63].

While the final goal of the simulation was to obtain future forest evolution based on the obtained
classification maps for the period 2010–2019, a trial was carried for the period 2006–2010 because it
could have been verified with the land cover classification of 2015. A few iterations were performed to
calibrate and validate the suitability of the algorithm for the current task. As such, the most suitable
spatial variables were implemented for land cover prediction from 2019 to 2028, based on the land
cover maps for 2010 and 2019. For the final simulation, spatial variables were used for the urban
areas, road network and previous forest loss from the period 2006–2010. While the final variables
were the same as the trials, the computation of transition probabilities and the ANN trainings were
carried out for each iteration. The 2006–2010 loss was derived from the difference between the two
classification maps. The road network was obtained from OpenStreetMap [64]. While the urban areas
were downloaded from MapBiomas [65,66]. It was considered that possible future deforestation will
occur around areas that have been already affected, close to urban areas and close to the road network
which gives access to the forest.

It should be noted that due to the different spatial resolution for both observation periods,
2010—30 m/pix and for 2019—10 m/pix, the latter was resampled to match the 2010 dataset using the
majority resampling method.



ISPRS Int. J. Geo-Inf. 2020, 9, 580 8 of 21

2.7. Workflow

The process started with satellite data access and filtering of the images according to their suitability.
Two filters were applied: a cloud filter leaving the observations with the least cloud cover and time
filter of the observations for a pre-determined time range, from 1st of May till the 31st of August for
all years in consideration. This time frame was chosen because it coincides with the dry season of
the Amazon forest, allowing greater probability to define cloud-free mosaics. For each year training
samples were created for the two land cover classes to be modelled, forest and non-forest, followed by
the supervised classification using Random Forest. For validating the classified maps for the years
2010, 2015 and 2019, a photointerpretation with a reference to the high-resolution panchromatic images
(HiRes) obtained from the CBERS missions was carried out. Once validated, forest change maps were
computed for every two periods. Lastly, the potential forest evolution was simulated for the next nine
years (until 2028) using MOLUSCE. The overall workflow is displayed in Figure 3.

Figure 3. The workflow of the processing. It is divided into three main steps (delimited by hatched
lines): The first step highlights the input datasets; the second step organizes the performed land cover
classifications and the third step depicts the forest change prediction. MOLUSCE: Modules for Land
Use Change Evaluation.

3. Results

3.1. Classifications and Validations

3.1.1. Classification Results

The land cover classification based on the machine learning algorithm and satellite time-series
data, was applied successively for the years 2000, 2006, 2010, 2015 and 2019. The obtained results were
analyzed for monitoring deforestation patterns that occurred during the defined time frame. In Figure 4
the resulting land cover maps are presented. From an initial visual interpretation, by comparing the
maps in Figure 4a,b, a massive forest change between 2000 and 2005 can be detected. From the next



ISPRS Int. J. Geo-Inf. 2020, 9, 580 9 of 21

5-year interval (Figure 4c) it is noted that the forest kept decreasing, but with a lower rate compared to
the previous period. The forest change after 2010 is not notable by simple visual comparison, so maps
referring to variances in the land cover classes for every five years were computed.

Figure 4. (a) Classification result derived from Landsat 7 for 2000; (b) Classification result derived from
Landsat 5 for 2006; (c) Classification result derived from Landsat 5 for 2010; (d) Classification result
derived from Landsat 8 for 2015; (e) Classification result derived from Sentinel-2 for 2019.
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3.1.2. Validation Results

Even though Random Forest is considered a highly accurate, with low estimation error,
classification algorithm, the output maps had to be validated. As mentioned before, the validation
procedure was done using photointerpretation of HiRes CBERS imagery through the Collect Earth
software. Due to the reduced availability of the free HiRes data, the validation was done only for
the classified maps for the years 2010, 2015 and 2019. Overall accuracy and Cohen’s Kappa were
implemented as validation metrics, where the related confusion matrices are reported in Table 2.
From Table 2 it can be observed that the overall accuracies for those three years are in the range
0.95–0.97. Cohen’s Kappa coefficients are 0.91–0.94. Both accuracy and Kappa reached a high level,
meaning that the classifications are accurate and reliable.

Table 2. Confusion matrix with two classes: forest and non-forest, for the years 2000, 2005 and 2019.
AUCPRC: area under the curve of the precision-recall curve; HiRe: high-resolution panchromatic
satellite images.

Reference (HiRe) User
AccuracyForest Non-forest

2010

Classified
(Landsat)

Forest 521 13 0.98

Non-Forest 37 496 0.93

Producer
accuracy 0.93 0.97

Overall
accuracy 0.95

Kappa 0.91

Precision 0.98

Recall 0.93

AUCPRC 0.95

2015

Classified
(Landsat)

Forest 526 8 0.99

Non-forest 36 497 0.93

Producer
accuracy 0.94 0.98

Overall
accuracy 0.97

Kappa 0.94

Precision 0.99

Recall 0.94

AUCPRC 0.96

2019

Classified
(Sentinel)

Forest 523 11 0.98

Non-forest 32 501 0.94

Producer
accuracy 0.94 0.98

Overall
accuracy 0.97

Kappa 0.94

Precision 0.98

Recall 0.94

AUCPRC 0.96
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In addition to Cohen’s Kappa, the precision and recall were computed which have better
implementation and reliability when dealing with imbalanced binary classification problems [67,68].
The former represents the percentage of predicted forest classified correctly. While the latter,
the percentage of actual forest classified correctly. The actual measure for the quality of the classification
is computed by using the area under the curve of the precision-recall curve (AUCPRC), where a perfect
classifier is considered as AUCPRC = 1. As it can be noted in Table 2, all three classifications are
yielding AUCPRC > 0.95 which can be considered as a more than satisfactory classification.

Due to the lack of suitable reference high-resolution imagery for the years 2000 and 2006,
validations were not conducted for them, except model fit estimations during the classification process,
which still estimated a high level of precision. However, from the accuracy assessments done for 2010,
2015 and 2019, it can be concluded that the accuracy of the classification process, performed through
GEE, can yield more than satisfactory results.

3.1.3. Forest Change

The forest change was computed as the difference between every two time-intervals and each is
represented in Figure 5. The areas notated in black represent forest loss, and the white areas—forest
gain. The sequence of these four maps revealed the constant evolution of the forested areas, and the
estimates of the affected areas can be found in Table 3. The scale of the forest loss inside the AOI can be
noted in Figure 5a,d by simple visual inspection. In the period 2000 to 2005, a high rate of forest loss
is measured (5081.90 km2) which can be estimated as nearly 10% of the total AOI. During the next
five years, the deforestation rate had dropped since the forest loss was estimated as 1942.71 km2 or
3.93% of the AOI. An even further decrease is observed during the third period, where 1779.41 km2 of
forested areas was cleared. However, from 2015 to 2019, the deforestation rate started to increase again,
where an area of 2569.81 km2 of forest loss was observed.

Figure 5. (a) Forest change between 2000 and 2006 derived from the land cover maps of 2000 and 2006;
(b) Forest change between 2006 and 2010; (c) Forest change between 2010 and 2015; (d) Forest change
between 2015 and 2019.
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Table 3. Forest loss and gain from 2000 to 2019.

Year Loss (km2)/Gain
(km2)

Percentage
(Loss/Gain)

Relative
Percentage
(Loss/Gain)

Cumulative
Loss/Gain (km2)

2000–2006 5081.90/570.28 10.28%/1.15%
2006–2010 1942.71/1615.15 3.93%/3.27% −61.77%/183.22% 7024.61/2185.43
2010–2015 1779.41/1731.78 3.60%/3.50% −5.41%/7.22% 8804.02/3917.21
2015–2019 2569.81/1115.86 5.20%/2.26% 44.42%/−35.57% 11,373.83/4462.79

On the other hand, the forests were gradually recovering. It was estimated a forest gain in the
period 2000–2006 was 570.28 km2, as reported in Table 3. The reforestation trend was not clearly
visible from 2000 to 2006, but after 2006 it became more evident. The forest gain in 2006–2010 was
around 1615.15 km2, which was almost three times larger than in 2000–2006, followed by an increase
of 1779.41 km2 in forest cover during the following five years (till 2015). The reforestation trend in the
last four years was with a lower magnitude. Nevertheless, an area of 1115.86 km2 was classified as
new forest.

A general trend can be noted from the above-mentioned results: when the forest loss reached
its maximum, the forest gain dropped to a minimum level and vice versa. Figures 6 and 7 highlight
the cumulative spatial and temporal mapping of forest loss and forest gain modelling from 2000 to
2019. The cumulative forest loss up to 2019 is estimated as 11,373.83 km2 while the cumulative forest
gain in the same period is 4462.79 km2. According to the map in Figure 6, the area most affected
by deforestation is the area along the urbanization pattern of São Félix do Xingu region. However,
the deforestation pattern slowed down along the Iriri river located at the south-east corner of the
AOI. From Table 3, it is evident that from 2006 to 2010 the forest loss had dramatically declined by
an estimated 61.77%. From 2015 can be seen that the deforestation rate has risen by 44.42%, yet,
it stayed at a relatively low level. However, from the spatio-temporal variation trend of forest gain
displayed in Figure 7, it should be highlighted that the most recovered areas were located in analogous
regions as those that suffered from forest loss. Perhaps this phenomenon could be thanks to the
regulations published by the Brazilian government to discourage the illegal cutting of forests.
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 Figure 6. Cumulative forest Loss from 2000 to 2019.
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Figure 7. Cumulative forest gain from 2000 to 2019.

3.2. Simulation Results

As mentioned before, a few iterations were performed to validate the reliability and usability of
the algorithm. As a trial, a forest cover simulation was obtained, based on the trend between 2006
and 2010. The accuracies of the trial models were estimated as the percentage of correctness in the
range 90.09–92.55, and Cohen’s Kappa in the range of 0.65–0.72. The validation metrics were not
the only criteria that had to be fulfilled. The spatial distribution of the simulated deforested areas
was also examined; maps containing mainly outlying clusters were discarded since an expansion of
already present hotspots was expected. Considering the period of simulation, the obtained results
should output a trend for 2014 which can be compared to the actual values from 2015. The forest loss
computed between the simulated result and 2010 was estimated as an area of 1564.01 km2 which is
following the trend of the actual loss between 2010 and 2015 (1779.41 km2), considering that there was
one-year difference between the actual and simulated result (2014). The simulation result is considered
as satisfactory and it is displayed in Figure 8. However, it should be noted that this verification has
some limits because there was still a lack of suitable high-resolution data to carry out validation for the
current period.
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Figure 8. Artificial neural network (ANN) simulation result for the year 2010 to 2014.

The final simulation was based on the trend derived from the classification maps from 2010
and 2019. The simulated forest evolution is shown by the map in Figure 9 and the forest loss
computed between it and the land cover map from 2019 is 5056.13 km2. According to this result,
the deforestation rate has increased compared to the forest loss of 3057.07 km2 in the previous ten
years. This is also coincident with the increasing trend of the deforestation rate, estimated in the
period 2015–2019. From visual interpretation, the simulated deforestation pattern for 2019–2028 was
not randomly distributed. The predicted deforestation areas were mostly located around existing
deforested areas in south-east parts of the AOI, focused around the existing urban areas and the
road network. The tendency of the future deforestation in 2019–2028 is following the trend observed
in 2000–2019 along the expansion of the region of São Félix do Xingu. This region is one of the
deforestation hot spots as it is a target for land speculation, cattle expansion and road construction [39].
The simulation done with MOLUSCE for 2019–2028 can be considered as valid and reliable from both
the quantitative and spatial aspects mentioned above. However, it is based only on the historical
trend, depicting a possible scenario only in the case that it will not change. Some possible future
interferences in the observed trend were not considered, such as possible restrictions enforced by the
local government or, oppositely, effects of forest fires of different magnitude. More accurate simulations
which consider external factors, as regulations or hazards, or which take into account shorter time
intervals, deserve more attention and analysis however this is beyond the aim of this paper.
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Figure 9. ANN simulation result for the year 2019 to 2028.

4. Discussion

As a relatively new tool, the efficiency and accuracy of the GEE platform when processing
multi-temporal satellite imagery on a large scale was proven. Moreover, the simultaneous access
to remote sensing datasets from different satellite missions and the smooth execution of complex
algorithms on the cloud makes the platform very convenient, especially in the domain of land cover
monitoring [69,70].

In this work, the deforestation dynamics were mapped for an area in the Pará state in the Brazilian
Amazon. Using the machine learning algorithm Random Forest, multi-temporal satellite datasets from
the Landsat and Sentinel missions were classified into two land cover classes. The variation in forest
cover was derived as the difference between two time-intervals. The resulting land cover maps for the
years 2010, 2015 and 2019, were manually validated with the help of high-resolution panchromatic
images (CBERS missions) through the Collect Earth platform. The validation metrics depicted more
than satisfactory results.

The tendency of forest change identified from our results (Figure 10) coincides with the report of
INPE for Brazil [42], for the same study period (2000 to 2019). The descending trend of the deforested
area revealed in Figure 11 confirmed the conclusion that the forests in this region experienced the
greatest loss at the beginning of the 21st century, and it lasted for about eight years until 2008. Moreover,
Hansen et al. [71] also concluded the yearly forest loss from 2000 to 2012, which displayed similar
trends as our experimental results. The annual forest loss peaked in 2004 and started to decrease since
then, while the forest loss annual increment has demonstrated a downward trend the whole time.
Homogeneous deforestation trends were presented by Souza et al. [72], who attempted to quantify
deforestation in the Brazilian Amazon for 2000–2010. In their study, a high deforestation rate was
obtained from 2001 to 2005, followed by a remarkable drop from 2006 to 2010, just as in our results.
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Figure 10. Forest change from 2000 to 2019.

Figure 11. Forest change from 2000 to 2009 Amazon forest change over time. (Source: Instituto Nacional
de Pesquisas Espaciais—INPE).

As for the reasons for the high deforestation rate before 2004 which is displayed in our results,
Fearnside [73] concluded that 80% of the deforested areas are under cattle pasture or secondary
forests abandoned or degraded as pastures. In addition, in eastern and southern Pará, multiple large
cattle-ranching enterprises have been established along the Belém—Brasilia Highway and its branch
roads [74]. The regional development policies published by the Brazilian government in the early
stages, pushed the deforestation rate growth and the frontier expansion [75]. A more specific study was
carried out by Mertens et al. [39] for São Félix do Xingu in south Pará. They have concluded that land
speculation, credits and fiscal policies for livestock and crops, road construction and the investments
in electrical energy are the main driving factors for deforestation in this region. An explanation for
the forest gain in the results could be due to the recently applied regulations for modulating the
deforestation and the forest recovery of the legal deforestation of the Amazon in Brazil. For example,
the Law of Public Forest Management published in 2006 [76], the Terra Legal Program established in
2009 [77], and several individual REDD+ projects such as the Juma project in Amazonas and the Surui
project in Acre [78,79]. These regulations partially influence the deforestation rates. Assunção et al. [80]
outlined that the Brazilian government adopted effective policy after the deforestation rates in Amazon
rainforests had peaked between 2003 and 2004. In 2004, the Brazilian Federal Government started
the Action Plan for Prevention and Control of Legal Amazon Deforestation (PPCDAm). It was a
governmental effort which significantly contributed to the decrease in deforestation rates; a reduction
of 59% has been achieved over the 2005–2007 period. Several activities were implemented: increase in
the number and coverage of protected areas, enhancement of the monitoring of the environment,
establishment of more environmental enforcements, etc. [81]. In order to promote continuous and
consistent deforestation reduction results, the PPCDAm has been renewed for the periods 2012–2015 and
2016–2020 to keep it up to date. Moreover, there have been other efforts that the Brazilian government
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has made to regulate illegal deforestation in the Amazon forest, such as, the frameworks for the
management of Public Forests from 2006 [82]. These measures taken by the Brazilian government
promoted the design of public policies to keep the deforestation rate at bay through actions like
monitoring, control, and inspection [83]. Nevertheless, after the deforestation rate stayed at a low level
for six years from 2009 to 2014, it started to rise again gradually. Part of the reason for this ascending
trend was due to failures in deforestation control and the fact that stakeholders like soybean planters,
cattle ranchers and timber merchants found ways to avoid agreements and legislation [84].

Based on the obtained classification results and the computed time-series forest dynamic trends,
the land cover change prediction done with MOLUSCE proved as reliable from two aspects. Firstly,
from the quantitative analysis: the test model which produced simulations till 2014, based on the
period 2006–2010, yielded a forest loss that follows the trend margins depicted in the supervised
classification for the period 2010–2015. The second aspect is that instead of being randomly distributed
in the AOI, the simulated deforestation followed patterns from 2010–2019 especially due to the urban
expansion around the region of São Félix do Xingu. Moreover, in the simulation, the marginalized
forest cover stayed mostly intact. The estimated forest loss is highlighting a continuous increase in
the deforestation rate, which is alarming for two reasons. Firstly, the simulated trend follows the
deforestation dynamics that have re-initiated after 2013 (Figure 11), and secondly new regulations and
tools for following them are needed.

GEE has proved as a valuable computational tool with a great data catalogue. Its use is not limited
just to land cover monitoring, nor to the Pará state, rather it can be used for problems with various
area sizes. Whether the implementation would be for the whole Amazon forest or even for a whole
continent, the most significant limitations could be defined as data availability and programming skills.

Such a data availability issue appeared during the current work—historical high resolution free
datasets were scarce and for that reason the initial five-year time-step had to be adjusted for some
cases. Another improvement would have been to use higher resolution images for the classifications,
since lower resolution could overestimate the forest loss/gain. This can be obtained using Sentinel-2
instead of Landsat. However, there were some limitations: Sentinel-2 is a relatively new mission and
could not cover the whole period of interest; secondly, there was no free alternative to Landsat that
provides such a revisit time.

Shorter time-steps (a year or two, even on the basis of a few months) could depict more detailed
forest dynamics. Such a short time-step, for time-series classification or scenario prediction, would be
of greater benefit to forest preservation policies which are relying on short-term results. On the other
hand, it is possible that regulations that are difficult and slow to be implemented could be favored from
the longer time interval. Yet, the focus of the current work was to highlight the free and open tools
that allow for the performance of precise time-series analyses and to simulate future development
scenarios, through the Google Earth Engine computing platform, datasets from Landsat and Sentinel,
and software packages, such as MOLUSCE and Collect Earth. Such outputs can be a reference material
when considering the implementation of sustainable policies and can benefit policymakers who can
follow and adjust the efficiency of their regulations.

5. Conclusions

Time-series land cover analyses were presented to map the deforestation dynamics in the Brazilian
Amazon for the period 2000–2019. A machine learning classification of multispectral satellite imagery
on cloud computing service was implemented. The output classification maps were validated
through photointerpretation of high-resolution images, the variation in forest loss/gain trends was
accurately computed and compared to the results obtained from similar studies. Moreover, a model
for simulating future dynamics of the land cover entirely based on the previously derived historical
trends, was implemented. The forest dynamics agree with the previous reports from the INPE and
other studies.
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The experimental results show that with the implemented approach, high classification accuracies
can be obtained. Moreover, cloud processing solutions such as GEE can greatly help in the acquisition
of cloud-free satellite images and improving the processing time of the deployed models. Pairing a fast
time-series analysis with simulating future forest change can be of great benefit to decision makers in
designing and implementing proper regulating actions to protect forests.
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