
1

D-SPACE4Cloud: Towards Quality-Aware Data
Intensive Applications in the Cloud

Eugenio Gianniti, Michele Ciavotta, and Danilo Ardagna

Abstract—The last years witnessed a steep rise in data generation worldwide and, consequently, the widespread adoption of software
solutions claiming to support data intensive applications. Competitiveness and innovation have strongly benefited from these new
platforms and methodologies, and there is a great deal of interest around the new possibilities that Big Data analytics promise to
make reality. Many companies currently engage in data intensive processes as part of their core businesses; however, fully embracing
the data-driven paradigm is still cumbersome, and establishing a production-ready, fine-tuned deployment is time-consuming,
expensive, and resource-intensive. This situation calls for novel models and techniques to streamline the process of deployment
configuration for Big Data applications. In particular, the focus in this paper is on the rightsizing of Cloud deployed clusters, which
represent a cost-effective alternative to installation on premises. We propose a novel tool, integrated in a wider DevOps-inspired
approach, implementing a parallel and distributed simulation-optimization technique that efficiently and effectively explores the space
of alternative resource configurations, seeking the minimum cost deployment that satisfies predefined quality of service constraints.
The validity and relevance of the proposed solution has been thoroughly validated in a vast experimental campaign including different
applications and Big Data platforms.

Index Terms—G.1.6.h Nonlinear programming, C.4 Performance of Systems, C.2.4 Distributed Systems.

F

1 Introduction
Many analysts point out that we are experiencing years in
which technologies and methodologies that fall within the
sphere of Big Data have swiftly pervaded and revolutionized
many sectors of industry and economy becoming one of the
primary facilitators of competitiveness and innovation [1].

IDC reported that Big Data until recently concerned
highly experimental projects, but its market will grow from
$130.1 billion in 2016 to $203 billion in 2020, with a compound
annual growth rate of 11.9%, with banking and manufactur-
ing industries leading the investment market [2]. Big Data
applications offer many business opportunities that stretch
across industries, especially to enhance performance, as in the
case of recommendation systems. In addition, data intensive
applications (DIAs) can also help governments in obtaining
accurate predictions, e.g., quality weather forecasts to prevent
natural disasters and the development of appropriate policies
to improve the population life quality. To corroborate these
considerations, notice that the Obama government announced
$200 million worth of investment to boost Big Data related in-
dustries and positioned this strategy into the national agenda
in 2012.

One of the pillars on which the Big Data revolution is
based is the MapReduce paradigm, which has allowed for
massive scale parallel analytics [3]. MapReduce is the core of
Apache Hadoop, an open source framework that has proven
capable of managing large datasets over either commodity
clusters or high performance distributed topologies [4].

Hadoop’s success has been planetary; it attracted the
attention of both academia and industry as it overtook the
scalability limits of traditional data warehouse and business

• E. Gianniti, M. Ciavotta and D. Ardagna are with Politecnico di
Milano.

intelligence solutions [3]. For the first time, processing un-
precedented amounts of structured and unstructured data was
within reach, thus opening up, suddenly, a whole world of
opportunities.

Despite the fact that many new solutions have been
created over time, Hadoop has been able to age well, con-
stantly renewing itself to support new technologies (e.g., SSD,
caching, I/O barriers elimination) and workloads (batch and
interactive) [5]. In addition, a large Hadoop-based ecosystem
of highly specialized tools arose. Consequently, for a long time
it has been the foremost solution in the Big Data scene. This
is confirmed by the fact that, only a few years ago, more than
half of the world data were somehow processed via Hadoop [6].

Paradoxically, the MapReduce paradigm, which has con-
tributed so much to Hadoop’s rise, is steadily declining in fa-
vor of solutions based on more generic and flexible processing
models. Among these, Apache Spark is a framework that is
enjoying considerable success and that, according to analysts,
is expected to dominate the market for the next decade [7].

In spite of all the fuss around Big Data technologies,
it is still undeniably true that fully embracing them is a
very complex process. Many efforts have been made to make
this technology accessible, but establishing a production-
ready deployment is time-consuming, expensive, and resource-
intensive. Not to mention the fact that fine-tuning is still often
perceived as a kind of occult art.

It is widely held that there is a clear need for an easy
button to accelerate the adoption of Big Data analytics [8].
That is why many companies have started offering Cloud-
based Big Data solutions (like Microsoft HDInsight, Amazon
Elastic MapReduce, or Google Cloud Dataproc), while IDC
estimates that, by 2020, nearly 40% of Big Data analyses will
be supported by public Clouds [9]. The advantages of this
approach are manifold. For instance, it provides an effective
and cheap solution for storing huge amounts of data, whereas

2

the pay-per-use business model allows to cut upfront expenses
and reduce cluster management costs. Moreover, the elasticity
can be exploited to tailor clusters capable to support DIAs in a
cost-efficient fashion. Yet, provisioning workloads in a public
Cloud environment entails several challenges. In particular,
the space of configurations (e.g., in terms of nodes type
and number) is very large, thus identifying the exact cluster
configuration is a complex task; especially in the light of
the consideration that the blend of job classes in a specific
workload and their resource requirements may also vary over
time.

At the very beginning, MapReduce jobs were meant to
run on dedicated clusters to support batch analyses via a
FIFO scheduler [10], [11]. Nevertheless, DIAs have evolved
and nowadays large queries, submitted by different users,
need to be performed on shared clusters, possibly with some
guarantees on their execution time [12], [13]. This is not a
loose requirement, indeed, as one of the major challenges [14],
[15] is to predict the application execution times with suffi-
cient degree of accuracy. In such systems, capacity allocation
becomes one of the most important aspects. Determining the
optimal number of nodes in a cluster shared among multiple
users performing heterogeneous tasks is a relevant and diffi-
cult problem [15].

Our focus in this paper is to introduce D-SPACE4Cloud,
a software tool designed to help system administrators and
operators in the capacity planning of shared Big Data clus-
ters hosted in the Cloud, so as to support both batch and
interactive applications with deadline guarantees. We believe
that being able to successfully address this problem at design
time enables developers and operators to make informed
decisions about the technology to use, while also allowing
for the full exploitation of the potential offered by the Cloud
infrastructure.

We formulate the capacity planning problem by means of
a mathematical model, with the aim of minimizing the cost
of Cloud resources. The problem considers multiple virtual
machine (VM) types as candidates to support the execution of
Big Data applications (a.k.a. DIAs) frommultiple user classes.
Cloud providers offer VMs of different capacity and cost.
Given the complexity of virtualized systems and the multiple
bottleneck switches that occur in executing DIAs, very often
the largest VM available is not the best choice from either
the performance or performance/cost ratio perspective [12],
[16]. Through a search space exploration, our approach seeks
the optimal VM type and number of nodes considering also
specific Cloud provider pricing models (namely, reserved, on
demand, and spot instances [17]). The underlying optimiza-
tion problem is NP-hard and is tackled by a simulation-
optimization procedure able to determine an optimized config-
uration for a cluster managed by the YARN Capacity Sched-
uler [18]. DIA execution times are estimated by relying on a
gamut of models, including machine learning (ML) and sim-
ulation based on queueing networks (QNs), stochastic Petri
nets (SPNs) [19], as well as an ad hoc simulator, dagSim [20],
especially designed for the analysis of applications involving
a number of stages linked by directed acyclic graphs (DAGs)
of precedence constraints. This property is common to legacy
MapReduce jobs, workloads based on Apache Tez, and Spark-
based applications. Our work is one of the first contributions
facing the design time problem of rightsizing data intensive

Cloud systems adopting the Capacity Scheduler.
We validate the accuracy of our solutions on real systems

by performing experiments based on the TPC-DS industry
benchmark for business intelligence data warehouse appli-
cations. Microsoft Azure HDInsight, Amazon EC2, and the
CINECA Italian supercomputing center have been consid-
ered as target deployments. Our approach proved to achieve
good performance across all these alternatives, despite their
peculiarities. Simulation results and experiments performed
on real systems have shown that the percentage error we can
achieve is within 30% of the measurements in the worst case,
with an average error around 12% for QNs and as low as 3%
when using dagSim. On top of this, we show that optimally
choosing the resource allocation, in terms of both type and
number of VMs, offers savings up to 20–30% in comparison
with the second best configuration. In particular, at times,
general purpose instances turned out to be a better alternative
than VMs advertised as suitable for Big Data workloads.

This paper is organized as follows. Section 2 overviews
D-SPACE4Cloud’s architecture. Section 3 presents in detail
the problem addressed in the paper. In Section 4 we focus
on the formulation of the optimization problem and on the
design time exploration algorithm implemented within our
tool. In Section 5 we evaluate our approach by considering
first the accuracy that can be achieved by our simulation
models and then the overall effectiveness of the optimization
method. Finally, in Section 6 we compare our work with other
proposals available in the literature and draw the conclusions
in Section 7.

2 D-SPACE4Cloud Architecture
The tool we present and discuss in this paper, namely D-
SPACE4Cloud, has been developed within the DICE (Devel-
oping Data-Intensive Cloud Applications with Iterative Qual-
ity Enhancement) H2020 European research project [21]. The
project aims at filling gaps in model-driven engineering with
regard to the development of DIAs in Cloud environments,
embracing the DevOps [22] culture. DICE is committed to
developing an integrated ecosystem of tools and methodolo-
gies intended to streamline the DIA development process
through an iterative and quality-aware approach (design,
simulation, verification, optimization, deployment, and refine-
ment). DICE primarily proposes a data-aware UML profile
that provides designers with the means necessary to model
the (dynamic and static) characteristics of the data to be pro-
cessed as well as their impact on the performance of the com-
ponents of an application. In addition, the project develops
an IDE capable of supporting the managers, developers, and
operators in quality-related decisions. The IDE enforces the
iterative design refinement approach through a toolchain of
both design and run time tools. The former cover simulation,
verification, and optimization of deployment, whereas the
latter encompass deployment, testing, and feedback analysis
of monitoring data.

D-SPACE4Cloud is the DIA deployment optimization tool
integrated in the DICE IDE. The tool serves the purpose of
optimizing the deployment costs for one or more DIAs with
a priori performance guarantees. In a nutshell, within the
quality aware development process envisioned by DICE, a
DIA is associated with quality of service (QoS) requirements

3

Optimized

Solution

DICE
DDSM

JMT SimulatorJMT Simulator JMT SimulatorJMT Simulator JMT SimulatorJMT Simulator

Cost and feasibility evaluator

Solver abstraction and connectors

Initial
Solution
Builder
(ML)

Partial solution cache

Parallel LS

Optimizer

Initial solution

D-SPACE4CloudProblem
Description

Execution
logs

DTSM
DDSM

JMT Simulator GSPN dagSim

Figure 1. D-SPACE4Cloud architecture

expressed in form of a maximum execution time (deadline)
and concurrency level (several users executing the same ap-
plication at the same time with a certain think time). D-
SPACE4Cloud addresses and solves the capacity planning
problem consisting in the identification of a minimum cost
cluster (both for public and private Clouds) supporting the
concurrent and on-time execution of several DIAs. To this end,
the tool implements a design time exploration process able to
consider multiple target VM candidates also across different
Cloud providers. D-SPACE4Cloud supports the deployment
optimization in the two distinct scenarios of public and a
private Cloud environments. The public Cloud is mainly char-
acterized by the fact that the cluster resources (i.e., VMs) can
be considered practically infinite for any common purpose.
In this scenario, concurrency level is not a problem and the
tool focuses on selecting the most cost-effective VM type and
number of replicas for each application. In the private Cloud
scenario, however, the cluster is provisioned on premises, the
available resources are generally limited, and the resource
allocation plan has to contemplate the possibility to exhaust
the computational capacity before being able to provision a
cluster that satisfies the QoS constraints. In such a situa-
tion, the tool can, if required, alter the underlying problem
considering a mechanism of admission control (i.e., including
job rejection in the optimization process). In this paper, for
space limitations, only the first scenario is presented, the
discussion about motivations, algorithms, and models related
to the second scenario is left to future publications.

Figure 1 depicts the main elements of D-SPACE4Cloud’s
architecture. Our tool is a distributed software system de-
signed to exploit multi-core and multi-host architectures to
work at a high degree of parallelism. In particular, it features
a presentation layer (integrated in the DICE IDE) devoted to
handle the interactions with users and the other components
of the toolchain, an optimization service (colored gray), which
transforms the inputs into suitable performance models [19]
and implements the optimization strategy, and a horizontally
scalable assessment service (colored green in the picture),
which abstracts the performance evaluation from the partic-
ular solver used under the hood. Currently, D-SPACE4Cloud
supports a QN simulator (JMT [23]), a SPN simulator (Great-
SPN [24]), and discrete event simulator (dagSim [20]).

D-SPACE4Cloud takes in input:

1) a UML description of the applications sharing the
cluster (see [22] for additional details on DICE UML
models). In this context, DIAs are specified via DICE
Platform and Technology Specific Models (DTSMs).
Moreover, under specific circumstances, execution
logs, for instance the ones obtained executing the
applications in a pre-production environment, can
replace the DTSMs as input.

2) a partially specified deployment model for each ap-
plication. The deployment model must be specified in
DICE Platform, Technology, and Deployment Specific
Model (DDSM) format. This model is used as tem-
plate to be filled and returned in output.

3) a description of the execution environment (list of
candidate providers and VM types along with VM
performance profiles). These pieces of information are
used to generate suitable performance models.

4) the list of QoS constraints, that is the concurrency
level and deadline for each DIA, respectively.

The optimization service is the centerpiece of the tool. It
primarily parses the inputs, stores the relevant information
using a more manageable and compact format, then calculates
an initial solution for the problem (via the Initial Solution
Builder) and improves it via a simulation-optimization algo-
rithm (implemented by the Parallel Local Search Optimizer).

The initial solution is generated by solving a mixed integer
nonlinear programming (MINLP) formulation, whose perhaps
most interesting feature is that some of its constraints have
been modeled by applying ML techniques to the problem of
estimating the execution time of DIAs. Different techniques
have been investigated [25], including linear regression, as well
as Gaussian, polynomial, and linear support vector regression
(SVR). The linear SVR was selected as it proved to be both
accurate and robust to noisy data. More details are available
in Section 4.

It must be highlighted, at this point, that the quality
of the initial solution can still be improved, mainly because
the MINLP relies on an approximate representation of the
application-cluster liaison. For this reason, more accurate
performance models (e.g., QNs and SPNs) are exploited.
The increased accuracy creates room to maneuver for further
cost reduction; however, since the simulation process is time-
consuming, the space of possible cluster configurations has

4

to be explored in the most efficient way, avoiding the evalua-
tion of unpromising configurations. The Optimizer component
carries out this task, implementing a simulation-optimization
technique to minimize the number of resource replicas (VMs)
for each application class. This procedure is applied inde-
pendently, and in parallel, on all the application classes and
terminates when a further reduction in the number of replicas
would lead to an infeasible solution.

As soon as all the classes reach convergence, D-
SPACE4Cloud leverages the optimized solution (selected
provider, type and number of VMs per application) to update
the DDSM models and provides them in output. Such models,
in turn, can be converted into TOSCA blueprints and used to
deploy the cluster exploiting another tool, named DICER [22],
part of the DICE toolchain.

3 Problem Statement
In this section we aim at introducing some important details
on the problem addressed in this work. We envision the
scenario wherein a business venture needs to set up a cluster
to carry out efficiently a set of interactive DIAs. A cluster
featuring the YARN Capacity Scheduler and running on a
public Cloud infrastructure as a service (IaaS) is considered
a fitting technological solution for the requirements of the
company. In particular, the cluster has to support the parallel
execution of DIAs in the form of Hadoop jobs and Hive/Pig/S-
parkSQL queries. Different classes C = {i | i = 1, . . . , n}
gather the applications that exhibit a similar behavior and
share performance requirements. The cluster composition and
size, in terms of type and number of VMs, must be decided
in such a way that, for every application class i, hi jobs are
guaranteed to execute concurrently and complete before a
prearranged deadline Di.

Moreover, YARN is configured in a way that all available
cores can be dynamically assigned for task execution. Finally,
in order to limit the risk of data corruption, and according to
the practices suggested by major Cloud vendors, the data sets
reside on a Cloud storage service accessible in quasi-constant
time.

In general, IaaS providers feature a large catalog of VM
configurations that differ in features (CPU speed, number
of cores, available memory, etc.) and cost. Making the right
design decision implies a remarkable endeavor that can be
repaid by important savings throughout the cluster life cycle.
Let us index with j the VM types available across, possibly,
different Cloud providers and let V = {j | j = 1, . . . ,m}. We
denote by τi the VM type used to support DIAs of class i and
with νi the number of VMs of that kind allocated to class i.

In this scenario, we consider a pricing model derived from
Amazon EC2 [17]. The provider offers: 1) reserved VMs, for
which it adopts a one-time payment policy that grants access
to a certain number of them at a discounted rate for the
contract duration; 2) on demand VMs, which can be rented by
the hour according to current needs; and 3) spot VMs, created
out of the unused data center capacity. For such instances cus-
tomers bid and compete, yielding very competitive hourly fees
at the expense of reduced guarantees on their reliability. In
order to obtain the most cost-effective configuration, we rely
on reserved VMs (denoting with ri their number) to satisfy
the core of computational needs and complement them with

on demand (di) and spot (si) instances (νi = ri + di + si). Let
ρτi , δτi , στi be the unit costs for VMs of type τi, respectively,
reserved, on demand, and spot. Overall, the cluster hourly
renting out costs can be calculated as follows:∑

i∈C

(ρτiri + δτidi + στisi) . (1)

As the reliability of spot VMs is susceptible to market
fluctuations, to keep a high QoS level the number of spot
VMs is bounded not to be greater than a fraction ηi of νi
for each class i. In addition, reserved VMs must comply with
the long term contract signed with the Cloud provider and
cannot exceed the prearranged allotments Rij , where every
class may have a separate pool of reserved VMs of any type
at their disposal. It is worth noting that this cost model is
general enough to remain valid, zeroing the value of certain
parameters, even in those cases where the considered Cloud
does not feature on demand or spot instances.

In the remainder, we will denote by ci the total number of
YARN containers devoted to application i, whilst mi and vi
are the container capacities in terms of RAM and vCPUs, and
Mj and Vj represent the total RAM and vCPUs available in a
VM of type j.

Reducing the operating costs of the cluster by using effi-
ciently the virtual resources in lease is in the interest of the
company. This translates into a resource provisioning problem
where the renting out costs must be minimized subject to the
fulfillment of QoS requirements, namely a per-class concur-
rency level hi given certain deadlines Di. In the following we
assume that the system supports hi users for each class and
that users work interactively with the system and run another
job after a think time exponentially distributed with mean Zi,
i.e., the system is represented as a closed model [26].

In order to rigorously model and solve this problem, it
is crucial to predict with fair confidence the execution times
of each application class under different conditions: level of
concurrency, size and composition of the cluster.

The execution time can generically be expressed as:

Ti = Ti (νi, hi, Zi, τi) , ∀i ∈ C. (2)

What is worthwhile to note is that the previous formula
represents a general relation describing either closed form
results, as those presented in [15], [27], based on ML [16], [28],
or the average execution times achieved via simulation: in this
paper we adopted both the latter approaches.

Since the execution of jobs on a sub-optimal VM type may
lead to performance disruptions, it is critical to avoid assign-
ing tasks belonging to class i to the wrong VM type j 6= τi.
Indeed, YARN allows for specifying node labels and parti-
tioning nodes in the cluster according to these labels, then
it is possible to enforce this separation. Our configuration
statically splits different VM types with this mechanism and
adopts within each partition either a further static separation
in classes or a work conserving scheduling mode, where idle
resources can be assigned to jobs requiring the same VM type.
The choice about the scheduling policy within partitions is
not critical, since it does not impact on the optimization tech-
nique or performance prediction approach. When resources
are tightly separated, we can expect the performance estimate

5

YARN
Capacity
Scheduler

Cloud
Storage
Service

i i

i i

ii

i
0

i
0

i
0

i
0

i
0

i

i
i
0

i
0

i
00

Sub-cluster
of VM type

⌧i = ⌧i0

ì

i

Node Manager

Container Container

ì

Spot VMs

Reserved VMs
On-demand VMs

Figure 2. Reference system

Table 1
Model parameters

Param. Definition

C Set of application classes
V Set of VM types
hi Number of concurrent users for class i
Zi Class i think time [ms]
Di Deadline associated to applications of class i [ms]
ηi Maximum percentage of spot VMs allowed to class i
mi Class i YARN container memory size [GB]
vi Class i YARN container number of vCPUs
Mj Memory size for a VM of type j [GB]
Vj Number of vCPUs available within a VM of type j
ρj Effective hourly price for reserved VMs of type j [e/h]
δj Unit hourly cost for on demand VMs of type j [e/h]
σj Unit hourly cost for spot VMs of type j [e/h]
Rij Number of reserved VMs of type j devoted to class i

users

to accurately mirror the real system behavior, whilst in work
conserving mode the observed performance may improve due
to a better overall utilization of the deployed cluster, hence
the prediction is better interpreted as a conservative upper
bound. Equations (2) can be used to formulate the deadline
constraints as:

Ti ≤ Di, ∀i ∈ C. (3)

In light of the above, we can say that the ultimate goal
of the proposed approach is to identify the optimal VM type
selection τi, and type of lease and number of VMs (νi = ri +
di + si) for each class i such that the total operating cost is
minimized while the deadlines and concurrency levels are met.

The reader is referred to Figure 2 for a graphical overview
of the main elements of the considered resource provisioning
problem. Furthermore, in Table 1 reports a complete list of the
parameters used in the models presented in the next sections,
whilst Table 2 summarizes the decision variables.

Table 2
Decision variables

Var. Definition

νi Number of VMs assigned for the execution of applications
from class i

ri Number of reserved VMs booked for the execution of
applications from class i

di Number of on demand VMs assigned for the execution of
applications from class i

si Number of spot VMs assigned for the execution of applica-
tions from class i

ci Total number of YARN containers assigned to class i
xij Binary variable equal to 1 if VM type j is assigned to

application class i

4 Problem Formulation and Solution

In the following we present the optimization models and
techniques exploited by the D-SPACE4Cloud tool in order to
rightsize the cluster deployment given the profiles character-
izing the DIAs under study, the candidate VM types (possibly
at different Cloud providers), and different pricing models.
The resulting optimization model is a resource allocation
problem, presented in Section 4.1.

The first issue D-SPACE4Cloud has to solve is to quickly
(and with an acceptable degree of accuracy) estimate the
completion times and operational costs of the cluster: to this
end, within the mathematical programming formulation of the
problem, we decided to exploit ML models for the assessment
of application execution times. In this way, it is possible to
swiftly explore several plausible configurations and point out
the most cost-effective among the feasible ones. Afterwards,
the required resource configuration can be fine-tuned using
more accurate, yet more time-consuming and computationally
demanding, simulations to obtain a precise prediction of the
expected running time.

According to the previous considerations, the first step
in the optimization procedure consists in determining the
most cost-effective resource type for each application based on
their price and the expected performance. The mathematical

6

programming models that allow to identify such an initial
solution are discussed in Sections 4.1 and 4.2. Finally, the al-
gorithm adopted to efficiently tackle the resource provisioning
problem is described in Section 4.3.

4.1 Optimization Model
The Big Data cluster resource provisioning problem can be
formalized as the following mathematical programming for-
mulation:

min
x,ν,r,d,s

∑
i∈C

(ρτiri + δτidi + στisi) (P1a)

subject to: ∑
j∈V

xij = 1, ∀i ∈ C, (P1b)

Ri,τi =
∑
j∈V

Rijxij , ∀i ∈ C, (P1c)

ρτi =
∑
j∈V

ρjxij , ∀i ∈ C, (P1d)

δτi =
∑
j∈V

δjxij , ∀i ∈ C, (P1e)

στi =
∑
j∈V

σjxij , ∀i ∈ C, (P1f)

xij ∈ {0, 1} , ∀i ∈ C, ∀j ∈ V. (P1g)

(ν, r,d, s) ∈ arg min
∑
i∈C

(ρτiri + δτidi + στisi) (P1h)

subject to:
ri ≤ Ri,τi , ∀i ∈ C, (P1i)

si ≤
ηi

1− ηi
(ri + di) , ∀i ∈ C, (P1j)

νi = ri + di + si, ∀i ∈ C, (P1k)
Ti (νi;hi, Zi, τi) ≤ Di, ∀i ∈ C, (P1l)

νi ∈ N, ∀i ∈ C, (P1m)
ri ∈ N, ∀i ∈ C, (P1n)
di ∈ N, ∀i ∈ C, (P1o)
si ∈ N, ∀i ∈ C. (P1p)

Problem (P1) is presented as a bi-level resource allocation
problem where the outer objective function (P1a) considers
running costs. For each application class the logical variable
xij is set to 1 if the VM type j is assigned to application
class i. We will enforce that only xi,τi = 1 in (P1b), thus
determining the optimal VM type τi for application class i.
Hence the following constraints, ranging from (P1c) to (P1f),
pick the values for the inner problem parameters.

The inner objective function (P1h) has the same expres-
sion as (P1a), but in this case the prices ρτi , δτi , and στi

are fixed, as they have been chosen at the upper level. Con-
straints (P1i) bound the number of reserved VMs that can
be concurrently started according to the contracts in place
with the IaaS provider. The subsequent constraints, (P1j),
enforce that spot instances do not exceed a fraction ηi of the
total assigned VMs and constraints (P1k) add all the VMs
available for class i, irrespective of the pricing model. Further,
constraints (P1l) mandate to respect the deadlines Di. In the
end, all the remaining decision variables are taken from the
natural numbers set, according to their interpretation.

4.2 Identifying an Initial Solution
The presented formulation of Problem (P1) is particularly dif-
ficult to tackle, as it is a MINLP problem, possibly nonconvex,
depending on Ti. According to the literature about complexity
theory [29], integer programming problems belong to the NP-
hard class, hence the same applies to (P1). However, since
there is no constraint linking variables belonging to different
application classes, the general formulation can be split into
several smaller and independent problems, one per class i ∈ C:

min
ci,ri,di,si

ρτiri + δτidi + στisi (P2a)

subject to:

ri ≤ Ri,τi , (P2b)

si ≤
ηi

1− ηi
(ri + di) , (P2c)

mici ≤Mτi (ri + di + si) , (P2d)
vici ≤ Vτi (ri + di + si) , (P2e)

χhi,τi
hi + χci,τi

1
ci

+ χ0
i,τi
≤ Di, (P2f)

ci ∈ N, (P2g)
ri ∈ N, (P2h)
di ∈ N, (P2i)
si ∈ N. (P2j)

In Problem (P2) we dropped νi exploiting con-
straints (P1k) and rewrote (P1l) as constraints (P2d)–(P2f).
Specifically, (P2d) and (P2e) ensure that the overall number
of containers, ci, is consistent with nodes capacity, in terms
of both vCPUs and memory. Constraint (P2f), on the other
hand, is a simple model of the average execution time, func-
tion of the concurrency level and the available containers,
among other features, used to enforce that the completion
time meets the arranged deadline.

Equation (P2f) is the result of a ML process to get a
first order approximation of the execution time of Hadoop
and Spark jobs in Cloud clusters. Building upon [25], which
compares linear regression, Gaussian SVR, polynomial SVR
with degree ranging between 2 and 6, and linear SVR, we
follow [28] in opting for a model derived with linear SVR.
This is due to the fact that SVR with other kinds of kernel
fares worse than the linear one, whilst plain linear regression
requires an ad hoc data cleaning to avoid linear dependencies
in the design matrix, thus making it harder to apply in the
greatest generality. In order to select a relevant feature set,
we started by generalizing the analytical bounds for MapRe-
duce clusters proposed in [15], [27]. This approach yielded a
diverse collection of features including the number of tasks
in each map or reduce phase, or stage in the case of Spark
applications, average and maximum values of task execution
times, average and maximum shuffling times, dataset size, as
well as the number of available cores, of which we consider the
reciprocal. Since most of these features characterize the appli-
cation class, but cannot be controlled, equation (P2f) collapses
all but hi and ci, with the corresponding coefficients, into a
single constant term, χ0

i,τi
, that is the linear combination of

the feature values with the SVR-derived weights.
Problem (P2) can be reasonably relaxed to a continuous

formulation as in other literature approaches (see, e.g., [30]).

7

Furthermore, the problem can be additionally simplified with
a couple of simple algebraic transformations.

First, constraints (P2d) and (P2e) share the same basic
structure and are alternative, hence in every feasible solution
at most one can be active. Building upon this consideration,
it is possible to reformulate them as a single constraint, the
most stringent:

ci ≤ αi (ri + di + si) , where αi , min
{
Mτi

mi
,
Vτi

vi

}
. (4)

Moreover, given the total number of VMs needed to
support the required workload, it is trivial to determine
the optimal instance mix using dominance considerations.
Indeed, since στi < ρτi < δτi , spot VMs are selected first,
but respecting the constraint (P2c), then it is the turn of
reserved ones whose number is bounded by Ri,τi and, at last,
on demand ones will cover the still unheeded computational
needs. Moving from this consideration, it is possible to reduce
the problem to a formulation that involves only the number of
containers, ci, and the overall number of VMs, νi, as exposed
below:

min
ci,νi

νi (P3a)

subject to:
ci ≤ αiνi, (P3b)

χhi,τi
hi + χci,τi

1
ci

+ χ0
i,τi
≤ Di, (P3c)

ci ≥ 0, (P3d)
νi ≥ 0. (P3e)

The continuous relaxation makes it possible to apply the
Karush-Kuhn-Tucker conditions, which are necessary and suf-
ficient for optimality due to Problem (P3) regularity, thanks
to Slater’s constraint qualification: (P3c) is the only nonlinear
constraint and is convex in the domain, which in turn contains
an internal point. Notice that, in this way, we can obtain
analytically the optimum of all the instances of Problem (P3),
one per class i ∈ C, as proven in Theorem 4.1.

Theorem 4.1. The optimal solution of Problem (P3) is:

ci =
χci,τi

Di − χhi,τi
hi − χ0

i,τi

, (5a)

νi =
ci

αi
=

1
αi

χci,τi

Di − χhi,τi
hi − χ0

i,τi

. (5b)

Proof. Problem (P3) Lagrangian is given by:

L (ci, νi) = νi + λα (ci − αiνi) +

+ λχ

(
χhi,τi

hi + χci,τi

1
ci

+ χ0
i,τi
−Di

)
+

− λcci − λννi

(6)

and stationarity conditions lead to:

∂L
∂νi

= 1− αiλα − λν = 0, (7a)

∂L
∂ci

= λα − λχχci,τi

1
c2
i

− λc = 0, (7b)

t

Figure 3. Hyperbolic jump

while complementary slackness conditions are:

λα (ci − αiνi) = 0, λα ≥ 0, (8a)

λχ

(
χhi,τi

hi + χci,τi

1
ci

+ χ0
i,τi
−Di

)
= 0, λχ ≥ 0, (8b)

λcci = 0, λc ≥ 0, (8c)
λννi = 0, λν ≥ 0. (8d)

Constraint (P3c) requires ci > 0 and, thanks to (P3b),
it also holds νi > 0. Thus, λc = 0 and λν = 0. Now,
equations (7a) and (7b) can be applied to obtain λα > 0 and
λχ > 0. So constraints (P3c) and (P3d) are active in every
optimal solution, whence we get (5a) and (5b).

Since Theorem 4.1 provides optima in closed form for
Problem (P3), it is straightforward to repeat its algebraic
solution for all the pairs class-VM of Problem (P1). The choice
of the preferred VM type whereon to run each class is made
via the comparison of all the relevant optimal values, selecting
by inspection the minimum cost association of classes and VM
types.

4.3 The Optimization Algorithm
The aim of this section is to provide a brief description
of the optimization heuristic embedded in D-SPACE4Cloud.
It efficiently explores the space of possible configurations,
starting from the initial ones obtained via Theorem 4.1.

Since (P3c) is only a preliminary approximation, the very
first step of the procedure is simulating the initial configura-
tion in order to refine the prediction. This step as well as all
the subsequent ones are executed in parallel as the original
Problem (P1) has been split into independent sub-problems.
After checking the feasibility of the initial solution, the search
algorithm begins the exploration incrementing the VM count
whenever the solution results infeasible or decreasing it to save
on costs if current configuration is already feasible.

In order to avoid one-VM steps, which might lead to a very
slow convergence for our optimization procedure, particularly
when dealing with large clusters, the optimization heuristic
exploits the fact that the execution time of DIAs (as approx-
imated by (P2f)) is inversely proportional to the allocated
resources (see also [15], [27], [28]). Hence, at every iteration
the application execution time is estimated as:

ti =
ai

νi
+ bi, (9)

where ti is the execution time and νi the number of VMs,
whilst ai and bi are obtained by fitting the hyperbola to the

8

Algorithm 1 Search algorithm
Require: ν0

i ∈ N
1: simulate ν0

i
2: if ν0

i is infeasible then
3: ν1

i ← ν0
i + 1

4: l1i ← ν0
i

5: else
6: ν1

i ← ν0
i − 1

7: u1
i ← ν0

i
8: end if
9: repeat k ← 1, 2, . . .
10: simulate νki
11: update bounds
12: νk+1

i ← f
(
νki , ν

k−1
i

)
13: check νk+1

i against bounds
14: until uki − lki = 1
15: return uki

previous steps results. Hence, from the second search step on,
we can compute ai and bi using the predicted execution times
returned by the performance simulators and the associated
resource allocations. In this way, at every iteration k it is
possible to have an educated guess on the number of VMs
required to meet the deadline Di, as depicted in Figure 3:

νk+1
i =

ak,k−1
i

Di − bk,k−1
i

. (10)

Our optimization algorithm aims at combining the con-
vergence guarantees of dichotomic search with the fast explo-
ration allowed by specific knowledge on system performance,
such as equations (9) and (10). Each job class is optimized
separately and in parallel as described in pseudo-code in Algo-
rithm 1. First off, the initial solution ν0

i , obtained as outlined
in Section 4.2, is evaluated using the simulation model. Since
equation (10) requires at least two points, the conditional at
lines 2–8 provides a second point at one-VM distance and
sets the initial one as lower or upper bound, according to its
feasibility. Then the algorithm searches iteratively the state
space performing simulations and keeping track of the interval
enclosing the optimal solution. Every new step relies on the
hyperbolic function in (10), as shown at line 12.

As already mentioned, D-SPACE4Cloud mixes dichotomic
search and domain knowledge about performance characteris-
tics in order to exploit the best of both worlds. Fitting a hy-
perbola to previous results allows to speed up the exploration
by directing it where the system performance is expected to be
reasonably close to the deadline imposed as constraint, yet the
use of only the latest two simulations, dictated by convenience
considerations, might hamper convergence with oscillations
due to inaccuracies. We address this issue by recording the
most resource hungry infeasible solution as lower bound, lki ,
and the feasible configuration with fewest VMs as upper
bound, uki . Hence, at line 11, if νki turns out to be feasible,
then it is assigned to uki , otherwise to lki . Furthermore, every
new tentative configuration νk+1

i predicted at line 12 must
belong to the open interval

(
lki , u

k
i

)
to be relevant: at line 13

the algorithm enforces this behavior, falling back to the mid
point when this property does not hold.

Now, given the monotonic dependency of execution times
on the number of assigned computational nodes, the stopping
criterion at line 14 guarantees that the returned configuration
is the provably optimal solution of the inner, separate Prob-

S0 S1 S2

S3

S5

S4

S6

(a) Q26

S0

S1

S4S3

S2

(b) Q52

S0

S1

S2

S5

S3

S4

S6

(c) Q40

Figure 4. Spark queries DAGs

lem (P2) for class i. In other words, the joint selection of the
VM type and their number is NP-hard, but when the type of
VM is fixed in the first phase, our heuristic obtains the final
solution for all classes in polynomial time.

5 Experimental Analysis
In this section we show the results of several experiments
performed to validate the proposed approach. All these exper-
iments have been performed on two Ubuntu 14.04 VMs hosted
on an Intel Xeon E5530 2.40 GHz equipped server. The first
VM ran D-SPACE4Cloud and dagSim, with 8 virtual CPUs
and 12 GB of RAM. The second one, instead, ran JMT 0.9.3,
with 2 virtual CPUs and 2 GB of RAM.

The analysis is structured as follows: Section 5.1 describes
the experiment settings, Section 5.2 validates the simulation
models against the performance of real clusters, Section 5.3
presents a comparative study on the solutions obtained by
varying the problem parameters identifying the potential
savings of our approach. Section 5.4 is devoted to assess the
quality of D-SPACE4Cloud solutions. Finally, the scalability
of our approach is evaluated in Section 5.5.

5.1 Experimental Setup and Design of Experiments
To profile Big Data applications and compare with simulators
results, we collected real measures by running SQL queries
on Apache Hive1 on MapReduce and Apache Spark2. We
used the industry standard TPC-DS3 benchmark data set
generator to create synthetic data at scale factors ranging
from 250 GB to 1 TB.

Figure 13, available in Appendix, shows the considered
queries: R1, R3, Q26, Q40, and Q52. R1 and R3 are hand-
crafted so as to have exactly one map and one reduce stage
when run on Hive, thus constituting an example of MapRe-
duce job. On the other hand, Q26, Q40, and Q52 are three
of the queries that belong to the TPC-DS benchmark. These
queries have been executed on SparkSQL, yielding the DAGs
shown in Figure 4.

1. https://hive.apache.org
2. https://spark.apache.org
3. http://www.tpc.org/tpcds/

https://hive.apache.org
https://spark.apache.org
http://www.tpc.org/tpcds/

9

Since profiles collect statistical information about jobs, we
repeated the profiling runs at least twenty times per query.
Properly parsing the logs allows to extract all the parameters
composing every query profile, for example average and maxi-
mum task execution times, number of tasks, etc. Profiling has
been performed on Amazon EC2, by considering m4.xlarge
instances, on Microsoft Azure, with A3, A4, D12v2, D13v2,
or D14v2 VMs, and on PICO4, the Big Data cluster provided
by CINECA, the Italian supercomputing center. The cluster
created in EC2 was composed of 30 computational nodes, for
a total of 120 vCPUs hosting 240 YARN containers, whilst on
PICO we used up to 120 cores configured to host one container
per core. On the other hand, on Azure clusters of variable sizes
have been provisioned, reaching up to 26 dual-core containers.
In the EC2 case every container had 2 GB RAM and on
Cineca 6 GB, while on Azure containers were 2 GB for A3
machines, 8 GB for A4 and D12v2, 40 GB for D13v2, and
90 GB for D14v2. Along with profiles, we also collected lists
of task execution times to feed the replayer in JMT service
centers or dagSim stages. In the end, we recorded the different
VM types characteristics.

Our previous work [19] shows that GreatSPN, a tool based
on SPNs, can reach a slightly higher accuracy than JMT at the
expense of quite longer simulation times, thus here we do not
consider it as simulator to achieve shorter optimization times.
Our previous work also highlights that MapReduce and Spark
stages tend to follow Erlang distributions, whose coefficient of
variation is small.

5.2 Simulation Models Validation
To start off with, we show results for the validation of the
different simulation models. We feed the models with param-
eters evaluated on the real systems we took into account and
compare the measured performance metrics with the ones
obtained via simulation.

Specifically, we consider as a quality index the relative
error on the prediction of the execution times, defined as
follows:

ϑ =
τ − T
T

(11)

where τ is the simulated execution time, whilst T is the
average measurement across multiple runs. Such a definition
allows not only to quantify the relative error on execution
times, but also to identify cases where the predicted time is
smaller than the actual one, thus leading to possible deadline
misses. Indeed, if ϑ < 0 then the prediction is not conserva-
tive.

Among these experiments, we considered both single user
scenarios, where one query has been run repeatedly on a ded-
icated cluster, interleaving a 10 s average think time between
completions and subsequent submissions, and multiple user
scenarios, with several users concurrently interacting with the
cluster in a similar way.

The Appendix details the experimental campaign for sim-
ulation models validation. Table 7 shows the results of JMT
QN models. In the worst case, the relative error can reach
up to 30.59%, which is perfectly in line with the expected

4. http://www.hpc.cineca.it/hardware/pico

PSfrag replacements

0 10 20 30 40 50 60
0.2

0.4

0.6

0.8

1

1.2

1.4

Deadline [min]

C
os
t
[e

/h
]

CINECA

m4.xlarge

R1 — h 2

Figure 5. Query R1, two concurrent users

PSfrag replacements

0 10 20 30 40 50 60
0.2

0.4

0.6

0.8

1

1.2

1.4

Deadline [min]

C
os
t
[e

/h
]

CINECA

m4.xlarge

R3 — h 1

Figure 6. Query R3, one concurrent user

accuracy on execution time prediction for capacity planning
purposes [26]. Instead, overall the average relative error set-
tles at 12.27%. Moreover, Tables 5 and 6 report the results
for dagSim models for single user scenarios on the 500 GB
dataset. The worst case error is −19.01% and, on average,
errors settle at 3.06%.

5.3 Scenario-based Experiments
The optimization approach described in Section 4 needs to
be validated, ensuring that it is capable of catching realistic
behaviors as one can reasonably expect of the system under
analysis. We test this property with a set of assessment runs
where we fix all the problem parameters but one and verify
that the solutions follow an intuitive evolution.

The main axes governing performance in Hadoop or Spark
clusters hosted on public Clouds are the level of concurrency
and the deadlines. In the first case, increasing hi and fixing
all the remaining parameters, we expect a need for more VMs
to support the rising workload, thus leading to an increase of
leasing costs. On the other hand, if at fixed parameters we
tighten the deadlines Di, again we should observe increased
costs: the system will require a higher parallelism to shrink
execution times, hence more containers to support it.

For the sake of clarity, in this section we performed
single-class experiments: considering only one class ensures
an easier interpretation of the results. Figures 5, 6 and 7
report the solutions obtained with the 250 GB data set on
MapReduce queries when relying on the JMT simulator. The

http://www.hpc.cineca.it/hardware/pico

10

PSfrag replacements

0

10 20 30 40 50 60
0
0

0.5

1

1.5

2

Deadline [min]

C
os
t
[e

/h
]

CINECA

m4.xlarge

R1 — h 5

Figure 7. Query R1, five concurrent users

PSfrag replacements

10
20

30 40 50 60
0

5

10

10

15

20

20

25

Deadline [min]

C
os
t
[e

/h
]

A4
D13v2
D14v2

Q40 — h 10

Figure 8. Query Q40, ten users

average running time for these experiments is about two
hours. All the mentioned figures show the cost in e/h plotted
against decreasing deadlines in minutes for both the real VM
types considered as candidate: CINECA is the 20-core node
available on PICO, whilst m4.xlarge is the 4-core instance
rented on Amazon AWS. In Figures 5 and 6 the expected
cost increase due to tightening deadlines is apparent for both
query R1 and R3. Further, in both cases it is cheaper to
provision a Cloud cluster consisting of the smaller Amazon-
offered instances, independently of the deadlines. It is then
interesting to observe that R1 shows a different behavior if
the required concurrency level increases. Figure 7 shows that,
as the deadlines tighten, it is possible to identify a region
where executing the workload on larger VMs becomes more
economic, with a 27.8% saving.

Figures 8 and 9 show the behavior of several Spark runs
on the 500 GB dataset. Q40 with ten users exhibits a straight-
forward behavior, with D13v2 instances always leading to
cheaper deployments. In order to quantify monetary savings,
we compute the ratio of the difference between costs over the
second cheapest alternative. With this metric, D13v2 yields
an average percentage saving around 23.1% for Q40, hence
this VM type proves to be the cheapest choice by a reasonable
margin. On the other hand, a single-user Q52 provides a more
varied scenario. As shown in Figure 10 for clarity, two VM
types, namely, A3 and D12v2, alternate as the cheapest de-
ployment when the deadline varies. By identifying the proper
alternative, it is possible to obtain an average saving around

PSfrag replacements

0

10 20 30 40 50 60
0
0

1

2

3

4

5

Deadline [min]

C
os
t
[e

/h
]

A3
A4
D12v2
D13v2
D14v2

Q52 — h 1

Figure 9. Query Q52, single user

PSfrag replacements

0
10
20
30
40

50 60
0
0

10

10

20

20

30

30

40

40
Deadline [min]

S
av
in
gs

[%
]

A3
D12v2
Avg. saving

Q52 — h 1

Figure 10. Query Q52, single user, savings

19.3% over the considered range of deadlines. The maximum
saving is about 36.4%.

Overall, these results provide a strong point in favor of
the optimization procedure implemented in our tool, as they
prove that making the right choice for deployment can lead
to substantial savings throughout the application life cycle.
Take into account that Microsoft Azure suggests VMs of the
D11–15v2 range for memory intensive applications, such as
analytics on Spark or distributed databases, whilst we showed
that, depending on the workload, even the most basic offerings
in the A0–4 range can satisfy QoS constraints with a compet-
itive budget allocation. On top of this, D-SPACE4Cloud can
also determine the optimal number of VMs to use in order to
meet the QoS requirements, which is a nontrivial decision left
to users.

In terms of execution times, D-SPACE4Cloud carried
out the whole optimization procedure for Spark experiments
within minutes. All the running times were in the range
[24, 560] s, with an average of 125.98 s. In these cases the
search algorithm ran much faster due to the performance gain
allowed by dagSim, which we used as simulator for the Q
queries.

Finally, Figure 11 shows the results of a multi-user exper-
iment over the 500 GB dataset. Fixing all the other parame-
ters, in particular query Q26 and a deadline of 20 minutes, we
varied the required concurrency level between 1 and 10 users
with step 1. Here the D12v2 instances prove in every case the
better choice, with an average 30.0% saving in comparison to

11

PSfrag replacements

0

2 4 6 8

10

0
0

5

10

10

15

20

25

Users

C
os
t
[e

/h
]

A3
A4
D12v2
D13v2
D14v2

Q26 — 20 minutes

Figure 11. Query Q26, multi-user

Table 3
Optimizer single class validation, D12v2

Query D [ms] Cores R [ms] ε [%]

Q26 180, 000 48 158, 287 12.06
Q52 180, 000 48 150, 488 16.40
Q26 240, 000 36 186, 066 22.47
Q52 240, 000 36 175, 394 26.92
Q26 360, 000 24 280, 549 22.07
Q52 360, 000 24 276, 790 23.11

the second cheapest deployment.

5.4 Solution Validation in a Real Cluster Setting
A further experiment was aimed at assessing the quality of the
optimized solution obtained using D-SPACE4Cloud. Given
a query and a deadline to meet, we focus on the execution
time measured in a real cluster provisioned according to the
number and type of VMs returned by D-SPACE4Cloud, quan-
tifying the relative gap as a metric of the optimizer accuracy.
Formally:

ε =
D −R
D

, (12)

where D is the deadline and R the execution time measured
on the system, so that possible misses would yield a negative
result.

We considered six cases, varying deadline and query, and
ran D-SPACE4Cloud to determine the optimal resource as-
signment to meet the QoS constraints on D12v2 instances
with a 500 GB scale factor. Table 3 collects data that relates
to this experiment. Every row shows the relevant query and
deadline, the optimal number of VMs, the measured execution
time, and the percentage gap ε. First of all, none of the consid-
ered runs led to a deadline miss. Moreover, the relative error
is always below 30%, with a worst case result of 26.92% and
the average settling at 20.51%. Overall we can conclude that
the optimization tool is effective in identifying the minimum
cost solution at design time, guaranteeing that deadlines are
met as well.

In addition, we used D-SPACE4Cloud to optimize a multi-
class instance on D14v2 VMs. Table 4 shows the results of
this experiment, with three different queries subject to the
same deadline that share a cluster of three worker nodes, for

Table 4
Optimizer multi-class validation, D14v2

Query D [ms] Cores R [ms] ε [%]

Q26 720, 000 16 533, 731 25.87
Q40 720, 000 16 530, 122 26.37
Q52 720, 000 16 562, 625 21.86

PSfrag replacements

Number of Users
Number of Classes

0

5P
ro
ce
ss
in
g
T
im

e
[h
]

10
15

20

8

10

2
4

6

0

00

0

10

10

10

20

20

30
40

3D Scatter Plot

Figure 12. Execution time for varying number of classes and users

a total of 48 cores under a work conserving scheduling policy.
In this case, the worst case result is 26.37%, with an average
of 24.70%. The accuracy is slightly lower than the single class
scenario due to possible performance gains allowed by spare
resources borrowed from other classes during their idle time,
yet it remains good for practical applications.

5.5 Scalability Analysis
In this section we quantify the time taken to obtain the
optimized solution for instances of increasing size, both in
terms of number of classes and aggregate user count. All these
runs exploited dagSim as simulator and Azure D14v2 VMs as
target deployment.

The experiment considers three different queries, namely,
Q26, Q40, and Q52, varying the deadline between five minutes
and one hour with a five-minute stride, to obtain 12 sets of
three distinct classes. Thus, we have Q26, Q40, and Q52 with
deadline 60 minutes, then the three queries all with a deadline
of 55 minutes, and so on. The instances are then created
cumulatively joining the three-class sets following decreasing
deadlines. For example, the configuration with 3 classes has
D = 60 minutes, the second instance with 6 classes collects
D ∈ {60, 55} minutes, the third one adds D = 50, and
so forth. We repeated this test instance generation with a
required level of concurrency ranging from 1 to 10 users, but
without ever mixing classes with different hi: in any given
instance, ∀i ∈ C, hi = h̄. In this way, we considered a total
of 120 different test instances with varying number of classes
and overall concurrent users: classes range between 3 and 36,
while the aggregate number of users from 3 to 360.

Figure 12 shows the results of this experiment. The plot
represents the mean execution time of D-SPACE4Cloud at
every step. The number of users is per class, thus, for example,
the configuration (24, 4) totals 96 users subdivided into 24
distinct classes with concurrency level 4. Overall, the average
processing time ranges from around 40 minutes for three
classes up to 12 hours for 36 classes. On the other hand,

12

the best single instance, which needs only three minutes, is
with three classes and one user each, while the longest running
takes 16 hours and a half to optimize 36 classes with 9 users
each.

The reported results show how D-SPACE4Cloud can solve
the capacity allocation problem for Cloud systems in less than
one day, which is a reasonable time span for design time
considerations. Furthermore, current best practices discour-
age hosting as many as 36 application classes and 360 users
on a single shared cluster, hence several of the considered
instances should be considered one order of magnitude larger
than nowadays production environments.

6 Related Work
Capacity planning and architecture design space exploration
are important problems analyzed in the literature [31], [32].
High level models and tools to support software architects
(see, e.g., Palladio Component Model and its Palladio Bench
and PerOpteryx design environment [33], [34], or stochastic
process algebra and the PEPA Eclipse plugin [35], [36]) have
been proposed for identifying the best configuration given a
set of QoS requirements for enterpriseWeb-based systems, but
unfortunately they do not support Cloud-specific abstractions
or (see, e.g., [37]) directly address the problem of deriving an
optimized Cloud and Big Data cluster configuration. On the
other side, capacity management, cluster sizing, and tuning of
Big Data applications have received also a widespread interest
by both academia and industry.

The starting point of this second family of approaches is
the consideration that Big Data frameworks often require an
intense tuning phase in order to exhibit their full potential.
For this reason, Starfish, a self-tuning system for analytics
on Hadoop, has been proposed [38]. In particular, Starfish
collects some key run time information about applications
execution with the aim of generating meaningful application
profiles; such profiles are in turn the basic elements to be
exploited for Hadoop automatic configuration processes. Fur-
thermore, also the cluster sizing problem has been tackled
and successfully solved exploiting the same tool [39]. More
recently, Dalibard et al. [40] have presented BOAT, a gray
box framework, which supports developers to build efficient
auto-tuners for their system, in situations where generic auto-
tuners fail. BOAT is based on structured Bayesian optimiza-
tion and has been used to support the performance tuning
of Cassandra clusters and of GPU-based servers for neural
network computations.

The problem of job profiling and execution time estima-
tion represents a common issue in the Big Data literature.
Verma et al. [41] propose a framework for the profiling and
performance prediction of Hadoop applications running on
heterogeneous resources. An approach to this problem based
on closed QNs is presented in [42]. This work is noteworthy
as it explicitly considers contention and parallelism on com-
pute nodes to evaluate the execution time of a MapReduce
application. However, the weak spot of this approach is that
it contemplates the map phase alone. Vianna et al. [43] worked
on a similar solution, however the validation phase has been
carried out considering a cluster dedicated to the execution of
a single application at a time.

The problem of progress estimation of multiple parallel
queries is addressed in [44]. To this aim, the authors present

Parallax, a tool able to predict the completion time of MapRe-
duce jobs. The tool has been implemented over Pig, while
the PigMix benchmark has been used for the evaluation.
ParaTimer [45], an extension of Parallax, features support to
multiple parallel queries expressed as DAGs.

A novel modeling approach based on mean field analysis
able to provide fast approximate methods to predict the
performance of Big Data systems has been proposed in [46].
Machine learning black box models are becoming also popular
to predict the performance of large scale business analytics
systems. Ernest [47] is a representative example of these
approaches. The authors used experiment design to collect
as few training points as required. As experimental analysis,
the authors used Amazon EC2 and evaluated the accuracy of
the proposed approach using several ML algorithms that are
part of Spark MLlib. The evaluation showed that the average
prediction error is under 20%, in line with our results.

In [28] we investigated a mixed analytical/ML approach to
predict the performance of MapReduce clusters by relying on
QNs to generate a knowledge base (KB) of synthetic data over
which a complementary SVR model is trained. The initial KB
is then updated over time to incorporate real samples from the
operational system. Such method has been recently extended
to model also Spark and is the approach we used for building
the optimization models discussed in Section 4.

The capacity management and cluster sizing problems,
instead, have been faced by Tian and Chen [48]. The goal is
the minimization of the execution cost for a single MapReduce
application. The authors present a cost model that depends on
the dataset size and on some characteristics of the considered
application. A regression-based analysis technique has been
used to profile the application and to estimate model parame-
ters.

MapReduce cluster sizing and scheduling is considered
in [14]. The authors propose a tandem queue with overlapping
phases to model the execution of the application and an
efficient run time scheduling algorithm for the joint opti-
mization of the map and copy/shuffle phases. The authors
demonstrated the effectiveness of their approach comparing it
with the offline generated optimal schedule.

Cluster sizing of MapReduce applications based on dead-
lines is considered in [49]. The authors recognize the inade-
quacy of Hadoop schedulers released at the date to properly
handle completion time requirements. The work proposes to
adapt to the problem some classical multiprocessor scheduling
policies; in particular, two versions of the earliest deadline first
heuristic are presented and proved to outperform off-the-shelf
schedulers. A similar approach is proposed in [50], where the
authors present a solution to manage clusters shared among
Hadoop application and more traditional Web systems.

Zhang et al. [50] investigate the performance of MapRe-
duce applications on homogeneous and heterogeneous Hadoop
clusters in the Cloud. They consider a problem similar to ours
and provide a simulation-based framework for minimizing
cluster infrastructural costs. Nonetheless, a single class of
workload is optimized.

In [15] the ARIA framework is presented. This work is the
closest to our contribution and focuses on clusters dedicated
to single user classes handled by the FIFO scheduler. The
framework addresses the problem of calculating the most
suitable amount of resources to allocate to map and reduce

13

tasks in order to meet a user-defined due date for a certain
application; the aim is to avoid as much as possible costs due
to resource over-provisioning. We borrow from this work the
compact job profile definition, used there to calculate an es-
timation of an application execution time. The same authors,
in a more recent work [12], provided a solution for optimizing
the execution of a workload specified as a set of DAGs under
the constraints of a global deadline or budget. Heterogeneous
clusters with possible faulty nodes are considered as well.

Alipourfard et al. [51] have presented CherryPick, a black
box system that leverages Bayesian optimization to find near-
optimal Cloud configurations that minimize cloud usage cost
for MapReduce and Spark applications. The authors’ ap-
proach also guarantees application performance and limits the
search overhead for recurring Big Data analytics jobs, focusing
the search to improve prediction accuracy of those configura-
tion close to the best for a specific deadline. With respect
to this work, our approach allows for analyzing the trade-
off between costs and performance and has demonstrated
to provide good performance prediction and cost estimation
across multiple configurations and deadlines.

Similar to our work, the authors in [52] provide a frame-
work facing the problem of minimum cost provisioning of
MySQL clusters in Cloud environments. The cost model
includes resource costs and service level agreement penalties,
which are proportional to execution time violation of a given
deadline. Queries execution times are predicted through QN
models, which, however, introduce up to 70% percentage
error. The minimum cost configuration is identified through
two greedy hill climbing heuristics, which can identify het-
erogeneous clusters, but no guarantees on the quality of the
final solution can be provided. The authors in [53] provide
a run time framework for the management of large Cloud
infrastructures based on collaborative filtering and classifica-
tion, which supports run time decision of a greedy scheduler.
The overall goal is to maximize infrastructure utilization
while minimizing resource contention taking into account also
resource heterogeneity. The same authors extended their work
in [54], supporting resource scale-out decisions (i.e., deter-
mining if more servers can be beneficial for an application)
and server scale-up (i.e., predicting if more resources per
server are beneficial) for Spark and Hadoop applications.
The authors demonstrated that their framework can manage
effectively large systems, improving significantly infrastruc-
ture utilization and application performance. However, their
collaborative filtering approach requires to gather little data
from the running applications, but require a significant effort
to initially profile the baseline benchmarking applications
used to predict the effects of, e.g., resource contention and
scale up/out decisions at run time: the exhaustive profiling
of 30 workload types running from 1 to 100 nodes.

7 Conclusions
In this paper we have proposed an effective tool for capac-
ity planning of YARN managed Cloud clusters to support
DIAs implemented as MapReduce jobs or through Apache
Spark. We have developed a MINLP formulation based on
ML models whose initial solution is iteratively improved by a
sim-heuristic, which exploits simulation to assess accurately
application performance under different conditions. In this

way, the tool is able to achieve a favorable trade-off between
prediction accuracy and running times.

A comprehensive experimental validation proved how the
tool is a valuable contribution towards supporting different
application classes over heterogeneous resource types, since
we have highlighted situations where choosing the best VM
type is not trivial. Sometimes, sticking to small instances and
scaling out proves to be less economic than switching to more
powerful VMs that call for a smaller number of replicas: the
decreased replication factor compensates the increased unit
price in a not obvious way. Unfortunately, this is not always
true and making the right choice can lead to substantial
savings throughout the application life cycle, up to 20–30%
in comparison with the second best configuration.

Future work will extend D-SPACE4Cloud to support the
resource provisioning of continuous applications that integrate
batch and streaming workloads. Moreover, we will extend our
solutions to the run time cluster management scenario.

References
[1] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou,

J. M. Patel, R. Ramakrishnan, and C. Shahabi, “Big Data and
its technical challenges,” Commun. ACM, vol. 57, no. 7, pp. 86–
94, Jul. 2014.

[2] (2017, Mar.) Worldwide semiannual Big Data and analytics
spending guide. [Online]. Available: https://www.idc.com/
getdoc.jsp?containerId=IDC_P33195

[3] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon,
“Parallel data processing with MapReduce: A survey,” SIGMOD
Rec., vol. 40, no. 4, pp. 11–20, Jan. 2012.

[4] F. Yan, L. Cherkasova, Z. Zhang, and E. Smirni, “Optimizing
power and performance trade-offs of MapReduce job processing
with heterogeneous multi-core processors,” in CLOUD Proc.,
2014.

[5] C. Shanklin. Benchmarking Apache Hive 13 for enterprise
Hadoop. [Online]. Available: https://hadoop.apache.org/docs/
r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

[6] K. Kambatla, G. Kollias, V. Kumar, and A. Grama, “Trends in
big data analytics,” J. Parallel Distrib. Comput., vol. 74, no. 7,
pp. 2561–2573, 2014.

[7] H. Derrick. (2015) Survey shows huge popularity spike for
Apache Spark. [Online]. Available: http://fortune.com/2015/
09/25/apache-spark-survey

[8] M. A. Greene and K. Sreekanti. (2016) Big Data in the
enterprise: We need an “easy button” for hadoop. [Online].
Available: http://www.oreilly.com/pub/e/3643

[9] The digital universe in 2020. [Online]. Available: http:
//idcdocserv.com/1414

[10] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguadé, M. Stein-
der, and I. Whalley, “Performance-driven task co-scheduling for
MapReduce environments,” in NOMS Proc., 2010.

[11] B. T. Rao and L. S. S. Reddy, “Survey on improved
scheduling in Hadoop MapReduce in Cloud environments,”
CoRR, vol. abs/1207.0780, 2012. [Online]. Available: http:
//arxiv.org/abs/1207.0780

[12] Z. Zhang, L. Cherkasova, and B. T. Loo, “Exploiting Cloud
heterogeneity to optimize performance and cost of MapReduce
processing,” SIGMETRICS Perf. Eval. Review, vol. 42, no. 4,
pp. 38–50, 2015.

[13] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo, “Automated
profiling and resource management of Pig programs for meeting
service level objectives,” in ICAC Proc., 2012.

[14] M. Lin, L. Zhang, A. Wierman, and J. Tan, “Joint optimiza-
tion of overlapping phases in MapReduce,” SIGMETRICS Perf.
Eval. Review, vol. 41, no. 3, pp. 16–18, 2013.

[15] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Auto-
matic resource inference and allocation for MapReduce environ-
ments,” in ICAC Proc., Jun. 2011.

[16] G. P. Gibilisco, M. Li, L. Zhang, and D. Ardagna, “Stage aware
performance modeling of DAG based in memory analytic plat-
forms,” in IEEE CLOUD Proc., 2016.

https://www.idc.com/getdoc.jsp?containerId=IDC_P33195
https://www.idc.com/getdoc.jsp?containerId=IDC_P33195
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://fortune.com/2015/09/25/apache-spark-survey
http://fortune.com/2015/09/25/apache-spark-survey
http://www.oreilly.com/pub/e/3643
http://idcdocserv.com/1414
http://idcdocserv.com/1414
http://arxiv.org/abs/1207.0780
http://arxiv.org/abs/1207.0780

14

[17] Amazon EC2 pricing. [Online]. Available: http://aws.amazon.
com/ec2/pricing/

[18] Hadoop MapReduce next generation — Capacity
Scheduler. [Online]. Available: http://hortonworks.com/blog/
benchmarking-apache-hive-13-enterprise-hadoop/

[19] D. Ardagna, S. Bernardi, E. Gianniti, S. K. Aliabadi, D. Perez-
Palacin, and J. I. Requeno, “Modeling Performance of Hadoop
Applications: A Journey from Queueing Networks to Stochastic
Well Formed Nets,” in ICA3PP Proc., 2016.

[20] A. B. et al. (2017) D3.4 EUBra-BIGSEA QoS
infrastructure services intermediate version. [Online]. Avail-
able: http://www.eubra-bigsea.eu/sites/default/files/D3.4%
20EUBra-BIGSEA%20QoS%20infrastructure%20services.pdf

[21] G. Casale and et al., “Dice: Quality-driven development of data-
intensive cloud applications,” in MiSE Proc., 2015.

[22] M. Artac, T. Borovsak, E. D. Nitto, M. Guerriero, and D. A.
Tamburri, “Model-driven continuous deployment for quality De-
vOps,” in QUDOS Proc., 2016.

[23] M. Bertoli, G. Casale, and G. Serazzi, “JMT: Performance en-
gineering tools for system modeling,” SIGMETRICS Perform.
Eval. Rev., vol. 36, no. 4, pp. 10–15, 2009.

[24] Greatspn 7.2. [Online]. Available: http://www.di.unito.it/
~greatspn/index.html

[25] A. M. Rizzi, “Support vector regression model for BigData
systems,” ArXiv e-prints, Dec. 2016.

[26] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,
Quantitative System Performance. Prentice-Hall, 1984.

[27] M. Malekimajd, D. Ardagna, M. Ciavotta, A. M. Rizzi, and
M. Passacantando, “Optimal Map Reduce job capacity alloca-
tion in Cloud systems,” SIGMETRICS Perform. Eval. Rev.,
vol. 42, no. 4, pp. 51–61, Jun. 2015.

[28] E. Ataie, E. Gianniti, D. Ardagna, and A. Movaghar, “A com-
bined analytical modeling machine learning approach for perfor-
mance prediction of MapReduce jobs in Cloud environment,” in
SYNASC Proc., 2016.

[29] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co., 1990.

[30] D. Ardagna, M. Ciavotta, and M. Passacantando, “Generalized
nash equilibria for the service provisioning problem in multi-
cloud systems,” IEEE Trans. Services Computing, vol. 10, no. 3,
pp. 381–395, 2017.

[31] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software architecture optimization methods: A systematic lit-
erature review,” Software Engineering, IEEE Trans. on, vol. PP,
no. 99, pp. 1–1, 2013.

[32] F. Brosig, P. Meier, S. Becker, A. Koziolek, H. Koziolek, and
S. Kounev, “Quantitative evaluation of model-driven perfor-
mance analysis and simulation of component-based architec-
tures,” Software Engineering, IEEE Trans. on, vol. 41, no. 2,
pp. 157–175, Feb. 2015.

[33] S. Becker, H. Koziolek, and R. Reussner, “The Palladio compo-
nent model for model-driven performance prediction,” Journal
of Systems and Software, vol. 82, no. 1, pp. 3–22, 2009.

[34] A. Koziolek, H. Koziolek, and R. Reussner, “PerOpteryx: Auto-
mated application of tactics in multi-objective software architec-
ture optimization,” in QoSA 2011 Proc., 2011.

[35] M. Tribastone, S. Gilmore, and J. Hillston, “Scalable differential
analysis of process algebra models,” IEEE Trans. on Software
Engineering, vol. 38, no. 1, pp. 205–219, 2012.

[36] OMG. (2015) PEPA: Performance evaluation process algebra.
[Online]. Available: http://www.dcs.ed.ac.uk/pepa/tools/

[37] J. Kross and H. Krcmar, “Model-based performance evaluation
of batch and stream applications for Big Data,” in MASCOTS
Proc., 2017.

[38] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu, “Starfish: A self-tuning system for Big Data
analytics,” in CIDR Proc., 2011.

[39] H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size
fits all: Automatic cluster sizing for data-intensive analytics,”
in SOCC Proc., 2011.

[40] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “BOAT: Build-
ing auto-tuners with structured Bayesian optimization,” in
WWW Proc., 2017.

[41] A. Verma, L. Cherkasova, and R. H. Campbell, “Profiling and
evaluating hardware choices for MapReduce environments: An

application-aware approach,” Perf. Eval., vol. 79, pp. 328–344,
2014.

[42] S. Bardhan and D. A. Menascé, “Queuing network models to
predict the completion time of the map phase of MapReduce
jobs,” in Int. CMG Conference, 2012.

[43] E. Vianna, G. Comarela, T. Pontes, J. M. Almeida, V. A. F.
Almeida, K. Wilkinson, H. A. Kuno, and U. Dayal, “Analytical
performance models for MapReduce workloads,” International
Journal of Parallel Programming, vol. 41, no. 4, pp. 495–525,
2013.

[44] K. Morton, M. Balazinska, and D. Grossman, “ParaTimer: A
progress indicator for MapReduce DAGs,” in SIGMOD Proc.,
2010.

[45] K. Morton, A. Friesen, M. Balazinska, and D. Grossman, “Es-
timating the progress of MapReduce pipelines,” in ICDE Proc.,
2010.

[46] A. Castiglione, M. Gribaudo, M. Iacono, and F. Palmieri, “Ex-
ploiting mean field analysis to model performances of Big Data
architectures,” Future Generation Computer Systems, vol. 37,
no. 0, pp. 203–211, 2014.

[47] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Sto-
ica, “Ernest: Efficient performance prediction for large-scale
advanced analytics,” in NSDI Proc., 2016.

[48] F. Tian and K. Chen, “Towards optimal resource provisioning
for running MapReduce programs in public Clouds,” in CLOUD
Proc., 2011.

[49] L. T. X. Phan, Z. Zhang, Q. Zheng, B. T. Loo, and I. Lee, “An
empirical analysis of scheduling techniques for real-time Cloud-
based data processing,” in SOCA Proc., 2011.

[50] W. Zhang, S. Rajasekaran, S. Duan, T. Wood, and M. Zhu,
“Minimizing interference and maximizing progress for Hadoop
virtual machines,” SIGMETRICS Perf. Eval. Review, vol. 42,
no. 4, pp. 62–71, 2015.

[51] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman,M. Yu, and
M. Zhang, “CherryPick: Adaptively unearthing the best Cloud
configurations for big data analytics,” in NSDI Proc., 2017.

[52] R. Mian, P. Martin, and J. L. Vazquez-Poletti, “Provisioning
data analytic workloads in a cloud,” Future Gener. Comput.
Syst., vol. 29, no. 6, pp. 1452–1458, Aug. 2013.

[53] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware schedul-
ing for heterogeneous datacenters,” SIGPLAN Not., vol. 48,
no. 4, pp. 77–88, Mar. 2013.

[54] ——, “Quasar: Resource-efficient and QoS-aware cluster man-
agement,” in ASPLOS Proc., 2014.

Eugenio Gianniti is currently pursuing his Ph.D. degree in Computer
Engineering at Politecnico di Milano, Italy. His research interest lies
mostly in optimization techniques for the resource management of DIAs
hosted on Clouds, as well as in the performance modeling of such systems
via both simulation and analytical methods.

Michele Ciavotta received the Ph.D. degree in automation and com-
puter science from Roma Tre, Italy in 2008. From 2012 he is Postdoctoral
Fellow at the Dipartimento di Elettronica Informazione and Bioingegne-
ria at Politecnico di Milano. His research work focuses on modeling and
optimization of complex real-life problems mainly arising in the fields of
scheduling and planning, and more recently resource management for
Cloud based and data intensive systems under constraints of quality of
service.

Danilo Ardagna is an Associate Professor at the Dipartimento di
Elettronica Informazione and Bioingegneria at Politecnico di Milano,
Milan, Italy. He received the Ph.D. degree in Computer Engineering from
Politecnico di Milano in 2004. His work focuses on performance modeling
of software systems and on the design, prototyping, and evaluation of
optimization algorithms for resource management and planning of Cloud
and Big Data systems.

http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://hortonworks.com/blog/benchmarking-apache-hive-13-enterprise-hadoop/
http://hortonworks.com/blog/benchmarking-apache-hive-13-enterprise-hadoop/
http://www.eubra-bigsea.eu/sites/default/files/D3.4%20EUBra-BIGSEA%20QoS%20infrastructure%20services.pdf
http://www.eubra-bigsea.eu/sites/default/files/D3.4%20EUBra-BIGSEA%20QoS%20infrastructure%20services.pdf
http://www.di.unito.it/~greatspn/index.html
http://www.di.unito.it/~greatspn/index.html
http://www.dcs.ed.ac.uk/pepa/tools/

15

Appendix

s e l e c t avg (ws_quantity) ,
avg (ws_ext_sales_price) ,
avg (ws_ext_wholesale_cost) ,
sum(ws_ext_wholesale_cost)

from web_sales
where (web_sales . ws_sa les_pr ice between 100 .00 and

150 .00) or (web_sales . ws_net_prof it
between 100 and 200)
group by ws_web_page_sk
l i m i t 100 ;

(a) R1

s e l e c t avg (ss_quant i ty) , avg (s s_net_pro f i t)
from s t o r e _ s a l e s
where ss_quant i ty > 10 and s s_net_pro f i t > 0
group by ss_store_sk
having avg (ss_quant i ty) > 20
l i m i t 100 ;

(b) R3

s e l e c t i_item_id ,
avg (cs_quant ity) agg1 ,
avg (c s _ l i s t _ p r i c e) agg2 ,
avg (cs_coupon_amt) agg3 ,
avg (c s _s a l e s _ pr i c e) agg4
from ca ta l og_sa l e s , customer_demographics , date_dim ,

item , promotion
where c a t a l o g _ s a l e s . cs_sold_date_sk = date_dim .

d_date_sk
and c a t a l o g _ s a l e s . cs_item_sk = item . i_item_sk
and c a t a l o g _ s a l e s . cs_bill_cdemo_sk =

customer_demographics . cd_demo_sk
and c a t a l o g _ s a l e s . cs_promo_sk = promotion . p_promo_sk
and cd_gender = ’F ’
and cd_marita l_status = ’W’
and cd_education_status = ’ Primary ’
and (p_channel_email = ’N ’ or p_channel_event = ’N ’)
and d_year = 1998
group by i_item_id
order by i_item_id
l i m i t 100 ;

(c) Q26

s e l e c t dt . d_year , item . i_brand_id brand_id , item .
i_brand brand , sum(s s_ext_sa l e s_pr i ce) ext_pr ice

from date_dim dt , s t o r e _ s a l e s , item
where dt . d_date_sk = s t o r e _ s a l e s . ss_sold_date_sk
and s t o r e _ s a l e s . ss_item_sk = item . i_item_sk
and item . i_manager_id = 1
and dt . d_moy=12
and dt . d_year=1998
group by dt . d_year , item . i_brand , item . i_brand_id
order by dt . d_year , ext_pr ice desc , brand_id
l i m i t 100 ;

(d) Q52

Figure 13. Queries

Table 5
dagSim model validation, Microsoft Azure D12v2

Query Cores Tasks T [ms] τ [ms] ϑ [%]

Q26 12 1, 406 660, 700 620, 773 −6.04
Q52 12 704 658, 397 654, 464 −0.60
Q26 16 1, 406 551, 669 495, 246 −10.23
Q52 16 704 515, 202 512, 122 −0.60
Q26 20 1, 406 454, 054 393, 414 −13.36
Q52 20 704 410, 588 407, 066 −0.86
Q26 24 1, 406 385, 639 332, 364 −13.81
Q52 24 704 356, 296 353, 852 −0.69
Q26 28 1, 406 354, 183 286, 861 −19.01
Q52 28 704 302, 741 299, 305 −1.13
Q26 32 1, 406 304, 048 250, 327 −17.67
Q52 32 704 263, 034 260, 648 −0.91
Q26 36 1, 406 244, 214 228, 456 −6.45
Q52 36 704 245, 084 242, 489 −1.06
Q26 40 1, 406 225, 484 208, 327 −7.61
Q52 40 704 213, 353 211, 291 −0.97
Q26 44 1, 406 198, 966 189, 840 −4.59
Q52 44 704 198, 044 196, 234 −0.91
Q26 48 1, 406 186, 659 186, 953 0.16
Q52 48 704 188, 860 187, 162 −0.90
Q26 52 1, 406 170, 516 171, 346 0.49
Q52 52 704 177, 380 175, 511 −1.05

Table 6
dagSim model validation, Microsoft Azure A3

Query Cores Tasks T [ms] τ [ms] ϑ [%]

Q26 6 1, 406 2, 475, 150 2, 479, 524.66 0.18
Q52 6 704 2, 101, 121 2, 094, 742.67 −0.30
Q26 8 1, 406 2, 014, 112 2, 026, 360.58 0.61
Q52 8 704 1, 651, 055 1, 644, 624.56 −0.39
Q26 10 1, 406 1, 718, 490 1, 720, 192.80 0.10
Q52 10 704 1, 270, 516 1, 258, 821.03 −0.92
Q26 12 1, 406 1, 632, 222 1, 647, 299.29 0.92
Q52 12 704 1, 067, 327 1, 059, 946.54 −0.69
Q26 14 1, 406 1, 381, 072 1, 393, 737.17 0.92
Q52 14 704 918, 809 913, 134.69 −0.62
Q26 16 1, 406 1, 213, 972 1, 224, 156.94 0.84
Q52 16 704 827, 597 823, 043.16 −0.55
Q26 18 1, 406 1, 069, 438 1, 095, 197.38 2.41
Q52 18 704 759, 571 752, 902.94 −0.88
Q26 20 1, 406 1, 036, 132 1, 035, 922.42 −0.02
Q52 20 704 681, 948 676, 836.53 −0.75
Q26 22 1, 406 919, 943 989, 514.49 7.56
Q52 22 704 608, 599 603, 718.41 −0.80
Q26 24 1, 406 850, 542 872, 744.23 2.61
Q52 24 704 561, 149 556, 509.52 −0.83
Q26 26 1, 406 657, 342 671, 679.98 2.18
Q52 26 704 507, 889 504, 324.45 −0.70
Q52 28 704 474, 160 470, 658.54 −0.74
Q26 30 1, 406 586, 840 625, 812.40 6.64
Q26 32 1, 406 565, 578 579, 209.02 2.41
Q26 34 1, 406 561, 356 583, 397.80 3.93
Q52 34 704 397, 761 392, 896.90 −1.22
Q26 36 1, 406 511, 154 536, 921.19 5.04
Q52 36 704 377, 816 374, 978.62 −0.75
Q26 38 1, 406 482, 202 507, 705.68 5.29
Q52 38 704 375, 542 373, 554.58 −0.53
Q26 40 1, 406 466, 190 491, 614.12 5.45
Q52 40 704 354, 247 351, 353.37 −0.82
Q26 42 1, 406 425, 101 447, 379.84 5.24
Q52 42 704 329, 417 327, 510.50 −0.58
Q26 44 1, 406 406, 187 429, 318.34 5.69
Q52 44 704 321, 173 316, 978.11 −1.31
Q26 46 1, 406 383, 123 391, 511.05 2.19
Q52 46 704 314, 163 316, 043.45 0.60
Q26 48 1, 406 367, 084 398, 411.46 8.53
Q52 48 704 300, 379 296, 947.31 −1.14

16

Table 7
JMT QN model validation, Amazon and Cineca

Query hi Cores Dataset [GB] Map tasks Reduce tasks T [ms] τ [ms] ϑ [%] Provider

R1 1 240 250 500 1 55, 410 50, 753 −8.40 Amazon
R3 1 240 250 750 1 76, 806 77, 260 0.60 Amazon
R1 1 60 500 287 300 378, 127 411, 940 8.94 Cineca
R3 1 100 500 757 793 401, 827 524, 759 30.59 Cineca
R3 1 120 750 1, 148 1, 009 661, 214 759, 230 14 Cineca
R3 1 80 1, 000 1, 560 1, 009 1, 019, 973 1, 053, 829 −1.00 Cineca
R1 3 20 250 144 151 1, 002, 160 1, 038, 951 3.67 Cineca
R1 5 20 250 144 151 1, 736, 949 1, 215, 490 −30.02 Cineca
R1 5 40 250 144 151 636, 694 660, 241 3.70 Cineca

	Introduction
	D-SPACE4Cloud Architecture
	Problem Statement
	Problem Formulation and Solution
	Optimization Model
	Identifying an Initial Solution
	The Optimization Algorithm

	Experimental Analysis
	Experimental Setup and Design of Experiments
	Simulation Models Validation
	Scenario-based Experiments
	Solution Validation in a Real Cluster Setting
	Scalability Analysis

	Related Work
	Conclusions
	References
	Biographies
	Eugenio Gianniti
	Michele Ciavotta
	Danilo Ardagna

	Appendix

