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Abstract: Cathodic protection (CP), in combination with an insulating coating, is a preventative 

system to control corrosion of buried carbon steel pipes. The corrosion protection of coating defects 

is achieved by means of a cathodic polarization below the protection potential, namely −0.85 V vs. 

CSE (CSE, copper-copper sulfate reference electrode) for carbon steel in aerated soil. The presence 

of alternating current (AC) interference, induced by high-voltage power lines (HVPL) or AC-

electrified railways, may represent a corrosion threat for coated carbon steel structures, although 

the potential protection criterion is matched. Nowadays, the protection criteria in the presence of 

AC, as well as AC corrosion mechanisms in CP condition, are still controversial and discussed. This 

paper deals with a narrative literature review, which includes selected journal articles, conference 

proceedings and grey literature, on the assessment, acceptable criteria and corrosion mechanism of 

carbon steel structures in CP condition with AC interference. The study shows that the assessment 

of AC corrosion likelihood should be based on the measurement of AC and DC (direct current) 

related parameters, namely AC voltage, AC and DC densities and potential measurements. 

Threshold values of the mentioned parameters are discussed. Overprotection (EIR-free < −1.2 V vs. 

CSE) is the most dangerous condition in the presence of AC: the combination of strong alkalization 

close to the coating defect due to the high CP current density and the action of AC interference 

provokes localized corrosion of carbon steel. 

Keywords: alternating current; cathodic protection; carbon steel; pipeline; AC interference 

corrosion; AC corrosion assessment; protection criteria; corrosion mechanism 

 

1. Introduction 

Cathodic protection (CP), in combination with an insulating coating, is a well-known 

electrochemical technique that reduces (or halts) the external corrosion rate of buried carbon steel 

pipes used to transport liquid or gas. In CP condition, the corrosion rate is reduced below 0.01 mm·a−1, 

which is the maximum acceptable value fixed by CP standards [1,2]. Carbon steel in aerated soil, i.e., 

where oxygen reduction is the controlling cathodic process, operates in CP condition if the IR-free 

potential (excluding the ohmic drop contribution in soil) is more negative than −0.85 V vs. CSE 

(Cu/CuSO4 reference electrode, +0.318 V vs. standard hydrogen electrode, SHE) [1,2]. 

The presence of alternating current (AC) interference on buried pipelines in free corrosion or 

under CP condition can lead to severe localized corrosion through the pipe thickness. In the case of 

AC interference, the sources of electrical disturbance are the high-voltage power lines (HVPL) or the 

AC-electrified railways (fed by a high voltage line at 50 or 60 Hz), the receptor is the pipeline that 

runs parallel to the interference source and the coupling mechanism occurs mainly via a resistive (or 

conductive) and inductive (or electromagnetic) mechanism [3]. 
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The resistive coupling is primarily a concern when there is a fault or an unbalanced condition 

on the power line and large currents and voltages are conveyed to the earth during the HVPL short 

circuit. Although the interference time is short, it represents a hazard to the operators and to the 

buried pipe corresponding to the coating defects. The inductive coupling occurs when AC flowing in 

phase wires produces an electromagnetic field inducing alternating currents and voltages to the 

pipeline, which shares the way with the power line. The induced AC voltage depends on the length 

of parallelism with the power line, and it is inversely proportional to the distance between the HVPL 

and the pipeline; the AC density, i.e., the current for unit surface, is a function of AC voltage, the 

coating defect dimension and soil resistivity. 

Nowadays, there is agreement that corrosion induced by AC interference can occur even on 

carbon steel structures that fully respect the CP criterion and that AC corrosion is less than that 

provoked by the equivalent direct current, i.e., considering the same current density. In the presence 

of AC interference, the CP criteria reported by international standards [1,2] are not sufficient to prove 

that steel is protected from corrosion. In the past 50 years, great effort has been made in order to 

propose criteria to assess AC corrosion likelihood and to understand the mechanism by which AC 

causes corrosion. This effort brought about the international standard ISO 18086 (Corrosion of metals 

and alloys—Determination of AC corrosion—Protection criteria) [4] that replaced in 2017 the EN 

15280 standard (Evaluation of a.c. corrosion likelihood of buried pipelines applicable to cathodically 

protected pipelines). The ISO 18086 standard provides monitoring procedures, mitigation measures 

and information to deal with long-term AC interference. Nevertheless, some aspects related to the 

phenomenon were not fully understood and the protection criteria as well as the corrosion 

mechanism have been debated for a long time. 

This paper deals with a narrative literature review, which includes a deep analysis of the AC 

corrosion phenomenon, in particular the assessment of AC interference, and the evaluation of AC 

corrosion likelihood and interference levels, the corrosion mechanism. 

2. Assessment of AC Corrosion Likelihood 

The assessment of AC interference likelihood on a buried pipeline should include several 

parameters related to both the interference source and the interfered structure. During the design 

phase, the evaluation of AC interference on a buried structure can be carried out by 

mathematical/electrical modelling, e.g., according to EN 50443 (Effects of electromagnetic 

interference on pipelines caused by high voltage AC electric traction systems and/or high voltage AC 

power supply systems) [5] or IEEE Guide for Safety in AC Substation Grounding [6]. These 

approaches aim to evaluate the tolerable AC voltage based on parameters, such as the electrical 

configuration of the AC power line, the distance between the AC source (power line or traction 

system) and the pipeline, the insulation properties of the coating as well as soil resistivity. In the case 

of existing structures, field measurements can be used as an alternative to calculation. According to 

calculations or field measurements, relevant mitigation measures should be installed to decrease the 

AC corrosion probability. Nevertheless, not only electrical parameters are involved in the AC 

corrosion mechanism and an electrochemical approach is required for an understanding of the 

mechanism, in particular in the presence of cathodic protection. 

According to ISO 18086 [4], the assessment of AC corrosion should be performed by evaluation 

of some or all of the following parameters: 

 AC voltage, VAC; 

 AC density, iAC; 

 DC density, iDC; 

 AC/DC densities ratio, iAC/iDC; 

 DC potential (IR-free potential, EIR-free, and ON potential, EON); 

 Soil resistivity, ρ. 
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2.1. AC Voltage 

The measurement of the AC voltage, VAC, on a pipeline is carried out with respect to a reference 

electrode located at remote position, i.e., where the AC voltage gradient does not change and is close 

to zero. The AC voltage gradient is measured by means of two-reference electrodes spaced 1 to 5 m 

transverse to the pipeline. 

According to [4], acceptable AC voltages on the pipeline in CP condition are lower than 15 V 

r.m.s. measured as an average over a representative time (e.g., 24 h). According to NACE SP0177 

(Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion 

Control Systems) [7], the maximum AC voltage is set at 15 V with respect to local earth 

(approximately 1 m); this threshold is mostly driven by safety considerations (shock hazard). 

In a recent work, Tang et al. [8] investigate the effects of several parameters on the electric field 

distribution of AC interference, such as the unbalanced current magnitude, soil and coating 

resistivity and the distance between the power line and the pipeline. By means of numerical 

simulation, the authors conclude that the reference electrode should be placed farther from the 

pipeline route with the increase of mitigation wire length, soil resistivity and the distance between 

the power line and the structure; conversely, the earth remote position is closer to the pipe by 

increasing coating resistivity if mitigation is applied [8]. 

2.2. AC Density 

AC and DC densities on a coating defect control both the AC interference and the CP level, 

respectively. Contrary to the AC voltage measurement, the AC density, iAC, cannot be readily 

determined. The numerical approach considers the calculation of AC density from the AC voltage, 

the soil resistance, ρ, and the diameter, ϕ, of a circular coating defect, according to the following 

equation, as reported in [8–12]: 

��� =
8 ⋅ ���
� ⋅ � ⋅ �

 (1) 

Considering a maximum AC voltage of 15 V measured on a circular coating defect of 1 cm2 and 

a medium soil resistivity of 100 Ω·m, the expected AC density threshold is about 30 A·m−2. 

Nevertheless, this calculation is generally not possible since the coating defect area is not known. 

Moreover, the application of CP can significantly change the electrolyte composition in proximity to 

the coating defect and consequently the local soil resistivity. The formula is valid when the coating 

defect size is larger than the coating thickness, although rigorous calculations are available [13]. The 

current density can only be estimated by means of coupons or probes. According to ISO 18086 [4], 

the measurement of AC density has to be carried out on a 1 cm2 coupon surface area connected to the 

structure. 

The definition of a critical threshold of AC density over which AC corrosion could occur is still 

controversial and large data variability is found. Compared to DC interference corrosion, AC 

corrosion of carbon steel is lower considering the same current density. Since the sixties of the last 

century [14,15], the effect of AC density was determined in terms of “equivalent DC density”, defined 

as the percent ratio of the weight loss caused by AC to the expected weight loss due to the same DC 

density. The values of equivalent DC density are in the range between 0.1% and 0.3% with AC density 

up to 600 A·m−2 [14,15]. Using laboratory tests on carbon steel in soil-simulating solution (1200 

mg·dm−3 sulphates, 200 mg·dm−3 chlorides), Goidanich et al. [16] reported that AC corrosion efficiency 

(defined similarly to the “equivalent DC density”) is lower than 1% when AC density ranges from 50 

to 500 A·m−2, but it increases up to 4% for AC density lower than 50 A·m−2 (Figure 1). In 2010, Fu and 

Cheng [17] reported comparable results.  

Gummow et al. [18] stated that the corrosion rate increases with increased AC density greater 

than 20 A·m−2 and becomes significant at AC densities greater than 100 A·m−2, regardless of the 

magnitude of CP density. Based on laboratory tests, Pourbaix et al. [19] reported that AC corrosion 

is associated with the IR-free potential oscillation during interference but it is not related to a critical 

value of the AC density. As reported by Yunovich and Thompson [20], steel corrosion can 
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significantly increase in the presence of 20 A·m−2 AC density: the measured corrosion rate at 20 A·m−2 

AC density is nearly two times higher than that of the control specimen in free corrosion condition 

and decreases with the application of CP. This last consideration introduces the need of the additional 

consideration of the cathodic DC density. 

 
(a) (b) 

Figure 1. Weight loss tests on carbon steel in free corrosion condition exposed to a soil-simulating 

solution: (a) corrosion rates vs. AC density (iAC) and (b) AC corrosion efficiency vs. AC density (iAC) 

as reported by Goidanich et al. [16]. 

2.3. AC/DC Current Density Ratio 

For carbon steel structures under CP conditions, AC corrosion likelihood should be evaluated 

also considering the level of DC polarization, by means of the IR-free potential or DC density. The 

latter can be measured by means of a corrosion coupon or probes with a known surface area, e.g., 1 

cm2. In order to assess AC corrosion conditions, it is better to refer to the AC density-DC density ratio 

(iAC/iDC), which is dimensionless. Nevertheless, use of only the iAC/iDC ratio could be misleading in the 

assessment of AC corrosion likelihood, i.e., different AC corrosion conditions can be represented by 

the same iAC/iDC ratio. For instance, an iAC/iDC ratio equals to 10 results from an interference condition 

of 30 A·m−2 AC density in the presence of 3 A·m−2 DC density or 3 A·m−2 AC density with 0.3 A·m−2 

DC density. Although the ratio between the current densities is equal in the two conditions, they 

represent a different corrosion risk, i.e., 3 A·m−2 AC density is not recognized as a threat, dissimilarly 

from 30 A·m−2. As discussed in Paragraph 3, several authors [21–27] investigated the effect of iAC/iDC 

ratio on corrosion rate, proposing different threshold limits. ISO 18086 standard [4] reports that AC 

corrosion can be mitigated by maintaining the iAC/iDC ratio less than 3 over a representative time (e.g., 

24 h) and it is valid for DC density greater than 10 A·m−2 (severe over-protection condition) and AC 

density over 30 A·m−2. 

2.4. AC Frequency 

There is full agreement that the corrosion rate decreases by increasing the frequency of the AC 

signal. The effect of frequency has been investigated on mild steel, nickel and copper-nickel alloys 

[28–35]. AC can cause severe corrosion at the industrial frequencies of 50 or 60 Hz, while the effect 

decreases at frequencies higher than 150 Hz. 

Fernandes et al. [28] and the other authors [29–32] proposed a kinetic interpretation: by 

increasing the frequency, the time between the anodic and cathodic half-cycles becomes shorter and 

the metallic ions dissolved during the anodic period would be available for the subsequent deposition 

in the cathodic cycle. 

Guo et al. [34,35] reported that at an AC density of 50 A·m−2, the corrosion rate of X60 steel 

decreases from 1.2 mm·a−1 at 10 Hz frequency to about 0.6 mm·a−1 at 50 Hz. In parallel, the free 
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corrosion potential increases to about 50 mV. Yunovich and Thompson [36] proposed an electrical 

circuit in order to simulate the behavior of a steel specimen exposed to soil varying the frequency of 

the AC signal. The model shows that the corrosion current in the circuit decreases with increasing 

frequency and is approximately 0.3% of the total current at 60 Hz frequency, in agreement with the 

results using weight loss tests, as reported in Figure 1. 

2.5. Soil Resistivity and Chemical Composition 

According to Equation (1), the AC density corresponding to a coating defect depends on the 

alternating voltage and on the spread resistance, which is the ohmic resistance through a coating 

defect (or a corrosion coupon) to earth. The ISO 18086 standard [4] reports an empirical relation 

between soil resistivity and AC corrosion risk: 

 ρ < 25 Ω·m: very high risk; 

 25 Ω·m < ρ < 100 Ω·m: high risk; 

 100 Ω·m < ρ < 300 Ω·m: medium risk; 

 ρ > 300 Ω·m: low risk. 

Soil resistivity close to a coating defect is significantly affected by the electrochemical reactions 

at the metal-to-electrolyte interface, due to the application of the CP current. In CP condition, oxygen 

reduction (O2 + 2H2O + 4e− → 4OH−) and, at lower potential, hydrogen evolution (2H+ + 2e− → H2), 

cause a growth of alkalinity at the metal surface. The pH value can increase over 10 and up to 12–13 

at very high cathodic current densities. The local soil chemical composition can play a crucial role in 

the AC corrosion assessment, as documented in [27,37]. Earth-alkaline ions (as Ca2+ and Mg2+), moved 

towards the metal surface by the CP electric field, form slightly soluble hydroxides; the pH increase, 

shifting the carbonate-bicarbonate chemical equilibrium, favors the growth of a scale of calcium and 

magnesium carbonate that increases the spread resistance. Otherwise, alkaline cations (as Na+, K+ or 

Li+) form not-scaling hydroxides. Büchler et al. [37] reported a reduction of AC density due to the 

growth of chalk layers on the surface in the presence of calcium ions. 

Recently, Xiao et al. [27] reported that the spread resistance of a X70 steel specimen at constant 

CP potential and different AC densities is higher in the presence of calcium and magnesium ions. 

Moreover, the corrosion rate of the specimens exposed to higher content of Na+ was greater than that 

in the presence of earth-alkaline ions at the same potential and AC density (100 A·m−2, 300 A·m−2). 

2.6. Effect on DC Potential (Free Corrosion Condition) 

2.6.1. Negative Shift of Potential 

There is general agreement that the free corrosion potential of carbon steel, i.e., without cathodic 

protection, decreases as the AC density increases. This has been documented from the sixties of the 

last century. Bolzoni et al. [38] reported laboratory tests on the influence of AC interference on carbon 

steel corrosion in free corrosion condition in different environments (sulfate and chloride aqueous 

solutions, with or without oxygen, simulating soil conditions and seawater). AC was overlapped to 

the specimens ranging from 10 to 6000 A·m−2. The free corrosion potential of carbon steel in chloride 

and sulfate solutions decreases as AC density increases. At AC densities below 100 A·m−2, the DC 

potential variation was low (about 50 mV); above 100 A·m−2, the effect was higher (100–200 mV). In 

chloride solutions, the DC potential variation is less significant at high AC density (higher than 1000 

A·m−2). Results were confirmed in [39]: except for carbon steel in soil-simulating solution (1200 ppm 

SO42− (Na2SO4) + 200 ppm Cl− (CaCl2·2H2O) [16]), the corrosion potential of galvanized steel, copper 

and carbon steel in different environmental conditions decreases with increasing AC density. 

Authors investigated the effects of AC density on anodic and cathodic overvoltages: AC has a 

significant effect on the kinetics parameters, with a decrease of overvoltages and increase of exchange 

current density of anodic and cathodic processes [39,40]. Nevertheless, in these papers some 

inconsistencies were observed between the experimental tests and the results expected from 

mathematical models based on the asymmetry of anodic and cathodic reactions. Li et al. [41] and 

Wang et al. [42] have measured a lowering of free corrosion potential on X70 and X80 carbon steel 
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samples at various AC densities in simulated soil solution and 3.5% sodium chloride solution. 

Potential shift in both environments is about 0.2 V at 300 A·m−2 AC density. Moreover, authors 

investigated the kinetic effect of AC interference on anodic and cathodic overvoltages, measuring a 

variation of anodic and cathodic Tafel slope and their ratio in the presence of AC. Zhang et al. [43] 

proposed a nonlinear model (an electrical equivalent model considering the anodic and cathodic 

reactions under activation control) for the investigation of AC interference effect on corrosion 

potential and corrosion rate. Results show that the expected variation of the free corrosion potential 

depends on the AC peak potential, as expected, and on the ratio of the anodic and cathodic Tafel 

slope (r = βa/βc). When r = 1 (symmetry of anodic and cathodic overvoltages), no DC potential 

variations are predicted by the model. For r > 1, a positive (anodic) potential shift is expected, while 

for r < 1 the DC potential lowers as AC peak potential increases. The latter covers the electrochemical 

condition of active carbon steel in soil or waters where the cathodic processes (oxygen reduction 

and/or hydrogen evolution) have a higher Tafel slope than that of steel dissolution. These data are 

consistent with the observations made in [44] and in previous works [45–47].  

2.6.2. Positive Shift of Potential 

In 2012, He et al. [24] report that the average corrosion potential of X65 steel in loam soil moves 

to more positive values by increasing AC density from 5 to 150 A·m−2. At 150 A·m−2, a positive shift 

of about 200 mV has been measured with respect to the condition without interference. Xu et al. [48] 

examined the effect of AC (60 Hz frequency) on 16Mn steel potential in a simulated soil solution by 

means of real-time AC/DC signal acquisition. AC moves corrosion potential negatively at an AC 

density lower than 400 A·m−2, while at higher AC density, the DC potential variation with respect to 

the absence of AC interference is positive. In a recent work, Wu et al. [49] reported polarization curves 

of X70 steel tested at AC densities up to 100 A·m−2 in simulated seawater. The presence of AC has a 

strong effect on the polarization curves with a general shift toward higher current density and a 

positive (anodic) variation of the zero-current potential, i.e., the free corrosion potential. 

Nevertheless, as the AC density was raised from 10 to 100 A·m−2, the corrosion current density and 

the free corrosion potential roughly remained constant. 

2.7. Effect on DC Potential (Cathodic Protection Condition) 

The potential measurement is affected by AC interference, even if CP is applied. Several authors 

have investigated in the last decades the effect of AC on IR-free potential. Bolzoni et al. [38] 

investigated the influence of AC interference on carbon steel in CP condition in different 

environments (sulfate and chloride aqueous solutions, with or without oxygen). In the presence of 

cathodic polarization, the potential trend depends on DC density: at 0.1 A·m−2, the DC potential is 

lowered after AC application; conversely, at 1 and 10 A·m−2 DC density, the DC potential increases 

as the AC density increases. In 2008 [50], and later in 2010 [23], Ormellese et al. reported the 

measurements of IR-free potential of carbon steel specimens exposed for about four months to a soil-

simulating solution. DC and AC density were in the range 0.1–10 and 10–500 A·m−2, respectively. The 

increment of potential is not significant at 10 A·m−2 AC, while it is about 0.1 and 0.2 V at 100 and 200 

A·m−2, respectively. The effect of AC density on IR-free potential is more pronounced at high DC 

density [23]. 

Xu et al. [51,52] investigated the effects of AC on the CP potential reading of a 16Mn pipeline 

steel in a simulated soil solution. At −0.85 V vs. SCE (maintained in a galvanostatic way, SCE—

saturated calomel electrode), AC moves DC potential negatively. Furthermore, the higher the AC 

density, the more negative the DC potential is. Conversely at −1 V vs. SCE, AC shifts potential in the 

positive direction. Similar observations were reported by Kuang et al. [53,54]: the DC potential of X65 

steel in near-neutral pH bicarbonate solution is shifted negatively by AC at −0.85 V vs. CSE, but 

positively shifted by AC under the CP of −1 V vs. CSE (Figure 2). Nevertheless, differently to what 

can be expected, the potential variation reported is higher at smaller AC density (Figure 2b). When 

the applied CP level was −0.925 V vs. CSE (data not shown), the DC potential becomes more positive 

at low AC densities of 10 and 50 A·m−2, while it decreases with 100 A·m−2 AC density. Recently, Wang 
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et al. [55] reported similar conclusions for X70 steel in near-neutral bicarbonate solution: at −0.775 V 

vs. SCE, the DC potential is shifted negatively consequently to the application of AC, while at −0.95 

V vs. SCE and −1.2 V vs. SCE, an increase of DC potential is measured (Figure 3). In this case, the 

potential variation is proportional to AC density. 

Generally, it can be concluded that there is good agreement on the increase of DC potential in 

the presence of AC, although a negative shift is measured at small CP current density. 

(a) (b) 

Figure 2. Effect of AC density on DC potential of X65 steel in near-neutral pH bicarbonate solution in 

cathodic protection condition: (a) −0.85 V vs. CSE, (b) −1 V vs. CSE [54]. 

(a) (b) 

Figure 3. Effect of AC density on DC potential of X70 steel in near-neutral pH bicarbonate solution in 

cathodic protection condition: (a) −0.775 V vs. saturated calomel electrode (SCE) (−0.850 V vs. CSE) 

(b) −0.95 V vs. SCE (−1.02 V vs. CSE). 1 mA·cm−2 corresponds to 10 A·m−2 [55]. 

3. Acceptable AC Interference Levels—Protection Criteria 

There is large agreement that corrosion can occur on AC interfered carbon steel structures that 

fully match the CP potential criterion (E < Eprot) defined by ISO 15589-1 [2]. Much effort has been made 

in the last decades in order to define acceptable AC interference levels for carbon steel under CP 

condition. Kajiyama et al. [56–59] proposed a CP criterion based on the ratio between DC and AC 

densities, measured by means of corrosion coupons. The criterion can be summarized as follows 

(Figure 4): 

 if 0.1 A·m−2 ≤ iDC < 1 A·m−2, then iAC/iDC < 25, 

 if 1 A·m−2 ≤ iDC ≤ 20 A·m−2, then iAC < 70 A·m−2. 

Accordingly, the maximum AC density depends on the CP level: at higher DC densities (i.e., 

more negative potential), a higher AC density can be tolerated. Even if the criterion has been applied 

successfully to some case studied [58], some authors recognized a greater AC corrosion risk at higher 
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DC density differently to this criterion, as discussed later. Moreover, this criterion does not consider 

directly the value of the measured potential.  

In 2012, He et al. [24] reported a similar approach based on current densities: the AC density 

threshold increases linearly with CP current density. The criterion (Figure 5) suggests there is not 

corrosion risk if iAC < 10 + 100·iDC (with iDC ≥ 0.01 A·m−2). Comparing the two criteria, the latter (Figure 

5) is less conservative at a DC density lower than 1 A·m−2 and does not take into account AC corrosion 

at greater DC densities. For instance, at 0.1 A·m−2 DC density, the maximum allowed AC density is 

2.5 and 20 A·m−2, considering the corrosion criterion of Figures 4 and 5, respectively. 

 

Figure 4. Acceptable AC interference levels based on current densities criterion according to Kajiyama 

et al. (adapted from [56]). 

 

Figure 5. Acceptable AC interference levels based on current densities criterion according to He et al. 

(adapted from [24]). 

The effect of potential has been investigated by Ormellese et al. in [50] and later in [23,26]. The 

authors propose corrosion maps based on corrosion rate data evaluated using a weight loss test of 

carbon steel specimens exposed to a soil simulation environment, with varying AC interference and 

CP levels. Two AC corrosion risk regions are defined, low and high, for corrosion rates lower or 

greater than 10 μm·a−1, respectively. Corrosion risk increases by increasing the iAC/iDC ratio (Figure 

6a): corrosion protection is achieved up to a maximum value of the iAC/iDC ratio, which decreases as 

the IR-free potential becomes more negative. Differently from the criteria discussed previously, in 

overprotection condition a few A·m−2 of AC density (ranging from 5 to 20 A·m−2, depending on 

potential) provokes corrosion of overprotected carbon steel. The authors proposed the following 

criterion (Figure 6b):  

 if 0.1 A·m−2 ≤ iDC < 1 A·m−2, then iAC < 30 A·m−2, 

 if 1 A·m−2 ≤ iDC ≤ 10 A·m−2, then iAC < 10 A·m−2. 

The −0.85 V vs. CSE criterion is not always safe in the presence of AC interference; in 

overprotection condition (EIR-free < −1.2 V vs. CSE), severe AC corrosion could occur. 

Fu et al. [60] proposed a criterion based on both potential and current densities: potentials more 

positive than −0.95 V vs. CSE are considered not safe in the presence of AC. The maximum acceptable 
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AC density increases as the potential becomes more negative: at −0.95 V vs. CSE, the maximum AC 

density is 20 A·m−2, while at −1.05 V vs. CSE, the threshold increases up to 100 A·m−2. 

  
(a) (b) 

Figure 6. AC corrosion protection criterion as proposed by Ormellese et al.: (a) AC corrosion risk 

diagram based on IR-free potential and current densities ratio, (b) protection criterion based on AC 

and DC (i.e., cathodic protection—CP) current densities. 

Büchler in 2012 [61] and previously in 2009 [22] investigated new protection criteria based on 

laboratory and field investigations. For current density average values measured by means of on-site 

coupons, one of the criteria below must be met (Figure 7): 

 iAC < 30 A·m−2; 

 iDC < 1 A·m−2; 

 iAC/iDC < 3. 

Nevertheless, the author [61] stated that the measurement with coupons is fraught with 

problems, since the obtained results are affected by coupon geometry and local soil conditions. The 

use of ON potential, EON, and AC voltage (VAC, indicated by the authors as UAC) is therefore suggested 

(Figure 8). For ON potential, one of the following criteria must be met: 

 average VAC < 15 V and average EON more positive than −1.2 V vs. CSE; 

 VAC < 3·(|EON| − 1.2) where EON is in V vs. CSE and EON < −1.2 V vs. CSE. 

 

Figure 7. Protection criterion based on AC and DC densities as proposed by Büchler [61]. The region 

confined by the dotted lines corresponds to very severe AC corrosion and must be avoided. 
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Figure 8. Protection criterion based on AC voltage and ON potential, as proposed by Büchler [61]. 

The region below the dotted lines corresponds to acceptable AC interference conditions. 

In 2015, these efforts brought to the AC corrosion protection criteria of the ISO 18086 standard 

[4] for buried carbon steel in CP condition: 

 As a first step, the AC voltage on the pipeline should be decreased below 15 V r.m.s. The AC 

voltage is measured as an average over a representative time (e.g., 24 h) with respect to a 

reference electrode located in remote position; 

 As a second step, AC corrosion mitigation is achieved by matching the CP protection potentials 

defined in ISO 15589-1 [2] and 

— maintaining the AC density (iAC) lower than 30 A·m−2 on a 1 cm2 coupon or probe over a 

representative time (e.g., 24 h), or 

— maintaining the average cathodic current density lower than 1 A·m−2 on a 1 cm2 coupon or 

probe over a representative time (e.g., 24 h), if AC density is higher than 30 A·m−2, or 

— maintaining the ratio between AC and DC densities (iAC/iDC) less than 3 over a representative 

time (e.g., 24 h). 

In Annex E (informative), the standard reports other criteria that have been used in the presence 

of AC. These criteria have been derived from Büchler’s work [61] and are based on AC voltage, ON 

potential and current densities, as discussed. The protection criteria reported in the ISO 18086 

standard are shown in Figure 9. 

  
(a) (b) 

Figure 9. Graphical representation of the AC protection criteria reported on ISO 18086 [4]: (a) iAC vs. 

iDC, (b) VAC vs. EON. 
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In 2018, Junker et al. [62] reported results of laboratory and field tests varying AC and DC levels 

and soil chemistry. Both laboratory and field data confirmed very high AC corrosion rates under 

excessive CP (> 1 A·m−2) and AC interference higher than 30 A·m−2. Moreover, they recognized in the 

spread resistance of a coating defect a highly dynamic parameter under AC and DC influence. The 

investigations illustrate that the chemical environment alters the AC and DC density limits for AC 

corrosion, however the present limits of ISO 18086 constitute a safe strategy in most environments. 

Figure 10 reports the AC corrosion rate measured on corrosion coupons with varying AC and 

DC density, as reported by Nielsen [63]. Data are overlapped to the AC protection criteria reported 

in ISO 18086. 

 

Figure 10. AC corrosion rate measured on corrosion coupons as reported by Nielsen [63]. Data are 

compared with the AC protection criteria reported in ISO 18086. 

It can be concluded that overprotection (namely EIR-free lowers than −1.2 V vs. CSE [2] or iDC > 1 

A·m−2) is the most dangerous condition in the presence of AC interference. At “high” CP levels, the 

maximum tolerable AC density is 30 A·m−2. Below 1 A·m−2 DC density, the AC corrosion likelihood 

decreases. Nevertheless, some doubts are revealed regarding the inexistence of an AC density 

threshold at “low” CP condition (iDC < 1 A·m−2). 

4. AC Corrosion Mechanism 

Numerous theories and models have been proposed on the AC corrosion mechanism of carbon 

steel. Some models referring to carbon steel structures in free corrosion conditions as well as in the 

presence of CP are discussed hereafter. 

4.1. Effect of Anodic and Cathodic AC Half-Wave on Metal Dissolution 

Büchler et al. [22,61] proposed a corrosion mechanism based on thermodynamic and kinetic 

considerations on the reactions involved during AC interference on cathodically protected carbon 

steel. When an AC voltage is present, current will flow through the coating defects exposed to soil. If 

the pH value is sufficiently high (above 10, as in CP condition), during the anodic half-cycle, steel 

oxidation occurs, promoting the formation of a passive film. During the cathodic half-wave, the 

passive film is electrochemically destroyed and converted in porous rust. In the successive anodic 

cycle, the passive film is reformed under the non-protective rust layer. Moreover, the Fe2+ present in 

the rust layer is oxidized to Fe3+ (Fe2+ → Fe3+ + e−). In the subsequent cathodic cycle, the dissolution of 

the passive film will increase the volume of porous rust. Hence, every AC cycle results in the 

oxidation of the metal with a significant metal loss in the long term (Figure 11). A simplified 

description of this mechanism is reported also in the ISO 18086 standard [4]. 
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Figure 11. Schematic representation of AC corrosion mechanism according to Büchler et al. [61]. 

4.2. The Alkalization Mechanism and the Effect of Spread Resistance 

Nielsen et al. [64–66] proposed the “alkalization model” of AC-induced corrosion of carbon steel 

under CP condition. The model is based on the combination of two effects: (1) the alkalization of the 

metal-to-electrolyte interface of overprotected carbon steel, and (2) potential oscillations across the 

immunity, the passive and the high-pH corrosion domain of the iron potential-pH diagram. 

As known, the presence of a cathodic current on the metal surface under CP condition is 

beneficial because it promotes the reduction (or zeroing) of the corrosion rate and the increase of 

alkalinity due to the accumulation of hydroxyl ions (OH−) close to coating defect. The pH increase is 

proportional to the cathodic current density and depends on the diffusion and electrical migration of 

ions towards and from the metal surface. In overprotection condition, namely IR-free potential more 

negative than −1.2 V vs. CSE, the high cathodic current density (in the order of a few A·m−2) can 

promote a significant increase of pH up to 13 or higher. According to the Pourbaix diagram, at 

elevated pH the potential oscillations caused by AC interference could lead to periodic entry in the 

high-pH corrosion region with formation of dissolved HFeO2− ions. The authors report the presence 

of an “incubation time” defined as the period to reach a critical pH (close to 14) at the metal-to-soil 

interface, with a significant lowering of the spread resistance and increase of AC density due to 

depolarization effects of the AC (Figure 12). Then, potential oscillations could cause corrosion due to 

different time constants associated to iron dissolution (fast) and the formation of a passive film 

(slower). Accordingly, AC corrosion of carbon steel in CP condition cannot be reduced by adding a 

surplus of cathodic current, as in the case of DC corrosion phenomena, but by avoiding high DC 

densities and the overprotection condition, in agreement with the protection criteria of the ISO 

standard [4].  

 

Figure 12. Schematic representation of the AC corrosion mechanism of carbon steel under CP 

condition, as proposed by Nielsen et al. [63–66]. 
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This “vicious circle” is supported by the data shown in Figure 13a–f [63], which illustrates 

experimental results in a laboratory soil box environment in purified quartz sand. At a constant AC 

voltage (15 V), six different levels of CP (ON potential) were applied for some weeks to monitor the 

corrosion rate of an electrical resistance probe and various electrical parameters. At a fixed AC 

voltage, the corrosion rate depends strongly on the CP level (ON potential), and therefore, AC voltage 

alone cannot be considered a valid indicator of AC corrosion risk. Despite the constant AC voltage, 

the AC density varies from about 100 A·m−2 at low CP levels up to 500 A·m−2 at higher CP levels. 

Figure 13e shows corrosion rate as a function of cathodic current density: the corrosion rate increases 

with increasing CP current density, in agreement with the proposed mechanism. At the same time, 

the spread resistance is strongly influenced by the DC density with the consequent increase of AC 

density and corrosion rate (Figure 13f). 

The crucial role of soil chemical composition, pH and spread resistance was carefully 

investigated by Junker et al. [62,67–69]. The spread resistance is identified as a key parameter, 

controlling the current densities, and is highly influenced by the formation of calcareous deposits or 

corrosion products. At high CP density, AC corrosion of an ER probe element is associated with 

strong alkalization of the electrolyte and consequently dense calcareous deposit formation. The 

calcareous deposit dramatically increases the spread resistance and reduces the AC and DC densities. 

Corrosion decreases, but only as long as the calcareous deposit is stable and fully covering the surface. 

Due to brittle fracture or a ‘flake of’ mechanism of the scale (probably provoked by hydrogen 

evolution at low potentials), the spread resistance suddenly decreases, causing an increase of current 

densities and AC corrosion. The cathodic reactions on the re-exposed probe surface will restart the 

alkalization and precipitation of calcareous deposits and with time (days) the corrosion stops again. 

This causes a cyclic variation of spread resistance, current densities and corrosion rate. The detailed 

chemical investigation of stone hard soil formed on cathodically protected pipeline under AC 

interference is reported in [68]. 

 

Figure 13. Example of corrosion rate vs. various electrical parameters, as reported by Nielsen [63]. 
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The effect of spread resistance on AC corrosion has been also documented by Nielsen and Cohn 

[70] with the help of an electrical equivalent circuit analysis that represents the impedances existing 

between the pipe and remote earth. AC and DC sources impose a DC and AC voltage on the pipe: 

the simulated AC source is the HVTL (High Voltage Transmission Line), whereas the DC source 

represents the CP system. The authors consider static and dynamic elements. Static elements, namely 

spread resistance and charge transfer resistance, are defined as elements where impedance is 

frequency independent. Conversely, dynamic elements are frequency dependent: these include the 

double layer capacitance and diffusion elements. Because of the low impedance of the capacitance, 

the spread resistance is the dominant impedance element at 50–60 Hz frequency and plays a key role 

in controlling the AC corrosion process. 

4.3. Effect of AC on Anodic and Cathodic Overvoltages 

The increase of corrosion rate in the presence of AC has been explained by some authors using 

the effect of AC on anodic and cathodic overvoltages [39,46,49,65,71,72]. Goidanich et al. [39] 

investigated by means of laboratory tests the influence of AC on kinetic characteristics of carbon steel, 

galvanized steel, copper and zinc under different experimental conditions. Results showed that AC 

has a significant influence on kinetic parameters, such as Tafel slope and exchange current density, 

and on corrosion and equilibrium potential. The authors proposed a “mixed” corrosion mechanism, 

with a general decrease of overvoltages and increase of exchange current density in the presence of 

AC. This effect could be related to the local rise in temperature, associated with high AC densities, as 

reported in [16]. In a recent work, Wu et al. [49] reported polarization curves of X70 steel tested with 

varying AC densities (up to 100 A·m−2) in simulated seawater (Figure 14). AC shifts toward higher 

current density in the polarization curves, promoting both the anodic and cathodic processes. 

 

Figure 14. Polarization curves on X70 steel tested at various AC densities in simulated seawater [49]. 

As discussed previously, some authors [43–47] proposed theoretical models based on the 

fundamental thermodynamic and kinetic laws of corrosion in order to investigate the effect of AC 

interference on DC potential and corrosion rate. Accordingly, the sensitivity of the corroding system 

is influenced by the ratio of the anodic-to-cathodic Tafel slope (r = βa/βc). The effect of r on DC 

potential variation has already been discussed in Section 2.6. Considering a corrosion system under 

activation control, Lalvani and Lin [45] proposed an analytical solution for the relationship between 

corrosion rate and voltage peak amplitude. In a revised model [46], the authors introduced the effect 

of the double layer capacity, without considering the resistance of the electrolyte. The model indicates 

that corrosion current increases with voltage peak for all values of r, while the potential shift depends 

strongly on the anodic and cathodic characteristic curves, i.e., on the ratio between the anodic and 

cathodic Tafel slope. Potentiodynamic polarization curves were obtained using the revised model; 



Materials 2020, 13, 2158 15 of 21 

 

nevertheless, these approaches predict that corrosion current and corrosion potential are 

independent of the frequency of the AC signal, differently to what is observed.  

The model was improved in 2008 [43,44]; the authors considered three elements in an electrical 

equivalent circuit of a metal subjected to an induced AC voltage: the polarization impedance, the 

double layer capacitance and the electrolyte resistance. The model shows that the corrosion current 

increases as the frequency of the AC signal decreases (Figure 15a), in agreement with experimental 

observations, and by increasing the peak potential. Moreover, the model shows that corrosion current 

increases by decreasing the DC corrosion potential. For instance, by decreasing the DC corrosion 

potential from −0.6 to −0.7 V vs. SCE at a peak potential of 1.25 V vs. SCE, the corrosion rate increases 

several orders of magnitude (Figure 15b); an increase of DC corrosion potential from −0.2 to 0.0 V 

does not result in a further reduction of corrosion current [43]. 

Recently, Ibrahim et al. [73–75] proposed a theoretical approach (Part 1, 2, 3) to evaluate the 

effect of double layer capacitance and electrolyte resistance on corrosion current density and potential 

shift. The authors stated that corrosion rate enhancement is due to the faradaic rectification as a 

consequence of the nonlinear current-potential relationship [73]. 

(a) (b) 

Figure 15. A nonlinear model for corrosion of metals subjected to AC corrosion [43]: (a) dimensionless 

corrosion current vs. frequency, (b) dimensionless corrosion current vs. peak potential and DC 

corrosion potential. Legend: Ecorr,DC = corrosion potential in the absence of AC (V vs. SCE); Ep = AC 

peak potential (V vs. SCE); r = βa/βc. 

4.4. Breakdown of the Passive Film and High-pH Corrosion 

Recently, Brenna et al. [76,77] proposed a two-step AC corrosion mechanism. In the first step, 

AC causes the weakening of the passive film formed under CP condition on carbon steel, due to 

electromechanical stresses. Electrostriction appears to be a convincing explanation of the passive film 

breakdown mechanism, because of the presence of high alternating electric field (in the order of 106 

V·cm−1 [78]) across the passive film [77]. The effect of AC on passive condition has been documented 

for carbon steel in alkaline solution or concrete and for stainless steel in neutral solution [79–85]: AC 

causes localized corrosion of passive metals with a decrease of corrosion resistance. Mechanical 

failure of the film can result from high electromechanical stresses (electrostriction pressure) generated 

by the presence of an electric field across the film and by the interfacial tension, which is not negligible 

as a result of the thin thickness of the oxide. 

After film breakdown, high-pH chemical corrosion (i.e., potential independent) occurs in the 

overprotection condition because of the high cathodic current density supplied to the metal. 

According to the Pourbaix diagram of iron, high-pH corrosion can occur with formation of di-hypo 

ferrite ions (HFeO2−). This mechanism can also explain the unexpected corrosion of the metal below 

its equilibrium potential. Indeed, CP electrons are involved in the cathodic process, which depends 

on the potential assumed by the metal. Thus, below the equilibrium potential, the applied cathodic 

current makes electrons available to the metal; therefore, no anodic electrochemical reactions can take 

place. Consequently, if no oxidation reaction takes place, such as iron ion production, this can occur 
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only through chemical corrosion, which is not potential dependent, or, in other words, is not 

influenced by the electrons made available otherwise [86]. 

5. AC Corrosion Monitoring 

According to ISO 18086 [4], AC voltage should be measured with respect to remote earth at test 

posts during the general and detailed assessment of CP effectiveness, as defined in ISO 15589-1. 

Additional measurements should be carried out at sites where AC corrosion risk is suspected, e.g., 

areas where the soil resistivity is low (lower than 25 Ω·m), areas with highest AC interference levels, 

areas where AC corrosion has previously taken place and areas where local DC polarization 

conditions can favor AC corrosion, as high levels of CP. 

The measurement of AC and DC densities should be carried out by means of coupons or probes 

installed in the same soil or backfill as the pipeline itself. The measurements with respect to the 

criteria defined in ISO 18086 have to be carried out on a 1 cm2 coupon surface area. Coupon or probe 

currents can be measured by the voltage drop across a series resistor; the value of the resistance 

should be sufficiently low to avoid disturbance of the system. For field measurements, a typical value 

is 10 Ω for a 1 cm2 coupon. 

For corrosion rate measurements, weight loss measurements, perforation measurements or 

electrical resistance (ER) measurements can be applied. Weight loss measurements require 

installation of pre-weighed coupons. After some time of operation (months to years), the coupon is 

excavated and weight loss rate is determined. The main drawback of this measurement is that the 

coupon provides no information until the excavation. Perforation measurements are made on special 

perforation probes: a signal is generated when the corrosion process has perforated the wall thickness 

of the coupon. In this case, information about the maximum (localized) corrosion depth is available 

without excavating the coupon; the primary disadvantage is that this information is not available 

until the coupon is perforated. Electrical resistance measurements require the installation of electrical 

resistance probes (ER probes). Corrosion is detected by the increase of the electrical resistance of the 

coupon when corrosion progressively decreases its thickness [64,87,88]. 

6. Conclusions 

This paper deals with a narrative literature review on AC corrosion assessment, protection 

criteria and corrosion mechanisms for buried carbon steel structures in CP condition. Main 

conclusions can be summarized as follows: 

 The assessment of AC corrosion likelihood should be based on the measurement of AC and DC 

related parameters. The AC interference level is evaluated by AC remote voltage and AC 

density, while the CP level is assessed by DC density and potential measurements; 

 AC and DC densities should be measured by means of a corrosion coupon (1 cm2 area) connected 

to the structure in CP condition; IR-free potential is considered more accurate than ON potential, 

because it does not contain the ohmic drop contribution in soil; 

 There is general agreement that the DC potential of carbon steel in CP condition increases in the 

presence of AC interference, although a negative shift is measured at small DC density. 

Conversely, in free corrosion condition, i.e., without CP, the potential decreases as the AC 

density increases; 

 Overprotection (namely EIR-free < −1.2 V vs. CSE) is the most dangerous condition in the presence 

of AC interference. At “high” CP levels, the maximum tolerable AC density is 30 A·m−2. Below 

1 A·m−2 DC density, the AC corrosion likelihood decreases. Nevertheless, some doubts are 

revealed regarding the inexistence of the criterion reported in the ISO 18086 standard of an AC 

density threshold at “low” CP condition (iDC < 1 A·m−2); 

 The higher AC corrosion likelihood at high CP levels could be explained by a corrosion 

mechanism that involves both the AC and DC levels: 

o At high DC density, a strong alkalization of the electrolyte close to the coating defect 

occurs with formation of a passive film and deposits (as a calcareous deposit) on carbon 



Materials 2020, 13, 2158 17 of 21 

 

steel. Soil chemical composition, pH and spread resistance at the coating defects seem 

to have a crucial role, controlling the local AC and DC densities; 

o AC interference provokes a weakening of the passive condition due to an effect on 

anodic and cathodic overvoltages; moreover, the scale formed in CP condition is not 

stable in the presence of AC due to potential oscillations that could break the protective 

layer; 

o High-pH corrosion occurs with localized corrosion attacks; chemical corrosion (i.e., 

potential independent) with formation of di-hypo ferrite ions (HFeO2−) is a possible 

explanation for the occurrence of corrosion at low potentials. 
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