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Abstract—The demand for reliable and efficient Wide Area
Networks (WANs) from business customers is continuously in-
creasing. Companies and enterprises use WANs to exchange
critical data between headquarters, far-off business branches and
cloud data centers. Many WANs solutions have been proposed
over the years, such as: leased lines, Frame Relay, Multi-
Protocol Label Switching (MPLS), Virtual Private Networks
(VPN). Each solution positions differently in the trade-off be-
tween reliability, Quality of Service (QoS) and cost. Today, the
emerging technology for WAN is Software-Defined Wide Area
Networking (SD-WAN) that introduces the Software-Defined
Networking (SDN) paradigm into the enterprise-network market.
SD-WAN can support differentiated services over public WAN
by dynamically reconfiguring in real-time network devices at the
edge of the network according to network measurements and
service requirements. On the one hand, SD-WAN reduces the
high costs of guaranteed QoS WAN solutions (as MPLS), without
giving away reliability in practical scenarios. On the other, it
brings numerous technical challenges, such as the implementation
of Traffic Engineering (TE) methods. TE is critically impor-
tant for enterprises not only to efficiently orchestrate network
traffic among the edge devices, but also to keep their services
always available. In this work, we develop different kind of
TE algorithms with the aim of improving the performance of
an SD-WAN based network in terms of service availability. We
first evaluate the performance of baseline TE algorithms. Then,
we implement different deep Reinforcement Learning (deep-RL)
algorithms to overcome the limitations of the baseline approaches.
Specifically, we implement three kinds of deep-RL algorithms,
which are: policy gradient, TD-λ and deep Q-learning. Results
show that a deep-RL algorithm with a well-designed reward
function is capable of increasing the overall network availability
and guaranteeing network protection and restoration in SD-
WAN.

Index Terms—Software Defined Networking (SDN), Software-
Defined Wide Area Network (SD-WAN), Deep Reinforcement
Learning, Enterprise Networking.

I. INTRODUCTION

AWide Area Network (WAN), is a telecommunication
network interconnecting multiple Local Area Networks

(LANs), that are distributed over different geographic areas.
Enterprises use WANs to connect their different branches to
the headquarter and to reach Cloud services that are provi-
sioned from a Cloud computing provider. The rapid evolution
of Enterprise Networking (EN) and Information Technologies
(IT) increases consistently the demand of higher capacity and
higher quality WANs [1].
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The first public WANs were deployed in the early 1980s
and underwent continuous development. Initially, wide area
connections were designed to connect two remote sites by
using leased lines that had high costs and limited speeds [2].
Consequently, later many different technologies have been
proposed with the purpose of letting enterprises to lease
capacity from the operators of the public network infrastruc-
ture for building their inter-site connections. The enterprise
WAN became an overlay network with similar performance
as leased lines, but without the need of actually deploying
a company-owned physical infrastructure. The main network
technologies adopted have been: Asynchronous Transfer Mode
(ATM), Frame Relay (FR), Multi-Protocol Label Switching
(MPLS) and Virtual Private Networks (VPN). Among these
technologies, MPLS is the one currently widely deployed that
can provide guaranteed Quality of Service (QoS) with high
efficiency. However, the cost of MPLS for enterprise users
is quite high: we can say MPLS is at one extreme of the
trade-off between cost and QoS. On the other extreme, we
can place the VPN technology. A VPN overlay WAN can
be created on virtually any kind of underlay network, and
in particular also connecting the enterprise sites with simple
and inexpensive Internet connections. The drawback is that
there is no possibility of providing QoS. The high cost of
MPLS is pushing enterprises towards the new technology
named Software-Defined Wide Area Networking (SD-WAN).
SD-WAN promises to be able to achieve QoS with low cost
by taking advantage of broadband Internet [3].

SD-WAN has various advantages with respect to MPLS,
such as reduced costs, simplified WAN configuration, easy
access to cloud services and efficient WAN utilization. The
basis of SD-WAN relies on Software-Defined Networking
(SDN), which separates the physical forwarding elements,
called data plane, from the network’s control logic, called
control plane, which is now implemented in a logically central-
ized controller; this simplifies network control, management,
and enables innovation through network programmability. The
control logic is what differentiate SD-WAN from the VPN
solution, allowing to provide a good degree of QoS and relia-
bility at the same access cost of VPN. That is achieved by the
centralized controller, which constantly monitors the network
conditions and consequently adapts the choice of connections.
It’s very important to highlight that SD-WAN is implemented
only at the edges of the overlay network, i.e. inside the
Customer Premises Edge (CPE) devices which are located
in the enterprise’s branches, headquarters and main offices.
Therefore, the SD-WAN solution is totally independent of the
service provider network. On the contrary, MPLS requires on
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a large extend the support of the network equipment located
in the nodes of the carrier operator.

Nowadays, SD-WAN is gaining momentum as connectivity
solutions across the enterprise landscape. Currently, there are
around 30 SD-WAN vendors in the market with varying
level of product maturity. Notably, those with mature product
offerings include VeloCloud (owned by VMware), Viptela
(owned by Cisco), Nuage (owned by Nokia), and Silver Peak.
SD-WAN market is projected to surpass USD 17 billion by
20251. For instance, VeloCloud offers an SD-WAN cloud-
based solution delivering a broad set of integrated capabilities
as a virtual network function (as opposed to the traditional
hardware-centric model), which includes network overlay con-
trol, dynamic path selection, application performance monitor-
ing, and other services.

If on the one hand SD-WAN introduces many advantages,
on the other it brings numerous technical challenges, such as:
1) Placement of the software controller in cloud or at premises;
2) Reliability of the controller in case of failure; 3) Scalability
of the network architecture in case of growing number of
CPEs, hosts, overlay networks; 4) Traffic engineering methods
to efficiently orchestrate network traffic among the CPEs; 5)
Monitoring of WAN performance; 6) Security against common
network attacks (as DDoS); and many others.

In this work, we target the Traffic Engineering (TE) features
of an SD-WAN solution that uses broadband internet to
connect its edge devices (CPEs). TE is crucial for network
availability and reliability. Enterprises can orchestrate their
traffic in consideration of the monitoring measurements of
WAN performance, such as packet delay, loss, jitter, and
service requirements. The main goal of this work is to study
how to improve TE’s algorithms in the SD-WAN context to
achieve similar performance provided by the current MPLS.
In this regard, we aim at improving the service availability
by exploring the adoption of state-of-the-art and Machine-
Learning (ML) algorithms in the SD-WAN controller to assess
their advantages and limitations.

Specifically, we first evaluate the performance of baseline
TE algorithms. Afterwards, we implement different deep Re-
inforcement Learning (deep-RL) algorithms to overcome the
limitations of the baseline approaches. We implement three
kinds of deep-RL algorithms, that are: Policy gradient, TD-
λ and deep Q-learning. Deep-RL is a sub-field of ML that
aims at finding the optimal actions in a given environment
in order to reach specific targets. In the context of SD-WAN,
the network data plane represents the environment, while the
actions and the reward functions are specific software modules
running on top of the SD-WAN controller. The main reason
that led us to implement deep-RL algorithms is that they are
capable of predicting the network performance degradation
and acting on the environment by changing pro-actively the
routing information. Thanks to this capability, we are able to
build intelligent TE’s algorithms capable of achieving similar
performance with respect to guaranteed QoS WAN solutions.
This work focuses on a basic SD-WAN network in which an

1Software-Defined Wide Area Network (SD-WAN) Market 2019 In-Depth
Analysis of Industry Share, Size, Growth Outlook up to 2025. Market Study
Report LLC, USA, 2020.

enterprise needs to connect two remote offices through two
different networks. The goal is to improve service availability
by dynamically ”switching” the traffic flows between the two
networks. The switching occurs based on the status of the
networks, such as the packet delay, loss, jitter and available
bandwidth.

The paper is organized as follows: section II shows the
related works. Section III introduces the technical challenges
when deploying an SD-WAN solution and the paper contribu-
tion. Section IV introduces the SD-WAN architecture being
considered in this work and the problem statement. Then,
in section V we will show the proposed implementation by
introducing the environment, reward functions and the agents.
Section VI is devoted to the simulations and results. Section
VII present a discussion on open issues and future work.
Finally, Section VIII draws the conclusions of this work.

II. RELATED WORK

The academic research on SD-WAN seems to be at a
primordial state: at the best of our knowledge, there are very
few research works addressing traffic engineering in SD-WAN,
and in particular using ML-based algorithms. Consequently,
besides considering works strictly dedicated to SD-WAN so-
lutions, we have included in our state-of-the-art survey those
papers that propose TE (or decision-making) algorithms in
SDN, where there is complete control over the network devices
and not only at the edges.

Authors in [4] propose a cloud network architecture in
which three data-centers of a Cloud Service Provider (CSP) are
connected through different public Internet Service Providers
(ISPs). An overlay network is created which nodes, corre-
sponding to data-centers, can connect to the Internet through
two different networks. Moreover, the three nodes are managed
by a centralized SDN controller that sets forwarding rules over
the overlay network topology. The authors focus on the design
of the network architecture and on the resilience. The latter
is ensured by the fact that the datacenters are multihomed,
and that multiple distinct paths can be established between
datacenters within the overlay. The controller is able to detect
network failures, and react dynamically by diverting network
flows towards alternative routes. Phemius et al. [5] propose a
1:1 protection scheme in an SD-WAN architecture composed
by two CPEs and two WANs. Traffic flows are divided into
critical and non-critical. Whenever a failure occurs on a path,
non-critical traffic is stopped, while critical flows are directed
to the working path. Their architecture is composed of differ-
ent software modules working above the Floodlight Controller
[6], a Java-based SDN Controller. As in [4], the authors focus
on network resiliency by introducing traffic re-routing accord-
ing to link failures, flows’ priorities and QoS requirements.
Authors in [7] propose a Dynamic Traffic Management (DTM)
as a generic concept to tackle the problem of minimizing traffic
transit expenses. It refers to different monetary cost of inter-
domain traffic, such as the one related to the network energy
consumption, and other kind of costs related to the volume of
traffic. The latter may reflect network conditions, utilization
of resources, distance of content location, congestion, etc. The
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authors focus on the optimization of monetary costs related to
traffic transfer via WANs. The ability of SD-WAN to switch
traffic flows from one link to another efficiently minimizes
transit expenses. Authors in [8] propose an SD-WAN testbed
made by two datacenters and two interconnecting WANs. The
goal of their work is to verify that an adequate level of QoS
can be guaranteed and to provide traffic priority in an SD-
WAN network. In the deployed scenarios, the controller can
efficiently manage 300 VoIP calls, using a maximum of 16%
CPU load at the edge servers. Authors in [9] perform a techno-
economic analysis from implementing SD-WAN with 4G/LTE
for the Automated Teller Machine (ATM) networks. Most
ATMs use only the Very Small Aperture Terminal (VSAT)
access to connect their WAN via satellite. Having only VSAT
access on most ATMs can be risky, especially if the satellite
connection goes down. With SD-WAN, ATM will have at
least two WAN connections to its network, as a result, if
one of the connections is down, network traffic will not be
interrupted. Based on the techno-economic analysis provided
by the authors, the implementation of SD-WAN with 4G/LTE
for the ATM network is feasible and profitable.

The studies presented so far implement basic SD-WAN
network architectures based on two or three CPEs and two
WAN interconnections. Furthermore, the TE mechanisms im-
plemented on the aforementioned networks come into play
only when there is a failure. In this work we develop intelligent
TE algorithms capable, not only of intervening during network
failures, but also before they occur, significantly increasing
the overall system performance with respect to the baseline
algorithms. In addition, we show a performance analysis
in terms of service availability that is currently lacking in
research works on SD-WAN. In the next paragraphs, we review
state-of-the-art TE algorithms in SDN.

In Ref. [10], the Google’s network infrastructure team
shows how SDN can be exploited to optimize their Google’s
internal WAN. This WAN is fully controlled by an SDN
controller and connects a dozen of data-centers across the
planet. It has some unique characteristics: massive bandwidth
requirements, elastic traffic demand and full control over the
edge servers and data-center networks. SDN allows advanced
centralized TE policies that allocate bandwidth among com-
peting services based on applications priorities. In particular,
they build a TE application with the aim of running their
WAN links at near 100% of utilization, corresponding to 2-3x
efficiency improvements relative to standard practice. Their
solution enables to deploy cost-effective WAN bandwidth
maximizing the network utilization. Another relevant paper
has been published by Microsoft [11]. They present SWAN,
a system that improves the utilization of inter-datacenters
networks by centrally controlling the traffic and frequently
reconfiguring the data plane, to match the current network
needs. Their solution enables QoS by differentiating three
priority classes (interactive, elastic and background), in which
bandwidth and paths are allocated according to traffic priorities
while maintaining fairness. Since uncoordinated data plane
reconfigurations result in severe congestion and heavy packet
loss, they demonstrate that leaving 10% free capacity on each
link allows for a congestion-free reconfiguration plan in just

a few steps. The adoption of SDN brings new chances to
exploit Artificial Intelligence (AI) and Machine Learning (ML)
to optimize the network usage. In particular, ML algorithms
are applied to different network problems, such as: traffic
classification, routing optimization, QoS prediction, resource
management, and security [12]. As stated in [13], the idea of
applying ML techniques to networks’ optimization problems
has first appeared in [14]. The authors proposed an intelligent
Knowledge Plane (KP), able to perform network’s optimiza-
tions in situations that are too complicated to be addressed
by humans. In the last few years, ML algorithms have been
proposed to tackle different traffic engineering problems, e.g.
traffic prediction and routing decision processes. According
to the specific problem to be solved, both supervised learning
and reinforcement learning approaches have been investigated.
Ref [15] shows the application of an RL-based approach to
optimize routing. In particular, considering the traffic matrix
as network state and the choice of a source-destination path as
action, the objective of the RL is to select the optimal routing
paths, with the final goal of minimizing the network delay.
Their experimental results show an improvement compared
to a deterministic routing scheme. Ref [16] proposes an
RL-based agent to optimize routing strategy without human
intervention. To exploit the periodical nature of the traffic
[17], they make use of Recurrent Neural Networks (RNN)
to build the proposed RL-agent with the aim of optimizing
the network usage. In Ref [18], the authors make use of deep-
RL for automatic routing in optical transport networks. The
role of the deep-RL agent is to optimally route new traffic
demands through specific end-to-end paths. The agent has to
choose among the candidate paths that connect the source and
the destination node of each traffic request by maximizing the
network usage. Authors of [19] proposed an RL algorithm to
perform efficient and privacy-preserving embedding of virtual
graphs over multi-operator telecom infrastructures. Doke et
al. [20] exploit deep-RL to design a time and cost-effective
network load balancer to optimize inter-data center traffic.
With the goal of avoiding hand-crafted load balancing policies,
they exploit deep-RL to continuously update the implemented
policies in presence of a dynamic environment. They compared
the performance of their deep-RL agent, based on deep Q-
learning, with other deterministic load balancing policies, such
as Round Robin. As a result, they show that the deep reinforce-
ment agents achieve similar performance with other existing
load balancing policies highlighting the fact that the policy
is self-learning, so it will adapt to dynamic environments.
Many research works presented in this section assume the
complete control over the devices in the network, thanks to
which different kind of ML algorithms can be trained with
heterogeneous and historical network data.

III. MOTIVATIONS AND PAPER CONTRIBUTION

The SD-WAN control plane has a global, centralized view
of the network and thus also can access network statistics and
properties through monitoring algorithms. With centralized
TE solutions, this data can be leveraged to find globally
optimal path assignments. Traditional TE mechanisms such as
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RSVP-TE or LDP for MPLS rely on the local, limited view
of the network from the ingress router. Programmability in
SD-WAN offers possibilities to implement custom, fast, and
efficient adaptive routing schemes that optimize for low end-
to-end latency, as well as failure recovery mechanisms that
can be achieved with low communication overhead and little
controller interaction.

This work focuses on the development of TE algorithms
to understand to what extend SD-WAN is able to actually
provide service availability by exploiting broadband Internet.
Specifically, we address the following technical issues related
to TE that have not yet been investigated within the SD-WAN
context, that are: the maximization of the service availability
and the mitigation of the continuous switching of traffic flows
among the overlay networks due to the high variation of traffic
characteristics (e.g. packet delay). The latter will be considered
hereafter as: channel flipping problem.

To do so, we first evaluate the performance of baseline
TE algorithms. Afterwards, we implement different deep-
RL algorithms to overcome the limitations of the baseline
approaches. In other words, we study how historical network
information acquired by the SD-WAN controller, by means of
a monitoring system, can be exploited to improve the overall
SD-WAN performance. In this regard, we implement three
basic model-free deep-RL algorithms, that are: Policy gradient
[21], TD-λ and deep Q-learning [22]. The implementation of
more advanced deep-RL algorithms are left for the future
work. As we mentioned early, in SD-WAN the control is
limited to network devices (CPEs) placed at the network
edges, without having any direct knowledge of the state of
the network elements (nodes and links) between the edges.
This condition also constrains the amount and type of data
that we can use to train the ML algorithms, compared to the
situation when we have control also over the inner portion
of the network. That makes network optimization by ML
more challenging than e.g. in MPLS. This work aims at
showing that, despite such limitations, implementing deep-RL
algorithms by making the best use of network data available at
the edges of the network can effectively improve performance
in terms of service availability. In this work, we refer to the
basic SD-WAN architecture presented in [5], and focus on the
implementation of ad-hoc reward functions.

The main contributions of this paper can be listed in the
following points:

1) Implementation of deep-RL based TE algorithms in
the SD-WAN context. With this contribution we prove
the effectiveness of deep-RL in assessing the technical
issues regarding the TE in terms of the maximization
of the service availability and mitigation of the channel
flipping problem.

2) Design of ad-hoc reward functions based on static and
dynamic features. In the context of deep-RL, a well-
designed reward function is very important since it
determines the overall learning procedure. In this work
we compare deep-RL algorithms performance based on
different reward functions.

This investigation is timely, giving the enormous commer-
cial success of SD-WAN technology, and at the same time
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Monitoring 
system

Deterministic TE 
algorithms

Deep‐RL TE 
algorithms

SD‐WAN controller Control Plane

CPE‐2
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Internet/Broadband 2
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Channel‐2

Internet/Broadband 1

Southbound
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Fig. 1: SD-WAN network architecture. The CPE devices,
which are located in the enterprise branches, are in charge
of routing the traffic data into different WAN’s.

is novel, since very few research scientific works have been
published so far about this approach.

IV. SD-WAN ARCHITECTURE AND PROBLEM STATEMENT

In our previous work [23], we have proposed an early im-
plementation of SD-WAN based on open source components,
such as OpenDaylight [24] as SDN controller, OpenvSwitch
(OvS)[25] as switching element in the CPEs and a set of
services for network monitoring and policy-based path se-
lection. We presented a proof-of-concept through a simple
emulated but realistic network environment composed by one
headquarter and one branch office connected by two alternative
networks (or channels). Data exchanged between headquarter
and branch office flow through the most appropriate of the
two channels, selected by the SD-WAN controller according
to the status. The emulator was used to show new features and
advantages for the enterprise in terms of resource optimization.

In this work, we exploit the same emulated SD-WAN
scenario to focus on the deep-RL TE algorithms. SD-WAN
architecture comprises three planes: data, control and applica-
tion, see Fig. 1.

The data plane includes the network elements that carry
user traffic, namely two CPEs and two WAN connections.
CPE-1 and CPE-2 are network devices located at the customer
locations and physically connected to the border routers of the
service providers. The two WAN connections, Channel-1 and
Channel-2, exploits two overlay tunnels configured over (two
possibly different) underlay Internet/broadband networks. In
our testbed we consider the overlay tunnels are obtained by
the Generic Routing Encapsulation (GRE) tunneling protocol
[26]. We simulate the two Internet/broadband connections so
that they are characterized by different network performance
in terms of packet delay. The control plane is embodied by the
SD-WAN controller, that receives instructions from the appli-
cation plane and relays them to the CPEs in the data plane. The
controller is aware of the functional models of the CPEs and is
therefore able to convert the high-level TE decisions received
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by the applications into appropriate instructions for the CPEs.
In our case, these instructions are commands that make each
CPE to switch on the appropriate channel when exchanging
data with the remote CPE. Communications between CPEs and
controller occurs across the South-Bound Interface (SBI) using
an SBI protocol (in our case, OpenFlow). The application
plane runs on top of the control plane and can be referred
as the intelligence of the network. Applications are software
programs that communicate policies and resource requests
with the controller via Northbound Interfaces (NBIs). In our
implementation, there is a single application performing TE
and monitoring. More specifically, the application is running
the algorithms that decides at each instant which one of
Channel-1 and Channel-2 is the WAN channel the CPEs
should use to communicate.

The problem statement of TE in SD-WAN is the following:
Given N the number of CPEs and C the number of channels
interconnecting the CPEs, the goal of the TE algorithm is
to pro-actively orchestrate the traffic among the CPEs to
maximize the end-to-end service availability.

In other words, the goal of this work is to develop a TE
algorithm that minimizes service downtime by pro-actively
modifying the traffic routes among CPEs. The pro-activity
consists of predicting network issues and acting on traffic rout-
ing accordingly. State-of-the-art deterministic TE algorithms
are not suitable for solving this type of problems as they do
not perform any kind of prediction and take always the same
decisions according to deterministic rules. For this reason, in
this work we implement RL-based algorithms, which unlike
deterministic ones, are able to learn how to orchestrate traffic
over time to increase service availability.

In order to precisely define our TE problem, we assume
the enterprise user has specified the QoS requirements of the
applications running in the headquarter and in the branch office
in the form of a Service Level Agreement (SLA). The SLA
defines a set of thresholds to some performance parameters of
the WAN connection between headquarter and branch office
(e.g. packet loss, delay, jitter, minimum bandwidth, etc.). If
the values of all the parameters measured over the connection
are within the acceptable range (e.g. below the threshold),
than the service is in up conditions, otherwise it is in outage.
Since we want to maximize the service availability, the TE
application will have to efficiently orchestrate the routing of
the traffic flows between the two channels2, so that the channel
that is performing badly (i.e. has performance parameters
outside the acceptable range) is possibly not chosen. In order
to simplify our study, we have decided to consider just a single
performance parameter, that is packet delay. The choice is
motivated by that packet delay is simpler to control in our
emulated testbed, as it will become apparent later on. As
such, we define QoS thresholds based on packet delay. For
instance, if the packet delay of channel-1, measured by the
monitoring application, exceeds a certain threshold, then, the
path-switching application instructs the controller to move the
traffic flows from channel-1 to channel-2. This mechanism will
eventually prevent the service from being down. We point out

2From now on we will use channel and network interchangeably.

𝑆𝑡𝑎𝑡𝑒 𝑆 𝑡 1
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𝑆𝑡𝑎𝑡𝑒 𝑆 𝑡

𝑆𝑡𝑎𝑡𝑒 𝑆 𝑡

𝑅𝑒𝑤𝑎𝑟𝑑 𝑅 𝑡

𝐴𝑐𝑡𝑖𝑜𝑛 𝐴 𝑡

Fig. 2: Basic reinforcement learning system with an agent, a
reward function and the environment.

that we assume a monitoring application able to report the
status of the two channels to the application plane where the
TE applications run. In the context of a TE application, we can
design several policies which define the expected behavior of
the SD-WAN solution. In this work we consider four different
TE policies:

1) Policy A: service flows can be steered into the two
channels without any preference as long as the QoS
thresholds are met.

2) Policy B: service flows are preferably routed into
channel-1, that is the working channel. If the packet
delay on channel 1 exceeds the threshold, then the
service flows are moved into channel-2. They will come
back to the first channel as soon as it becomes available
(i.e. packet delay value under the threshold).

3) Policy A-1 and Policy B-1: they are an extension of pol-
icy A and policy B respectively; after a channel switch,
no more changes are allowed for a fixed period of time.
These policies eventually mitigate the flipping between
the two channels when the packet delay variations are
too high.

V. DEEP REINFORCEMENT LEARNING FOR SD-WAN

Reinforcement learning, in the context of artificial intel-
ligence, is an approach to machine-learning that trains al-
gorithms using a system of positive and negative rewards.
Contrary to what happens with the supervised and unsuper-
vised machine-learning algorithms, in RL we do not have
training, validation and test set of data. A reinforcement
learning algorithm, or agent, learns how to perform a task
by interacting with its environment. The interaction is defined
in terms of specific actions, observations and rewards. As we
can see from Fig.2, an agent performs an action at time t
based on the reward and state (or observations) obtained by the
environment. The action performed by the agent will produce
another state of the environment and a reward at a time t+ 1
and so on.

In this work, we developed a TE application based on RL
algorithms. Therefore, we need to define several components
such as: the environment (including the set of observations),
the reward functions and the agents. In the context of an RL-
based system, the environment is the SD-WAN data plane. As
stated in section IV, we consider an environment with one
headquarter and one branch office connected by two networks
that can transport data. The agent comprises TE application
implemented over the SD-WAN controller and the controller
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itself, as explained earlier. The reward function is computed
by the same software module implementing the TE application
in the application plane.

A. Environment

At each time step t, i.e. every second, the environment
exposes its state s(t) composed by 5 observations:

1) O1(t): used channel at time t.
2) O2(t): packet delay of channel 1 at time t.
3) O3(t): packet delay of channel 2 at time t.
4) O4(t): packet delay threshold of channel 1.
5) O5(t): packet delay threshold of channel 2.

The state is forwarded to the agent by means of the
monitoring system. As shown in Fig. 2, the agent takes as
inputs the state of the environment s(t) and the result of the
reward function r(t). The TE application of the agent decides
whether to trigger a switching of the channel in which the
enterprise packets are flowing or not. This decision is for-
warded to the controller, which in turn performs the switching
action a(t) over the environment by issuing commands to the
CPEs thorugh the SBI. In our case, since we are considering
CPEs equipped by OpenFlow switches (OVSs), an action will
ultimately trigger an update in the forwarding tables of the
CPEs at the customer locations.

Given the different combination of observations, we identify
10 environment states of interest used to develop the reward
functions.

• s1 : O2(t) ≤ O4(t) ∧ O3(t) ≤ O5(t) ∧ O1(t) = 1. This
state corresponds to the case in which the service flows
are steered into channel 1 and both channels are in a good
shape; this means that their actual packet delay value are
under the QoS thresholds defined for each channel.

• s2 : O2(t) ≤ O4(t) ∧ O3(t) ≤ O5(t) ∧ O1(t) = 2. This
state is the same of s1 with the only difference that the
service flows are steered into channel-2

• s3 : O2(t) ≤ O4(t) ∧ O3(t) > O5(t) ∧ O1(t) = 1. This
state corresponds to the case in which the service flows
are steered into channel-1 and packet delay of channel-2
exceeds the threshold.

• s4 : O2(t) ≤ O4(t) ∧ O3(t) > O5(t) ∧ O1(t) = 2. This
state is the same of s3 with the only difference that the
service flows are steered into channel-2.

• s5 : O2(t) > O4(t) ∧ O3(t) ≤ O5(t) ∧ O1(t) = 1. This
state corresponds to the case in which the service flows
are steered into channel-1 and packet delay of channel-1
exceeds the threshold.

• s6 : O2(t) > O4(t) ∧ O3(t) ≤ O5(t) ∧ O1(t) = 2. This
state is the same of s5 with the only difference that the
service flows are steered into channel-2.

• s7 : O2(t) >> O4(t)∧O3(t) > O5(t)∧O1(t) = 1. This
state corresponds to the case in which the service flows
are steered into channel-1 and packet delay of channel-1
exceeds the threshold much more than in channel-2.

• s8 : O2(t) >> O4(t)∧O3(t) > O5(t)∧O1(t) = 2. This
state is the same of s7 with the only difference that the
service flows are steered into channel-2.

• s9 : O2(t) > O4(t)∧O3(t) >> O5(t)∧O1(t) = 1. This
state corresponds to the case in which the service flows
are steered into channel-1 and packet delay of channel-2
exceeds the threshold much more than in channel-1.

• s10 : O2(t) > O4(t) ∧ O3(t) >> O5(t) ∧ O1(t) = 2.
This state is the same of s9 with the only difference that
the service flows are steered into channel-2.

The reward function represents the feedback of the action
performed by the agent. It depends on how many times the
system is in the wrong channel, that is when the delay on the
used channel overrun the threshold.

B. Reward functions

The goal of an RL-agent is the maximization of the cu-
mulative sum of rewards. At each step, the action leads to a
reward: the better the action, the better the reward. The design
of efficient reward functions is a challenging problem [27][28]
since it determines the overall learning procedure.

The output value of our reward function at a time t depends
on the effect produced by the action performed by the agent
on the environment. We define the reward r(t) as follows:

r(t) =
N∑
n=0

(
1

2

)n
f(t− n) (1)

where f represents the actual reward function and N is the
number of previous environment states being considered to
weight the final reward. For instance, if we consider N = 0,
the final reward is: r(t) = f(t); while if N = 2 the final
reward will be a weighted sum of 3 reward values assigned in
the previous time steps: r(t) = f(t) + 0.5 · f(t − 1) + 0.25 ·
f(t− 2).

Based on the TE policies and the considered environment
states introduced in section IV and V-A respectively, we design
two kind of reward functions based on static fs(t) and dynamic
fd(t) features, see table I.

1) Static reward functions: A static reward function is
characterized by a fixed reward assigned according to the
environment states. Specifically, based on the implemented
policy, we assign positive, negative and neutral reward values
(i.e. near zero or zero). Table I shows the reward assignment
based on the strategy (static or dynamic) and the policy (A or
B).

a) (Static) Policy A: We assign positive rewards when the
action of the agent allows the achievement of the states: s1,
s2, s3, s6. These states occur when the packet delay value of
the channel, in which the service flow is steered, is under the
QoS threshold. Rewards are negative when the agent reaches
the states: s4, s5, s7, s10. These states occur when the QoS
threshold is overrun in channel-1 or channel-2 respectively.
Then, we assign neutral rewards, i.e. zeros, when states are
considered neither good nor bad, such as: s8, s9. These states
occur when both channels overrun the QoS thresholds, hence
we assign zero if the used channel corresponds to the one
with less packet delay value. In this work, we have adopted a
greedy method to choose the value of α, i.e. we tried different
values until we reached the one, α = 1, that shows the best
results in terms of actions performed by the agent.
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TABLE I: Reward table

Environment state
Static reward fs(t) Dynamic reward fd(t)

Policy A (α = 1) Policy B (β = 3) Policy A Policy B

s1 α β x(1, t)w1 x(1, t)w1

s2 α −β x(2, t)w1 −x(1, t)w2

s3 α β x(1, t)w1 x(1, t)w1

s4 −α −3β −x(2, t)w2 −x(1, t)w2

s5 −α −2β −x(1, t)w2 −[x(1, t) + x(2, t)]w3

s6 α 0.3β x(2, t)w2 [x(1, t) + x(2, t)]w3

s7 −2α 0 −min[x(1, t), x(2, t)]w3 −min[x(1, t), x(2, t)]w4

s8 0 0.5β min[x(1, t), x(2, t)]w3 min[x(1, t), x(2, t)]w4

s9 0 0.5β min[x(1, t), x(2, t)]w3 min[x(1, t), x(2, t)]w4

s10 −2α 0 −min[x(1, t), x(2, t)]w3 −min[x(1, t), x(2, t)]w4

b) (Static) Policy B: As introduced in section IV, service
flows are preferably routed into channel-1, that is the working
channel, hence the reward function must be designed accord-
ingly. Positive rewards are assigned when the action of the
agent allows the achievement of the states: s1 and s3. These
states occur when the packet delay value of channel-1, in
which the service flows are steered, is under the QoS threshold.
Rewards are negative when the agent reaches the states: s2, s4
and s5. These states occur when either the QoS threshold is
overrun or when the service flows are steered into channel-2
even if channel-1 is available (i.e. packet delay under the QoS
threshold). Then, neutral rewards are assigned for the other
states. In particular, we assign 0.3β when state s6 occurs, i.e.
when service flows are steered into channel-2 while channel-1
is unavailable. This kind of reward assignment is done to be
consistent with the fact that the agent should prefer channel-1
to channel-2. The previous considerations apply to states s7,
s8, s9 and s10 as well. In this case, we choose β = 3 with
the same greedy method being considered for policy A.

2) Dynamic reward functions: A dynamic reward function
is characterized by one or more variables that change accord-
ing to the conditions of the environment. Let us define the
distance m(c, t) between the actual packet delay and the QoS
threshold for each channel c as follows:

m(c, t) =
|d(c, t)− dTH(c, t)|

dMAX(c, t)
∀c ∈ [1, 2] (2)

where d(c, t) is the actual packet delay value, dTH(c, t)
represents the QoS threshold value and dMAX(c, t) the max-
imum delay experienced by channel c obtained by historical
observations of the channel.

Let us now define x(c, t) as follows:

x(c, t) =

{
10 ·m(c, t) m(c, t) ≤ 0.05

0.5 m(c, t) > 0.05
(3)

x(c, t) represents the actual reward value; then, it can be
positive or negative and weighted by exponential factors wz
(see Table I) based on the strategy and on the environment
state. x(c, t) depends on the difference between the packet
delay and the QoS threshold. When the difference is high
(x(c, t) = 0.5), the action choice is simple, since the packet
delay is either way far under the threshold or over the thresh-
old. Instead, we give more importance to the cases in which,

being m(c, t) small, the action choice is not straightforward
(x(c, t) = 10 ·m(c, t)).

a) (Dynamic) Policy A: The considerations made for
the static reward (Policy A) are the same with respect to
the positivity or negativity of the reward value, therefore we
consider x(c, t) positive for those states in which the threshold
is not exceeded, negative otherwise (see Table I).

In this case, the reward value is dynamic and depends on the
actual distance between the packet delay of the channel and
the QoS threshold, i.e. m(c, t). Based on equation 3, we assign
a higher value when m(c, t) is less than 0.05, that is when the
decision on which channel to choose is not straightforward.

Then, we raise the reward values to the power of wz , which
are weights used to distinguish the states of the environment.
In this work, we assign the weights as follows: w1 = 0.25,
w2 = 0.5, w3 = 0.25, such that

∑3
z=1 wz = 1, in order to

give different level of importance to the states. By assigning
the weight w2 to the states s4, s5 and s6, we are giving
more importance to those events in which the threshold is
overrun; while, for state s7− s10 we choose the channel with
minimum value of x(c, t) in order to route the traffic into the
best channel.

b) (Dynamic) Policy B: The considerations made for
the static reward (Policy B) are the same with respect to
the positivity or negativity of the reward value, therefore
we consider x(c, t) positive for those states in which the
threshold is not exceeded and when service flows are steered
into channel-1, negative otherwise (see Table I).

In this case, we assign the weights as follows: w1 = 0.1,
w2 = 0.4, w3 = 0.4 and w4 = 0.1 such that

∑4
z=1 wz =

1. Weights w2 and w3 give more importance to those states
in which the threshold is overrun and the wrong channel is
used. Moreover, we penalize/boost state s5 and s6 in which
the working channel is unavailable.

3) Reward function with change penalty: Whenever the
agent makes a channel switching, there is a short period of
time in which the service flows are disrupted. This is mainly
due to the fact that the agent’s action is not instantaneous and
consequently there is a small time frame in which service is
down. Moreover, if the variation of the packet delay value is
too high to fluctuate several times around the QoS threshold,
it will generate the flipping problem, i.e. a continuous channel
switching. The reward functions introduced in the previous
sections do not avoid these issues. As consequence, we intro-
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duce a small variation to the equation 1 based on the number
of channel switching performed in the previous time steps. In
particular, we add a penalty value whenever there is a channel
switching. This value changes based on the policy.

Considering the static policy A and B, the reward value
decreases by adding a negative value equal to −0.5, see
equation 4.

r(t) =

{∑N
n=0

(
1
2

)n
fs(t− n) O1(t) = O1(t− 1)∑N

n=0

(
1
2

)n
fs(t− n)− 0.5 O1(t) 6= O1(t− 1)

(4)
where O1 is the used channel at a time t.

While, considering the dynamic policy A and B, the reward
value decreases by adding a negative value equal to −0.3CN ,
where CN is the number of changes performed in the previous
N time steps, see equation 5.

r(t) =
N∑
n=0

(
1

2

)n
fd(t− n)− 0.3CN (5)

C. Agents

The agent, or network agent, takes as input the observa-
tions obtained from the environment and returns the decision
whether or not a service should be steered into another
channel. Modern RL algorithms can be divided into two
families: model-free and model-based RL. By a model, we
mean a function which emulates the environment being able
to predict state transitions and rewards.

The main advantage of a model-based algorithm is that it
allows the agent to plan ahead its actions by trying a range of
possible strategies and explicitly deciding between its options.
A famous example of this approach is AlphaZero [29]. When
this works, it can result in a substantial improvement over
methods that do not have a model. The main drawback is
that a ground-truth model of the environment is usually not
available to the agent. If an agent wants to use a model in
this case, it has to learn the model purely from experience,
which creates several challenges. On the other hand, model-
free methods give up the potential gains due to the presence
of an environment model and tend to be easier to implement
and optimize. In this work, we focus on model-free RL
algorithms which are more popular and have been more
extensively developed and tested than model-based methods.
These methods differ from each other from what they need
to learn in order to accomplish the initial goal, for instance:
policies, action-value functions (Q-functions), value functions,
and/or environment models. In this work we implement three
approaches to representing and training agents with model-free
RL:

1) Policy Optimization: These methods learn a policy in
order to accomplish the initial goal. A policy is a rule used by
an agent to decide what actions to take. It can be deterministic
or stochastic, in which case it is usually denoted by π. Policy
optimization methods represent a policy explicitly as πθ (a|s),
where a is the action; s is the state and θ the set of parameters.
In deep-RL, we deal with parametrized policies whose outputs
depend on a set of parameters θ (such as the weights and biases

of a neural network) which we can adjust (or learn) to change
the behavior of the agent.

In this work we have implemented a policy optimization
method called policy gradient [21]. In particular, the pa-
rameters θ are represented by the weights and bias of a
neural network with one hidden layer composed by 40 nodes;
while, the learning procedure is driven by the gradient descent
algorithm [30].

2) Value functions: Differently from policy optimization
algorithms, value functions tend to find a numerical represen-
tation of a state. By value, we mean the expected reward E
for a state s under a policy π. Intuitively, it measures the total
rewards achievable from a state following a specific policy.
The value function is denoted by V π(s) and it is expressed as
follows: V π(s) = Eπ[r(t) |s].

Algorithms based on value functions replace all state space
with values. Then, the agent chooses the action that moves
to the higher value. The V value can be derived by different
methods, such as Monte Carlo (MC) and Temporal-Difference
(TD) [22]. Agents based on MC method assume that the
interaction with the environment is divided into finite episodes
(i.e. a collection of actions, states and rewards), therefore value
estimates and policies are updated only at the end of each
episode. MC estimates the value function V π(s) for a given
policy π using the empirical mean of the rewards; in other
words, the value function V π(s) is estimated by averaging
the rewards obtained after the visit to the state s.

Agents based on TD method, differently from MC, exploits
incomplete episodes. The V π(s) is updated before the end of
the episode; as consequence, the value estimation of one state
is built upon the estimation of upcoming states. This technique
of using estimations of other states is called bootstrapping. The
main advantage of this technique is that the learning procedure
can be done online after every step (without waiting for the
end of the episode), allowing continuous learning. However,
the TD-λ method does not work well for problems with infinite
number of states, so we need an approximation function which,
as we will see in the next paragraphs, uses neural networks.

We implement the TD-λ [22] algorithm which is a con-
strained version of the MC method. The parameter λ (0 ≤
λ ≤ 1) measures how many states are used for the value
estimation, starting from TD-0 that uses the estimate of the
next-state. In this work, we set λ = 0.5.

3) Action-Value functions: Methods in this family learn a
value for the action instead of a state. We aim at finding an
optimal policy π∗ : S → A for the agent to maximize the ex-
pected long-term reward function for the system. Accordingly,
we first define value function V π : S → R that represents
the expected value obtained by following policy π for each
state s ∈ S. The value function V for policy π quantifies the
goodness of the policy through an infinite horizon that can be
expressed as follows:

V π(S) = Eπ [rt(st, at) + γV π(st+1) | s0 = s] (6)

Since we aim to find the optimal policy π∗, an
optimal action at each state can be found through
the optimal value function expressed by V ∗(s) =
maxat{Eπ [rt(st, at) + γV π(st+1) | s0 = s]}. If we denote
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Q(s, a) , rt(st, at) + γEπ [V π(st+1)] as the optimal Q-
function for all state-action pairs, then the optimal value
function can be written by V ∗(s) = maxa{Q∗(s, a)}. Now,
the problem is reduced to find optimal values of Q-function,
i.e., Q∗(s, a), for all state-action pairs, and this can be done
through iterative processes. In particular, the Q-function is
updated according to the following rule:

Qt+1(s, a) = Qt(s, a)

+ αt [rt(s, a) + γmaxa′Qt(s, a
′)−Qt(s, a)]

(7)

In eq. 7, the learning rate αt is used to determine the impact
of new information to the existing Q-value. The algorithm then
yields the optimal policy indicating an action to be taken at
each state such that Q∗(s, a) is maximized for all states in the
state space, i.e., π∗(s) = arg maxαQ

∗(s, a).
Q-learning is based on the concept that the agent knows

what will be the expected reward of each action at every step.
It will perform the sequence of actions that will eventually
generate the maximum total reward. Imaging an environment
with 10000 states and 1000 actions per state, the Q-value
methods are not able to infer new states from already explored
ones. This shows two problems: 1) First, the amount of
memory required to save and update all the Q-values would
increase as the number of states increases; 2) Second, the
amount of time required to explore each state would be
unrealistic. In this work we implement the deep Q-learning
[31] algorithm which use a neural network to approximate the
Q-value function Q∗(s, a). The state is given as the input;
the hidden layer is made by 120 nodes; and the Q-value of
all possible actions is generated as the output. Specifically,
section V-D shows the implemented deep Q-learning algorithm
with Experience Replay (ER). The ER is a feature needed to
make the algorithm more stable since a nonlinear function
approximator is used. The reader can refer to Ref. [31] and
[32] for the mathematical background of this method.

4) Note on the hyper-parameters: Hyper-parameters are
defined as parameters that are not learned by the agent
but set before the start of learning. In order to find the
numerous hyper-parameters, besides the standard trial and
error procedure that is prone to errors, we have used the
Hyperopt [33] library. Hyperopt uses sequential model-based
optimization which is a Bayesian optimization technique that
uses information from past trials to decide the next set of
hyper-parameters to explore in the parameter space. As such,
the hyper-parameters of the three agents have been evaluated
by implementing this method.

D. Pseudo-code

Algorithm 1 shows the pseudo-code of the proposed deep Q-
learning with ER based TE algorithm. First of all we initialize
the parameters regarding the network and the algorithm. After
that, the monitoring system is started, which has the task of
collecting the network statistics in real-time (i.e. packet delay
values of WANs). Then the loop begins, that is the agent
reads the status from the environment, then, it checks if the

policy is met (for example if the delay on channel 1 is below
the threshold). If the policy is not met (i.e. it is FALSE),
then the agent performs the action on the environment. After
that, the status and the reward are updated, while the neural
network weights are optimized by using the stochastic gradient
descent [30]. This process is performed in a loop. In order
to also take into consideration the cases in which the deep
Q-learning algorithm does not give good results (i.e. service
uptime under a threshold for long time), we have included a
backup algorithm, that is one of the baseline algorithms in
section VI-A3, that comes into play only when the global
variable auth is set to DENY , which means either there is
a change in some settings of the TE algorithm (such as the
policy), or the agent is not performing as expected.

Algorithm 1 Deep Q-learning with ER based TE algorithm

1: Network initialization: policy (A or B), number of WANs
(C), number of CPEs (N);

2: Algorithm initialization: replay memory D, Q-network
with random weights Θ;

3: Run monitoring system;
4: auth = ALLOW ;
5: loop:
6: Get state: st = [O1(t), O2(t), O3(t), O4(t), O5(t)];
7: if policy = FALSE and auth = ALLOW then
8: Compute action: at = arg maxαQ

∗(st, at,Θ);
9: Observe reward rt and state st+1

10: Perform the action: a on n ∈ (1, N);
11: Store (st, at, rt, st+1) in D;
12: Set st+1 = st
13: Sample random minibatch of transitions

(st, at, rt, st+1) from D;
14: Set yj = rj + γ arg maxαQ

∗(st, at,Θ)
15: Optimize neural network weights by using stochastic

gradient descent [30] on (yj −Q(st, aj ,Θ))2;
16: end
17: if auth = DENY then
18: Stop the agent;
19: Run backup algorithm;
20: end
21: goto loop;

VI. SIMULATIONS AND RESULTS

In this section we focus on the results obtained by applying
the algorithms shown in section V-C. However, before starting
our analysis, we discuss the technical setup of the simulations,
including: traffic data generation, reward-testing algorithm,
baseline algorithms used for comparisons.

A. Simulations setup

1) Data generation: In this work we assume that the
monitoring system is able to report real-time network traffic
statistics to the software-defined controller, as in [34][35][36].
As previously mentioned, we consider the packet delay as met-
ric to characterize the condition of the channels. As a result,
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we generate a dataset V containing packet delay values at each
second of two days. In the dataset V , where V ∈ R[N×T ], each
row is in the form vi = [vi,1, vi,2, vi,3, ..., vi,T ] where N = 2
represents the number of channels, T = 172800(seconds)
stands for the time interval and vi,j means the packet delay
value of channel ith during the time interval jth.

To generate our packet delay dataset, we start to generate
network traffic samples for both channels according to the
evaluations made by the authors in [17]. Specifically, they
assess that the transport network traffic is composed by a linear
combination of 3 different components denoted as eigenflows.
It is defined as a time-series that captures the network traffic
variability between two nodes in a telecommunication net-
work. Thus, the eigenflows can be divided into 3 classes: 1)
Deterministic eigenflow: which captures the periodic trends
between the couple of nodes; 2) Spike eigenflow: which
captures the short-lived bursts between couple of nodes; 3)
Noise eigenflow: which generates a random noise resulting
from the stochastic nature of the traffic.

Therefore, as in [17], we generated our traffic dataset for the
two channels as a linear combination of the 3 eigenfows (50%
deterministic, 25% spike and 25% noise), and then we derived
the delay according to the linear correlation between the two
[37]. We assumed a minimum delay value equal to zero and
a maximum value equal to 2 ms, and set the following delay
thresholds: O4(t) = 1.1ms (channel-1) and O5(t) = 1.9ms
(channel-2).

To test the performance of the proposed algorithms, we use
the dataset to run our environment. Recalling the fact that
the environment simulates the SD-WAN dataplane, we use the
generated data to reproduce the daily life of an SD-WAN based
network by simulating the traffic exchanged between the two
CPEs. Hence, the proposed agents can act on the environment
in order to learn how to maximize the service uptime through
trials and errors.

2) Reward-testing algorithms: Beside the reward functions
introduced in section V-B, we use the Inverse Reinforcement
Learning (IRL) algorithm [38] to test the performance of our
reward functions. IRL extracts a reward function ”a posteri-
ori” from the optimal behaviour of the agent. The optimal
behaviour can, therefore, be used as expert actions and taken
as the input to the IRL algorithm in order to compute the best
reward function. We use this method as ground-truth to score
our reward functions.

3) Baseline algorithms: In this work, we implement base-
line TE algorithms as mean of comparison with the proposed
deep-RL ones. We investigated the use of threshold methods
proposed in literature for real-time protection and restora-
tion schemes in networks, i.e. naive threshold-based methods
[39][36]. By threshold-based we mean those methods that
make use of QoS thresholds to solve connectivity issues. For
instance, if the end-to-end packet delay over a network path
exceeds a defined threshold, then the deterministic algorithm
will deterministically react by always implementing an action,
such as changing the routing towards a path with a packet
delay value under the threshold.

We implement two different kind of deterministic algo-
rithms:

• Naive: If the network traffic is flowing into channel-1 and
the delay threshold is exceeded, then the Naive algorithm
will steer the traffic into the second channel.

• Threshold with Weighted Moving Average and weighted
moving Variance as margin (WMA-V): given the WMA
denoted by µ̂(x):

µ̂(x) =

∑i=N
i=1 wixi∑i=N
i=1 wi

(8)

and the weighted variance denoted by σ̂2(x) [40]:

σ̂2(x) =

∑i=N
i=1 wi (xi − µ̂(x))

2∑
wi −

∑i=N
i=1 w2

i∑i=N
i=1 wi

(9)

where N = 8 represents the number of time steps consid-
ered for the computation of µ̂(x) and σ̂2(x); wi = i

N are
the weights, being i = N the most recent packet delay
sample and i = 1 the last one. Finally, the WMAV is
equal to:

WMAV (x) = µ̂(x) + σ̂2(x) (10)

The channel switching is triggered when the delay is
greater or equal to threshold−WMAV (x).

B. Simulations results

In this section we show the results of the proposed algo-
rithms. The goal is to evaluate the impact of different reward
functions by considering 3 popular deep-RL algorithms. We
run the simulations in an Ubuntu 18.04 x64 machine with
64GB of RAM, Intel(R) Core(TM) i7 - 7700 CPU @3.6GHz
using openAI Gym Python library3. Moreover, we repeated
the simulations 10 times as best practice [41][42].

We perform the following analysis:
1) Algorithm analysis: we evaluate how many samples are

needed for different deep-RL algorithms to converge to a
stable solution in terms of Service Uptime (SU). The last
is defined as number of time steps in which the service
is flowing into the channel with a packet delay value
under the threshold. The main outcome of this analysis
is to show which is the best-suited algorithm for TE in
SD-WAN.

2) Reward function benchmark: we evaluate the perfor-
mances of deep-RL algorithms according to the re-
ward functions introduced in section V-B. Moreover, we
implement the IRL to compare our solution with the
optimal one.

3) Prediction capability: we show the prediction rate of the
proposed algorithms. By prediction we mean the ability
of the agents to switch the channel before the threshold
overrun. With this analysis we aim at evaluating the
number of times in which the agent triggers the chan-
nel switch on time, before the threshold gets actually
overrun.

4) Channel flipping: we show two different approaches
to solve the issue of channel flipping due to the high
variation of packet delay. First, we introduce policy A-1

3Website: https://gym.openai.com/ (last access 15/07/2020)
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Fig. 3: Service uptime considering policy A and the proposed
TE algorithms.

and B-1 in order to avoid consecutive channel changes,
therefore we act directly on the agent’s action; second,
we modify the reward function in order to add a penalty
in case the agent makes too many consecutive changes.
This analysis aims at evaluating the most effective
approach.

5) Scalability: we evaluate the scalability issues of this
work by looking at the convergence time of the proposed
algorithms as the number of channels increases.

1) Algorithms analysis: Figure 3 shows the behaviour of
the proposed algorithms following policy A. We evaluate the
percentage of time in which the service is up, as a function
of packet delay samples received by the environment. We can
clearly see that the deep Q-learning algorithm achieves better
performances with respect to the other TE algorithms, such as
policy gradient and TD-λ. We can also observe that deep Q-
learning performs slightly better than naive threshold, (the best
suited deterministic algorithm for this policy), by achieving
almost 97% of SU.

Figure 4 shows the behaviour of the proposed algorithms
following policy B, i.e. the agent prefers to steer the traffic
into channel-1 rather than channel-2. In this case, the best
deterministic TE algorithm is always the Naive, but the best
deep-RL algorithms are deep-Q learning and TD-λ. The SU
is a bit lower with respect to policy A, 95% for deep-Q
learning and TD-λ. The convergence time, i.e. the time needed
to reach the best results in terms of SU, of the deep Q-
learning algorithm is much smaller w.r.t all the other deep-RL
algorithms for both policies.

Furthermore, we evaluate the number of times in which
policy B has been satisfied; in other words, the number of
time steps in which the agent steered the service into channel-
1. The agent was compliant with the policy during 92% of the
time.

Figures 3 and 4 are obtained considering the best reward
function that is dynamic (N=0) with change penalty and
dynamic (N=7) for policy A and B respectively.
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Fig. 4: Service uptime considering policy B and the proposed
TE algorithms.

0 8000 16000 24000 32000 40000 48000 56000 64000 72000 80000
90

91

92

93

94

95

96

97

98

99

Se
rv

ice
 U

pt
im

e 
(S

U)
 (%

)

Dynamic with Change penalty (N=0)
Static with Change penalty (N=0)
Dynamic (N=0)
Dynamic (N=7)

Samples

Fig. 5: Service uptime considering policy A and the proposed
reward functions.

2) Reward function benchmark: In the previous subsection
we have shown that, among the implemented deep-RL algo-
rithms, deep Q-learning is the most promising one. Here we
focus on analyzing the performances of this algorithm with
the most suited reward functions. In this evaluation, we found
that some of the proposed reward functions for policies A and
B do not converge towards an acceptable solution, but remain
highly variable. This means that they are not suitable for our
purpose, therefore we have compared those reward functions
that have proved to be suitable for our use case.

Figure 5 shows the performance of deep Q-learning with
the following reward functions: dynamic with change penalty
(N=1), static with change penalty (N=0), dynamic (N=0) and
dynamic (N=7). As we can see, there is no advantage in
increasing N, on the contrary, the reward functions with N
= 0 shows a more efficient learning by the agent, with a gap
of about 2% more in terms of SU. We can state that policy A
does not need so much historical information to run efficiently.

Figure 6 shows the opposite situation w.r.t. the fig. 5.
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Fig. 6: Service uptime considering policy B and the proposed
reward functions.
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Fig. 7: Service uptime considering policy B, the dynamic
reward functions with N = 7 and the IRL.

Considering policy B, the best reward function is the dynamic
(N=7). After a first period of learning, the SU is stable at
95%, which means policy B benefits from a history of reward
data since the agent must promptly redirect traffic into the first
channel.

After testing the proposed reward functions, we compare
the best one with the one approximated by the IRL. It allows
to evaluate an optimal approximation of the reward function
if we know in advance the future packet delay values of
both channels and the best actions to keep the SU as high
as possible. The IRL algorithm used the first 15000 samples
to compute the reward function. Figure 7 shows that our
proposed dynamic (N=7) reward function outperforms the best
approximation made ”a posteriori” with IRL.

3) Prediction capability: The prediction rate of the algo-
rithms is defined as the number of times in which the agent
triggers the channel switch in time. This situation is depicted
in Fig. 8, where we can see the effect of deep Q-learning on
channel switching. In particular, we notice that the controller

0 3 6 9 12 15 18 21 24 27 30 33 36 39
Time-steps

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

De
la

y 
[m

s]

Channel 1
Channel 2
Delay threshold (Channel 1)

Used channel

Fig. 8: Effect of deep Q-learning in predicting the channel
switching in time.
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Fig. 9: Prediction rate of the proposed algorithms following
both policies.

commands a transition from channel-1 to channel-2 at time-
step 14, before the delay of channel-1 actually gets over the
threshold (at time-step 14). Deep Q-learning reaches the best
results in prediction by managing to switch the channel in
time about 37.3% of times, as shown in Fig. 9. This result
clearly outperforms all the other deterministic and deep-RL
based approaches.

4) Channel flipping: In this paragraph, we evaluate the
flipping problem. Policies A-1 and B-1 have been added with
the aim of mitigating the effect of flipping when the packet
delay of both channels is too high. Despite this, we have
modified the reward functions by adding a penalty with the aim
of constraining the agent’s actions to face this issue. Figures
10 and 11 show that it is wiser to modify the reward function
rather than the policy to mitigate the channel flipping. As such,
we obtain better results if we penalize channel changes when
the variance of packet delay value is too high.

5) Scalability: Finally, we evaluate the scalability issues
of this work. Figure 12 shows the convergence time of the
proposed algorithms as the number of channels in the network
increases. The convergence time is defined as the time it takes
to reach the highest value of SU. As expected, the algorithm
based on deep-Q learning increases the convergence time very
slowly as the number of channels increases, from less than 1
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Fig. 10: Service uptime considering policy A and A-1 with a
dynamic reward functions (N = 0) with change penalty.
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Fig. 11: Service uptime considering policy B and B-1 with a
dynamic reward functions (N = 0) with change penalty.

minute with 2 channels to about 5 minutes with 10; moreover,
the SU increases up to 99.97% with 10 channels (SU=99.95%
with 5 channels). This result suggests that the algorithm is
able to maximize the SU with only 5 channels available. The
algorithms based on policy gradient and TD-λ fail to converge
in a reasonable time, keeping the SU always less than 96%.

VII. OPEN ISSUES AND CHALLENGES

In this section, we provide a discussion on the open issues
that can be considered to improve our methodology and the
future work. While algorithm 1 computes the set of actions aim
at improving the service availability, it does not specify how
to perform those actions to enforce a quick reconfiguration of
the CPEs. To do so, it is necessary to make a testbed with a
dataplane made by CPEs and WANs, a control plane made
by a software controller and an orchestration plane where
TE algorithms can run in form of software modules. The
testbed is feasible if the algorithms are fast enough to make
the reconfiguration of the CPEs useful. This work shows that
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Fig. 12: Convergence time and service uptime for different
number of channels considering policy A.

deep-Q learning is efficient in the SD-WAN context (see figure
3) and also fast-running (see figure 12). Furthermore, we show
a basic network architecture (2 CPEs and 2 WANs) in line
with the state of the art research works. However, we have to
consider more complex networks to be able to generalize the
proposed TE algorithms. Specifically, we need to deal with
different kind of topologies (e.g. mesh) and study how to
efficiently orchestrate the services. In this case, more advanced
deep-RL algorithms [43] for TE can be investigated, such
as: double deep Q-learning, deep Q-learning with prioritized
experience replay, distributional deep-Q learning, etc.

As mentioned in the Introduction section, there are several
technical research challenges that, in our view, need to be
addressed before deploying an SD-WAN solution as they
heavily affect the overall performance. They are the following:

• The SD-WAN controller can be placed in the cloud or at
the customer premises. Its placement can result in delays
for the control plane operations, such as asynchronous
switch of the traffic flows into the available channels
given by the different delays between the controller and
the CPEs. We would like to evaluate the effect of this
positioning on the performance of the services flowing
into the overlay networks.

• In an SD-WAN-based network, the failure of the central
controller may collapse the overall network. In contrast,
the use of multiple controllers in a physically distributed
(but logically centralized) controller architecture allevi-
ates the issue of a single point of failure but makes the
control plane management more complicated.

• Scalability in terms of number of CPEs represents an
important aspect to be considered when deploying an SD-
WAN solution. In fact, as the network grows in size (e.g.,
CPEs, hosts, etc.), the centralized SD-WAN controller
becomes highly solicited (in terms of events/requests) and
thus overloaded (in terms of bandwidth, processing power
and memory).

• An efficient network monitoring is required for the de-
velopment of control and management applications in
SD-WAN-based networks. However, collecting the ap-
propriate data and statistics without affecting the network
performance is a challenging task. In fact, the continuous
monitoring of network data and statistics may generate
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excessive overheads and thus affect the network perfor-
mance whereas the lack of monitoring may cause an
incorrect behavior of management applications.

• Network security is another crucial challenge for SD-
WAN. The use of VPN tunnels among the CPEs and
the controllers can reduce the risk associated to the most
common network attacks such as DDoS. However, if
a malicious CPE plugs into the network, this can put
all security at risk. Consequently, it is of fundamental
importance to study secure authentication mechanisms
and management of overlay tunnels in order to avoid that
malicious people put network security at risk.

VIII. CONCLUSIONS

An enterprise WAN is a corporate network that connects
geographically spread sites that could be anywhere in the
world. MPLS has been so far the main WAN optimization
technology for EN, allowing to support various services such
as Layer 3 MPLS-VPN over thousands of sites. Although
MPLS has many advantages, SD-WAN is a new and growing
paradigm that could achieve similar performance of MPLS
more cost-effectively. In this work we aim at developing
intelligent TE algorithms for SD-WAN to deliver service flows
with certain QoS over broadband Internet by using software-
defined capabilities. Due to the predictive nature of ML
algorithms, we have demonstrated that TE algorithms based
on RL outperforms all the other deterministic ones in terms
of service uptime. Furthermore, we have demonstrated the
importance of the reward function and how it can be designed
to improve the general performance of an RL algorithm.

In an increasingly Cloud-centric world, SD-WAN represents
a game-changer in driving improved return on network invest-
ments for EN services. It is universally acclaimed as a new and
unprecedented way to easily implement policies across large
WANs at a fraction of the cost of traditional solutions. This
work represents one of the first scientific papers that address
the TE features of an SD-WAN based network by exploiting
deep-RL.
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