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Abstract: Under standard conditions, DSS (duplex stainless steel) features differing amounts of 
ferrite and austenite, essentially depending on the thermal treatment performed. This study is 
focused on the ultrasonic tests (UTs) response of DSS 2205, as a function of the microstructure, in 
terms of austenite volume fraction and austenitic grains evolution owing to different soaking times 
at 1050 °C. UTs were carried out on several samples. The samples underwent varying thermal 
treatments characterized by a constant maintenance temperature with different soaking times that 
allowed for microstructure evolution and modification of the structural constituents’ fraction. The 
UTs have highlighted an attenuation trend with the response mainly dependent upon the wave 
scattering and energy absorption caused by the grain features. In particular, the peak of sound 
attenuation was shown to correspond with the microstructure, which featured a major amount of 
austenite (in terms of volume fraction and the grain dimensions) and the disappearance of austenitic 
precipitates within the ferritic matrix. In order to obtain less UT attenuation, without affecting the 
mechanical and corrosion properties, the soaking should last as little time as possible. 
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1. Introduction 

During manufacturing, determining the soundness of material is crucial in ensuring the 
properties of the components in field. For this reason, non-destructive testing (NDT) is essential and 
often mandatory before and during the commissioning of components [1]. 

As the ultrasonic beam crosses the material, its intensity decreases owing to sound energy loss. 
This is caused by diffraction, scattering, and absorption mechanisms that take place within the 
medium [2]. 

The factors that are primarily responsible for the beam intensity loss are transmission losses 
(absorption), interference effects (diffraction), and beam scattering [3]. Moreover, the propagation of 
ultrasonic waves in crystalline materials is subjected to the interaction with defects (such as non-
metallic inclusions, porosities, and micro-cracks) that cause sound attenuations and variation in the 
sound propagation velocity [4–6]. Furthermore, an ultrasonic wave traveling in such an 
inhomogeneous medium undergoes multiple reflection, transmission, and mode conversion (i.e., 
scattering) at grain boundaries and, therefore, the ultrasound beam gets attenuated. Grain scattering 
depends mainly on the elastic anisotropy of the grains, grains’ geometric features, grain boundaries, 
and texture [7–9]. 

Duplex stainless steels have an attractive combination of mechanical and corrosion properties 
that make them suitable for many marine and petro-chemical applications. This study aims to affirm 
a relationship between ultrasonic attenuation and the lattice features of 2205 duplex stainless steel. 
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Duplex stainless steel (DSS) has higher strength properties than austenitic stainless steel, a superior 
toughness to the ferritic, good weldability, and high resistance to pitting and stress corrosion 
cracking. These unique properties depend on the amount and distribution of austenite and ferrite, 
which further depend on the maintenance temperature of the annealing treatments. It is well known 
that the best compromise between chemical and mechanical properties is obtained by a phase ratio 
equal to 50:50, reached by a solution annealing at 1050 °C followed by water quenching. 

During duplex ultrasonic test (UT) investigation, it is important to consider the variation in wave 
propagation behaviour in the two different phases. In particular, propagation is hindered in the 
austenitic phase mainly because of its FCC (face-centered cubic) cell because of the strong attenuation 
of ultrasound. The FCC lattice is characterized by a large number of normal vibrational modes with 
respect to that of the ferritic matrix, which is BCC (body-centered cubic) [10]. The vibrational modes 
are related to the cell slip systems (a combination of slip planes and slip directions) and are higher in 
austenite than ferrite (at room temperature) [11]. Many slip systems imply many vibrational modes, 
which further implies a major vibrational capacity, which in turn causes a decrease in the propagation 
energy. Moreover, the cell parameters of the BCC are smaller than those of the FCC cell in terms of 
interatomic distance, implying a higher propagation facility [10]. However, when comparing the 
theories and results of several researchers, it must be concluded that the effects of crystalline 
architecture are not yet really clarified [8]. 

The grain size is another factor that must be considered as it can modify the UT response, with 
the attenuation increasing as the grain size increases [3]. Indeed, an increase in grain size corresponds 
to an increase in thermo-elastic losses (especially heat losses), causing the material’s transparency 
conditions to worsen. In general, the larger grain has significant defects that result in wave energy 
dissipation. Theoretically, the attenuation of ultrasound is smaller in a single crystal than in 
polycrystalline materials, because the scattering at grain boundaries is missing. In polycrystalline 
materials, the grain boundary scattering is also larger the more anisotropic the material, that is, the 
more the acoustic impedances of the adjacent grains differ from each other. The velocity thus varies 
from grain to grain, leading to strong reflections at the grain boundaries and, therefore, to strong 
attenuation. The reflection and transmission phenomena at interfaces between two anisotropic 
materials are more complicated owing to the quasi nature of waves and beam skewing, which means 
that—unlike in isotropic materials—the energy flow direction generally does not coincide with the 
direction of wave propagation. Further, all three wave modes couple at the interface in the case of 
anisotropic materials [7,8]. 

According to [12], it is possible to have different types of scattering in relation to the difference 
between wavelength (λ) and grain size (D): Rayleigh scattering (λ >> D), stochastic scattering (λ~D), 
and diffusive scattering (λ < D). Moreover, in the case of Rayleigh scattering, it is possible to introduce 
the ξ factor (E1) as follows: 

ξ = 0,01∗ λ = 0,01 ∗ V/ν (1) 

where λ is the wavelength, V is the sound speed in the medium, and υ is the sound frequency. This 
factor allows to correlate the grain size with the attenuation mechanism: if the average grain size is 
lower than ξ, attenuation is dominated by absorption phenomena; if the average grain size is > ξ, the 
scattering conditions are satisfied [3]. 

Another important factor to consider is the hysteresis caused by the wave propagation; the 
hysteresis appears when the entire wave period is present in a single grain, implying that a portion 
of the grain was stimulated by the wave crest and the other by the wave trough. This difference in 
behaviour leads to heat generation (energy loss) and wave attenuation [13]. 

It is also important to focus attention on the grain boundary itself. By its nature, the grain 
boundary is characterized by an unordered structure and the presence of discontinuities. On one 
hand, this leads to wave attenuation, while on the other, it implies a structure characterized by low 
vibrational modes, thus less capacity for motion and, consequently, attenuation. In this context, a 
finer grain involves substantial grain boundaries and a consequent decrease in attenuation. 

In the present study, ultrasonic investigations have been employed to characterize the influence 
of microstructural features (in terms of austenite quantity and distribution) on sound absorption 
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during NDT investigation in specimens characterized by different annealing soaking times. This 
means a slight difference in austenite amount [14]. 

2. Experimental Procedure 

2.1. Specimens’ Preparation and Heat Treatments 

DSS 2205 was analysed and the chemical composition is reported in Table 1. 

Table 1. Composition by quantometer (analyses performed by Spectromax X) of duplex stainless steel 
(DSS) 2205 grade stainless steels (in weight %). 

Element C Mn Si P S Cr Mo Ni Fe N 
wt. % 0.025 1.80 0.90 0.022 0.010 22.5 3.0 5.5 bal. 0.20 

The specimens were taken from a bar (40 × 25mm) 600 mm in length. The bar was obtained by 
hot forging (reduction ratio equal to 5) and it was then annealed at 1040 °C for 1 h and water 
quenched. This treatment provided the standard initial condition, in terms of chemical 
homogenization, distribution, and morphology of the phases, for the subsequent treatment. From 
this bar, six approximately 100 mm in length specimens were drawn. These were heated in an electric 
muffle furnace at the same temperature (1050 °C) for different times in order to promote a particular 
microstructural evolution (Table 2). 

Table 2. Solution-annealing parameters applied to each coupon. 

Nomenclature Temperature [°C] Time [hours] Cooling 

as-received 1040 1 Water cooling 

F1/2 1050 0.5 Water cooling 

F1 1050 1 Water cooling 

F2 1050 2 Water cooling 

F4 1050 4 Water cooling 

F8 1050 8 Water cooling 

2.2. Etching, Grain Features, and Hardness Test 

Metallographic analyses by means of optical microscopy were performed on each sample after 
standard surface preparation and Beraha’s tint etching [15]. The amounts of austenite and ferrite 
fractions were measured by Fisher MP30 ferritoscope. The hardness of each phase was measured 
using a Vicker’s (HV) hardness tester at a test load of 300 g at room temperature for 15 seconds. A 
Brinell hardness test (HB) was performed as well using a 5 mm penetrator diameter while applying 
a load of 5000 g for 20 s. The hardness tests were performed according to UNI EN ISO 6507-1 (1999) 
and UNI EN ISO 6506-1 (2001). The chemical characterization of the different structural constituents 
was performed by SEM (scanning electron microscopy) equipped with an EDS (Energy Dispersive 
X-ray Spectrometry) probe in order to perform a localized chemical analysis. 

2.3. Attenuation Measurements 

Ultrasonic tests were performed according to the contact pulse-echo method by Krautkramer 
USN 60 unit (GE, Wunstorf, Germany) using a 2 MHz longitudinal wave probe at room temperature. 
The tests were performed on the major axes of the samples and the wave was propagated parallel to 
the metallographic section. Ultragel was used as a couplant for the probe [16]. 

Attenuation refers to sound energy loss, as the ultrasonic beam passes through the material, and 
can be determined by evaluating the multiple backwall reflections visible on a A-scan display 
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(amplitude mode display, represent the amount of received ultrasonic energy as a function of time). 
The amplitude difference between two adjacent signals is then measured and divided by the time 
interval. This calculation determines an attenuation coefficient in decibels per meter [17]. 

3. Results  

The comparison of the duplex structures obtained after different soaking annealing times is 
reported in Figure 1. 

 
Figure 1. Microstructures of duplex stainless steel (DSS) 2205 thermal treated at 1050 °C for different 

soaking times. 

All of the specimens are characterized by a biphasic structure, featured by a ferritic matrix and 
dispersion of austenitic grains in different morphologies. The difference in phase volume fractions 
was determined by the thermal treatment parameters. The main effect is because of the temperature, 
more specifically, an increase in temperature corresponds to an increase in ferrite fraction [18]. The 
treatment time (at a constant temperature) was also important for the kinetic microstructure because 
it influenced the phase; the phases tend towards the equilibrium and it is reached not asymptotically 
and immediately, but by a fluctuating trend [14]. 
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(a) (b) (c) 

Figure 2. Microstrcture of F1/2 (a), F1 (b), and scanning electron microscopy (SEM) caption on sample 
F1/2 for EDS analyses (c). Particulars of the DSS microstructure with varying austenite shapes, it is 
possible to distinguish the following: austenitic islands (I), Widmanstetten arms (W), and (b) 
polygonal (P) and round-shape grains (R). 

Figure 2 is useful to summarize the different morphologies of the austenite phase that can be 
recognized in a duplex stainless-steel microstructure: islands (I), Widmanstätten (W), and polygonal 
(P) and round-shape grains (R). The islands derived from the eutectoid transformation (during 
solidification and cooling) and from the coarsening of smaller grains during the soaking treatment. 
The Widmanstätten structure developed from the island, or at the ferrite–ferrite grain boundaries, 
during the first stage of annealing. The round-shape grains, originating from a martensitic shear 
process, occurred only at the end of the thermal treatment. These grains resulted from a 
crystallographic rotation in a polygonal shape (P in Figure 2) and then grew into the ferritic matrix, 
assuming their round shape because of diffusion mechanisms [11,18–20]. 

Initially, austenite precipitates at the ferrite/ferrite grain boundaries and grows through the 
Widmanstätten morphology into the interior of the grains. Afterwards, austenite also precipitates as 
intra-granular side-plate islands. The rate of this reaction is very fast and the ferrite decomposition is 
fulfilled in a few minutes. As the soaking times of the annealing thermal treatment increase, the fine 
dispersion of nuclei decreases and their larger average size witnesses the competitive character 
characterizing this growth stage [14]. 

Table 3 shows the precise chemical analysis carried out on the different phases characterizing 
the microstructure. It is noted that the matrix, being ferritic, is richer in α-stabilizing elements such 
as Cr and Mo. On the other hand, the dispersed phases in the matrix show an increase in γ-stabilizer, 
rich in Ni and Mn, but poor in Cr and Mo. This confirms that the dispersed phases in the matrix are 
actually all austenitic characterized by different morphologies (I, W, R, P) owing to the different 
nucleation typologies. 

Table 3. Scanning electron microscopy (SEM)-EDS phases chemical composition from Figure 2c. 

wt. % Si Mo Cr Mn Fe Ni 
Spectrum 0 
(α-matrix) 

0.90 3.12 23.86 2.01 65.36 4.75 

Spectrum 1 
(γ-I) 

0.62 1.83 22.01 1.41 67.31 6.83 

Spectrum 2 
(γ-R) 

0.54 1.95 21.74 1.23 67.17 7.38 

Spectrum 3 
(γ-P) 

0.52 1.91 21.59 1.42 67.04 7.53 

Spectrum 4 
(γ-W) 

0.56 1.92 21.79 1.44 66.95 7.35 

Spectrum 5 
(γ-P) 

0.53 1.86 21.47 1.27 67.43 7.45 
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Sample F1/2 shows austenitic islands and a high quantity of Widmanstätten grains, 
characterized by an elongated shape of about 19 µm in length and 4 µm in width. Besides the 
Widmanstätten growth, a martensitic shear process has taken place (at the ferrite–ferrite grain 
boundaries) and this process was responsible for the presence of the round-shape grains. This process 
took place largely at the end of the Widmanstätten formation, as shown in Figure 1, referring to 
samples F1 and F2. In F1, the round grains are approximately 18 (± 5) µm in diameter and, in F2, the 
diameters are equal to 35 (± 6) µm. By increasing the soaking time (F4 in Figure 1), coarsening caused 
the austenitic round-shape grains to become islands. After four hours of treatment, the austenitic 
precipitated, within the ferritic matrix, and disappeared, leaving only the islands present. A 
negligible amount of small strap-grains was present at the ferritic grain boundaries. In this condition, 
the ferritic grains were not interrupted by a different phase. After eight hours of treatment (Figure 1, 
F8), the round austenitic grains appeared within the ferritic matrix and they were characterised by a 
diameter equal to 50 (± 10) µm, thus bigger than those found in samples F1 and F2. These small grains 
were a result of the vanishing islands [21,22]. 

The phase variation is reported in Figure 3, where it is possible to notice that the austenitic 
quantity did not remain constant during annealing. The austenite fraction decreased from its initial 
value [18,19], but increased during the soaking, until a peak, which corresponds to 4 h of treatment. 
At a higher soaking time, the austenite decreased, returning to its previous values. 

 

Figure 3. Amount of austenite measured by the ferritoscope. 

This trend is the result of the inertia of diffusion and, consequently, the inertia of a changing 
microstructure. During annealing, diffusion takes place, acting to homogenize the chemical 
composition and allowing the balance of the phase amount (according to the thermal level) by the 
nucleation and growth of new grains. In the first annealing period, a diffusion phenomenon was 
favoured because of the non-homogeneous chemical composition that results from the fast cooling 
rate of the previous annealing. Even in the early stages of the annealing thermal treatment, the α-
matrix experiences a loss of γ-stabilizer elements, which is the driving force for the precipitation 
processes. Moreover, the fast cooling produces a relevant thermal stress, also associated with the 
different thermal dilatation of the two phases, which allows the formation of low-energy sites for 
austenite nucleation [11]. In the first period of the annealing, supported by fast kinetics, the austenite 
nucleation significantly increased the austenite volume fraction, unbalancing the phase 
repartitioning. With an increased soaking time, to balance the austenitic fraction, the ferrite began to 
grow by boundary migration within the austenite. 

Figure 4 shows the hardness measurements carried out on each specimen. It is possible to note 
that the values remain quite constant. The HV was measured in each phase, but only taking into 
consideration the austenitic islands.  
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Figure 4. Hardness measurements for different annealing socking times. 

The stable hardness trend complies with the material’s behaviour and the measurement shows 
that no precipitation phenomenon has occurred, that is, no hardness modification, confirming that 
the material was not subjected to a phase change. There was a decrease in ferrite micro-hardness after 
four hours of treatment. The Brinell numbers confirmed this behaviour. Most probably, this is 
because of the disappearance of austenitic grains within the ferrite, which led to freely moving 
dislocations in the crystal, and to lower hardness. Moreover, without austenitic grains, less stress is 
placed on the ferrite, benefitting the matrix as well. 

The ultrasonic attenuation and the related longitudinal sound velocity within the medium are 
reported in Figure 5. 

 

Figure 5. Ultrasonic test (UT)-attenuation results for different annealing socking times. 

The attenuation results remain quite constant as the soaking time increases, but exhibit a peak 
corresponding to F4. After 8 h of treatment, attenuation decreases, but it remains higher than F1 and 
F2. The velocity reading displays an opposing trend, but features the same behaviour. 

All of the samples possessed the same microstructure, composed only by ferrite and austenite, 
without any types of secondary phases that were able to modify the interaction with sound waves 
[23]; in this case, the wave propagation was related only to the standard DSS microstructure. 
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Therefore, the important crystal discontinuities able to affect the propagation were grain boundaries, 
grain dimensions, and phases distribution. 

As mentioned previously, the grain dimension (i.e., the grain boundaries extension) plays an 
important role in wave scattering. γ-precipitates are grain-nuclei generated during the phase 
fluctuation to reach the equilibrium amount. These nuclei are smaller than the austenitic island and 
they tend to vanish as the soaking time increases, allowing the increase of the island itself and a bigger 
austenitic amount. The attenuation behaviour is related to the scattering owing to these features in 
relation to the sound’s wavelength (Table 4). 

Table 4. Influence of austenite precipitates on the scattering regarding the ξ parameter. 

Sample Sound velocity 
[m/s] 

ξ 
[μm] 

γ-precipitates 
[μm] 

γ-precipitates 
scattering 

as-received 4034 20.17 30 Yes 
F1/2 4234 21.17 19 No 
F1 4186 20.93 18 No 
F2 4096 20.48 35 Yes 
F4 3796 18.98 0 No 
F8 3964 19.82 50 Yes 

The ferritic matrix and the austenitic islands, having a dimension in the order of 100 μm, meet 
the condition of Rayleigh scattering. On the other hand, the contribution of the γ-precipitates on 
sound attenuation, caused by grain boundaries scattering, is appreciable in the as-received, F2, and 
F8 samples, while in the other conditions, it is negligible [3,12]. 

4. Discussion 

The scope of the work was to guarantee the better UT response without negatively affecting the 
corrosion and mechanical properties of DSS 2205. Therefore, the soaking time was chosen at 1050 °C 
that guarantees the correct phases and phases ratio. The samples displayed the same structural 
constituents, ferrite and austenite, as expected for the material and the process performed. The 
thermal treatments complied varying phase amounts and varying austenite morphology, because of 
the inertia of reaching the correct phase balance. The different morphologies are the result of their 
nature (I, W, P, R) and the austenite evolution. This results from the phase amount fluctuating trend 
around the equilibrium level. It is important to remark that waves propagation is mainly dependent 
on the material elastic modulus that derives from the nature of the atomic bonds. In all samples, the 
microstructure is composed by the same phases (sure enough, the hardness test had confirmed no 
presence of secondary phases); consequently, the elastic modulus remains constant, not leading to 
any changes in sound attenuation or velocity [18,19,24,25]. 

During the fluctuation, until reaching the phase balance, the austenite fraction slowly increased 
before reaching its maximum at F4, which also corresponds to the peak in attenuation. The loss of 
wave energy owing to the quantity of austenite was confirmed. Indeed, the FCC lattice expended a 
larger amount of wave energy in order to activate all of the vibrational modes of the cell, which were 
numerous with respect to the BCC; the attenuation in the austenite is 2.5 times higher than in ferritic 
steel with a similar grain size [7–9,12,13]. 

Regarding the ferritic matrix and the austenitic islands, because their dimensions are small in 
comparison with the wavelength, their scattering contribution on the attenuation is significant [12].  

Up to four hours of heating, no changes in attenuation were detected, although the grain 
morphology underwent significant evolution. Assuming that the Widmanstätten and round-shape 
grains can be considered as discontinuities in the ferritic matrix, they should have been able to 
increase the attenuation and decrease the transparency of the material; but they did not. The effect 
on the wave attenuation is also the result of the relative dimension of the grains with respect to the 
wavelength of the beam. As pointed out by ξ in Table 4, the γ-precipitates in sample F1/2 and F1 are 
small compared with this value, so their contribution to scattering is negligible. Knowing that the 
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scattering condition is “go or go not” [16], they interfere to a lesser extent with the UT-sound, and 
their contribution to attenuation is only by absorption and diffraction. 

In these conditions, the attenuation is mainly owing to the grain nature and not to the presence 
of γ-discontinuities in the ferritic matrix. It is important to focus on sample F4: it shows the bigger 
amount of austenite phase with no γ-precipitates; therefore, the austenitic islands must be bigger 
than in the other cases, allowing a minor ferrite/austenite grain boundaries extension. This should 
translate into a minor attenuation, which is not the case; thus, the main factor involved in the 
attenuation is not the scattering owing to the grain boundaries, but to the wave energy loss trying to 
cross austenite. F2 and F8 samples present a dispersion of big γ-grains within the matrix that are able 
to attenuate the wave; they react rightly worse then F1/2 and F1, but better then F4 because of a minor 
amount of austenite island [3,7–9]. 

When the wave front came across the edge of a reflecting surface, behind this surface, an 
interference pattern is produced, owing to the phase differences inducing the forward-scattered beam 
[24]. Despite a grain boundary, or any other interface, reflecting and refracting a sound beam, the 
wave can continue to propagate as a modified wave, because it must re-form through phase 
reinforcement and cancellation interference, just to overcome the interface. High beam energy 
scattering is generated by a large quantity of grain boundaries, hence microstructures with a large 
quantity of γ-discontinuities promote this kind of dissipation. However, the increase in attenuation 
owing to such a scattering is lower than that caused by the absorption produced by crystal energy 
dissipation. Thus, the energy absorption owing to grain boundaries scattering phenomena is less in 
a matrix free of austenitic discontinuities and the attenuation contribution is mainly caused by the 
energy dissipation owing to the vibrational modes of the constituent itself, thermal losses, and 
diffraction [2,7–9,12,13,25,26]. 

Unfortunately, a comparison, in terms of attenuation, with other alloys is not suitable; duplex 
stainless steels are a peculiar biphasic material in which one phase results in them being transparent 
to the UT, while the does other not. 

5. Conclusions 

The effect of microstructure evolution owing to different annealing times on the attenuation of 
ultrasonic tests was studied on DSS 2205. 

Once the initial attenuation value was measured, the samples underwent different heat 
treatments featured by different soaking times at 1050 °C. The time was changed in order to promote 
a microstructural evolution able to influence the UT response. 

The following conclusions could be pointed out: 
 An increase in the soaking time presents a particular austenite morphology evolution and a 
fluctuating trend of the phase amount before reaching equilibrium, even so instable; 
 The austenitic volume fraction rises, according to this evolution, until a peak that corresponds 
with a 4 h treatment. After this, the austenite nucleates again within the ferrite; 
 The attenuation rears up in correspondence of the major amount of austenite. Then, attenuation 
decreases again because of the nucleation of new austenitic grains; 
 The γ-discontinuities within the ferritic matrix are able to attenuate the wave propagation even 
by scattering only according to ξ factor; 
 The peak in attenuation is detected in the sample showing the highest volume fraction of 
austenitic island and no γ-discontinuities, which implies that the major effect of attenuation is the 
grain nature, the related vibrational modes, absorption, and diffraction. 

In conclusion, in order to obtain less UT attenuation, without affecting the mechanical and 
corrosion properties, the soaking should last as little time as possible. 
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