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C∗-Non-Linear Second Quantization

Luigi Accardi and Ameur Dhahri

Abstract. We construct an inductive system of C∗-algebras each of which
is isomorphic to a finite tensor product of copies of the one-mode n-th
degree polynomial extension of the usual Weyl algebra constructed in our
previous paper (Accardi and Dhahri in Open Syst Inf Dyn 22(3):1550001,
2015). We prove that the inductive limit C∗-algebra is factorizable and
has a natural localization given by a family of C∗-sub-algebras each of
which is localized on a bounded Borel subset of R. Finally, we prove that
the corresponding family of Fock states, defined on the inductive family
of C∗-algebras, is projective if and only if n = 1. This is a weak form
of the no-go theorems which emerge in the study of representations of
current algebras over Lie algebras.

1. Introduction: The C∗-Non-Linear Quantization Program

The present paper is a contribution to the program of constructing a theory of
renormalized higher powers of quantum white noise (RPWN) or equivalently
of non-relativistic free Boson fields.

This program has an old history, but the approach discussed here started
in 1999 with the construction of the Fock representation for the renormalized
square of Boson white noise [2]. This result motivated a large number of papers
extending it in different directions and exhibiting connections with almost all
fields of mathematics, see for example [22] for the case of free white noise, [1]
for the connection with infinite divisibility and for the identification of the vac-
uum distributions of the generalized fields with the three nonstandard Meixner
classes, [3] and [21] for finite temperature representations, [9] for the construc-
tion of the Fock functor, the survey [5] and the paper [6] for the connections
with conformal field theory and with the Virasoro–Zamolodchikov hierarchy,
[7] for the connections between renormalization and central extensions.

The problem is the following. One starts with the Schrödinger represen-
tation of the Heisenberg real ∗-Lie algebra heisR(1, 1) with skew-adjoint gen-
erators iq (imaginary unit times position), −ip (−i times momentum), E := i1
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(i times central element) and relations [iq,−ip] = i1 (we use these notations
to make a bridge between the abstract notations used in Lie algebra theory
and and those commonly used in physics). By a ∗-Lie algebra, we mean a Lie
algebra with an involution, denoted ∗, compatible with the Lie brackets in the
sense that for any pair of elements a, b, of the Lie algebra, one has

[a, b]∗ = [b∗, a∗]

The universal enveloping algebra of heisR(1, 1) called for brevity the full os-
cillator algebra (FOA) has a natural structure of ∗-Lie algebra and can be
identified with the algebra of differential operators in one real variable with
complex polynomial coefficients.

The continuous analog of the Heisenberg Lie algebra is the non-relativistic
free boson field algebra, also called the current algebra over R of the Heisen-
berg algebra, whose only non-zero commutation relations are, in the sense of
operator-valued distributions:

[qs, pt] = δ(s − t)1; s, t ∈ R

The notion of current algebra has been generalized from the Heisenberg algebra
to more general ∗-Lie algebras (see Araki’s paper [13] for a mathematical
treatment and additional references): in this case, the self-adjoint generators
of the Cartan sub-algebras are called generalized fields.

Notice that the definition of current algebra of a given Lie algebra is
independent of any representation of this algebra, i.e., it does not require to
fix a priori a class of states on this algebra.

One can speak of ∗-Lie algebra second quantization to denote the transi-
tion from the construction of unitary representations of a ∗-Lie algebra to the
construction of unitary representations of its current algebra over a measurable
space (typically R with its Borel structure).

Contrarily to the discrete case, the universal enveloping algebra of the
current algebra over R of the Heisenberg algebra is ill defined because of the
emergence of higher powers of the δ-function. This is the mathematical coun-
terpart of the old problem of defining powers of local quantum fields.

Any rule that, giving a meaning to these powers, defines a ∗-Lie algebra
structure is called a renormalization procedure. The survey [5] describes two
inequivalent renormalization procedures and the more recent paper [7] shows
the connection between them.

The second step of the program, after renormalization, is the construction
of unitary representations of the resulting ∗-Lie algebra. This step, which is the
most difficult one because of the no-go theorems (see discussion below), is usu-
ally done by fixing a state and considering the associated cyclic representation.
At the moment, even in the first-order case, i.e., for usual fields, the explic-
itly constructed representations are not many, they are essentially reduced to
gaussian (quasi-free) representations. Moreover, any gaussian representation
can be obtained, by means of a standard construction, from the Fock repre-
sentation which is characterized by the property that the cyclic vector, called
vacuum, is in the kernel of the annihilation operators.
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This property has been taken as an heuristic principle to define the notion
of Fock state also in the higher order situations (see [5] for a precise definition).

It can be proved that, for all renormalization procedures considered up to
now, the Fock representation and the Fock state are factorizable, in the sense
of Araki and Woods [12]. This property poses an obstruction to the existence
of such representation, namely that the restriction of the Fock state on any
factorizable Cartan sub-algebra must give rise to a classical infinitely divisible
process. If this is not the case then no Fock representation, and more generally
no cyclic representation associated to a factorizable state, can exist.

When this is the case we say that a no-go theorem holds. Nowadays,
several instances of no-go theorems are available. The simplest, and proba-
bly most illuminating one, concerns the Schrödinger algebra, which is the Lie
algebra generated by the powers ≤2 of p and q (see [22], also [1] and [8] for
stronger results). This result implies that there is no natural analog of the Fock
representation for the current algebra over R (for any d ∈ N) of the FOA.

On the other side, we know (see [1,2] and the above discussion) that for
some sub-algebras of current algebras of the FOA such a representation exists.
This naturally rises the problem to characterize these sub-algebras.

Since a full characterization at the moment is not available, a natural
intermediate step towards such a characterization is to produce non-trivial
examples.

To this goal a family of natural candidates is provided by the ∗-Lie sub-
algebras of the FOA consisting of the real linear combinations of the derivation
operator and the polynomials of degree less or equal than a fixed natural integer
n. Thus, the generic element of such an algebra has the form

up + P (q); u ∈ R

where P is a polynomial of degree less or equal than n and with real coefficients.
For n = 1, one finds the Heisenberg algebra; for n = 2 the Galilei algebra and
for n > 2, some nilpotent Lie algebras discussed in mathematics [14–16,19]
but up to now, with the notable exception of the Galilei algebra (n = 2), not
considered in physics.

These ∗-Lie algebras enjoy two very special properties:
(i) no renormalization is required in the definition of the associated current

algebra over R;
(ii) in the Schrödinger representation of the FOA the skew-adjoint elements

of these sub-algebras can be explicitly exponentiated giving rise to a
non-linear generalization of the Weyl relations and of the corresponding
Heisenberg group. This was done in the paper [10].

Property (i) supports the hope of the existence of the Fock representation
for the above-mentioned current algebra. A direct proof of this fact could be
obtained by proving the infinite divisibility of all the vacuum characteristic
functions of the generalized fields. Unfortunately, even in the case n = 2,
in which this function can be explicitly calculated, a direct proof of infinite
divisibility can be obtained only for a subset of the parameters which define the
generalized fields, but not for all, and this problem is challenging the experts
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of infinite divisibility since several years. More precisely, the situation with
the vacuum distributions of the generalized field operators is presently the
following. It is proved, in [11], and extended in [10] with a different technique
of proof, that the characteristic function of the generalized fields

A(
√

2q)2 + B(
√

2q) + C(
√

2p), A,B,C ∈ R (1)

with respect to the vacuum vector is given by

(1 − 2itA)− 1
2 e

4C2(A2t4+2iAt3)−3|M|2t2

6(1−2iAt) , M = B + iC (2)

Then, we have the following situation:
– the case n = 1, corresponding to A = 0 in (1), is reduced to standard, i.e.,

linear, quantization. Hence, all non-trivial distributions in (2) (|M | �= 0)
are Gaussian.

– For n = 2, the 3-real-parameter family (2) interpolates between the
Gaussian distribution, corresponding to A = 0, |M | �= 0 (i.e., the pre-
vious case) and the Gamma distribution, corresponding to A �= 0 and
B = C = 0. On the structure of the interpolating distributions little is
known at the moment. For example, Accardi et al. [11] have proved that
if B = 0 the characteristic functions (2) are infinitely divisible, but the
case B �= 0 is an open challenge since several years.

– For n ≥ 3, the generalized fields are an (n + 1)-real-parameter family of
real-valued random variables the form

An(
√

2q)n+An−1(
√

2q)n−1 + · · · + A1(
√

2q)+A0(
√

2p), An, . . . , A0 ∈ R (3)

and practically nothing is known on their vacuum distributions except
for very special values of the parameters (corresponding to powers of the
standard Gaussian).

In the present paper, we exploit property (ii) and the following heuristic consid-
erations are aimed at making a bridge between the mathematical construction
below and its potential physical interpretation.

Our goal is to construct a C∗-algebra whose generators can be naturally
identified with the following formal expressions that we call the non-linear
Weyl operators:

e
∑n+1

j=0 Lj(fj) (4)
The formal generators of the non-linear Weyl operators (called non-linear
fields) are heuristically expressed as powers of the standard quantum white
noise (or free Boson field), i.e., the pair of operator-valued distributions qt, pt

with commutation relations

[qs, pt] = iδ(t − s)

in the following way:

Ln+1(fn+1) := ip(fn+1) =
∫

R

fn+1(t)iptdt;

L0(f) :=
∫

R

f0(t)iq0t dt := i1 ·
∫

f0(t)dt
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Lk(fk) := ikqk(fk) =
∫

R

fk(t)iqk
t dt; k ∈ {1, . . . , n} (5)

For n > 1, the expressions in (5) are ill defined because qk
t is the k-th power

of the standard white noise, that is a distribution-valued process. Our goal is
to give a meaning these expressions. When n = 1, the expressions (5) are well
understood and various forms of second quantization are known. For example,
one can prove the unitarity of the Fock representation, i.e., the exponentia-
bility, inside it, of the generators (5) and deduce the commutation relations
satisfied by these exponentials. A different example, for n = 1, is provided
by Weyl second quantization: in it, by heuristic calculations, one guesses the
commutation relations that should be satisfied by any representation of the ex-
ponentials (4) and then one proves the existence of a C∗-algebra which realizes
these commutation relations.

In the present paper, we apply this approach to give a meaning to the
exponentials (4) when the test functions fj (j ∈ {0, 1, . . . , n + 1}) are step
functions with a finite range. To this goal we exploit the fact that, if π is a
finite Borel partition of a bounded Borel subset I of R, then there is a natural
way to give a meaning to the generalized Weyl algebra with test functions
constant on the sets of π. This is based on the identification of this algebra with
the tensor product of |π| (cardinality of π) copies of the one-mode generalized
Weyl algebra (see Sect. 8). Intuitively, if

fj =
∑

J∈π

aj,JχJ

where for any bounded Borel set J ⊂ R

χJ(x) :=

{
1 if x ∈ J

0 if x /∈ J
(6)

then

e
∫
R

∑n+1
j=0 fj(t)q

j
t dt = e

∑n+1
j=0 Lj(fj) = e

∑n+1
j=0

∑
J∈π aj,JLj(χJ )

≡
⊗

J∈π

e
∑n+1

j=0 aj,JLj(χJ ) (7)

where the Lj(χJ ) (J ∈ π) are identified to rescaled copies of the generators of
the one-mode generalized Weyl algebra. This identification strongly depends
on the specific structure of the Lie algebra considered (see Sect. 6 below).

Using this, we construct an inductive system of C∗-algebras each of which
is isomorphic to a finite tensor product of copies of the one-mode generalized
Weyl algebra but the embeddings defining the inductive system are not the
usual tensor product embeddings because they depend on the above-mentioned
identifications. The identities (7) provide an intuitive bridge between our in-
ductive construction and our goal to give a meaning to the formal expressions
(5). Once a representation with good continuity properties is obtained, one
can extend the test function space to more general functions thus obtaining
non-linear white noise integrals.
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The C∗-algebra, obtained as inductive limit from the above construction,
is naturally interpreted as a C∗-quantization, of the current algebra over R, of
the non-linear Weyl ∗-Lie algebra with test functions given by the finitely val-
ued step functions with compact support. This C∗-algebra has a localization
given by a family of C∗-sub-algebras, each of which has a natural localiza-
tion on bounded Borel subset of R. Moreover, this system of local algebras is
factorizable in the sense of Definition 8 below.

With this construction, the problem of constructing unitary representa-
tions, which guarantee the existence of the generalized fields, of the current
algebra over R of the initial ∗-Lie algebra is reduced to the problem of finding
representations of this C∗-algebra with the above-mentioned continuity prop-
erty. The advantages of the transition from the unbounded formulation of the
commutation relations to the bounded one are well known in the case of stan-
dard, linear, quantization and our hope is that these advantages could be put
to use also in the non-linear case.

The simplest candidate for such a representation would be the (appropri-
ately defined) non-linear generalization of the Fock representation. However,
in the last section of the paper, it is shown that although the Fock state is
defined (in the usual way) on each of the C∗-algebras of the inductive family,
due to the above-mentioned identifications, the corresponding family of states
is projective if and only if n = 1 (i.e., for the usual Weyl algebra).

This result can be considered as a no-go theorem pointing out in the same
direction as the no-go theorems proved in [1,8,22] although quite different, not
only because the algebras involved are different, but also in its formulation and
in the tools used for its proof. It implies that, in the limit C∗-algebra, there is
no factorizable state whose restrictions to the finite dimensional approximating
sub-algebras coincide with the corresponding Fock states. On the other hand,
experience on all the known examples suggests the factorizability condition as
a natural one for the notion of Fock state.

In any case, it should be emphasized that the problem to construct a
representation of the non-linear Weyl C∗-algebra, with the above-mentioned
continuity properties, is at the moment open.

The basic construction of the present paper can be extended to more
general classes of ∗-Lie algebras [for example the C∗-algebras associated to
the renormalized square of white noise (RSWN)] and more general spaces
(i.e., Rd instead of R).

2. The 1-Mode n-th Degree Heisenberg ∗-Lie Algebra
heisR(1, n)

Definition 1. For n ∈ N
∗, the 1-mode n-th degree Heisenberg algebra, denoted

heisR(1, n), is the pair
{
Vn+2, (Lj)n+1

j=0

}

where:
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– Vn+2 is a (n + 2)-dimensional real ∗-Lie algebra;
– {Lj}n+1

j=0 is a skew-adjoint basis of Vn+2;
– the Lie brackets among the generators are given by

[Li, Lj ] = 0; ∀i, j ∈ {0, 1, . . . , n}
[Ln+1, Lk] = kLk−1; ∀k ∈ {1, . . . , n}, L−1 := 0

Remark 1. (L′
j)

n+1
j=0

Denoting Rn[X] the vector space of polynomials in one indeterminate
with real coefficients and degree less than or equal n. Identifying Ln with the
power of the indeterminate X

Xn → Ln

leads to a (linear) isomorphism R × Rn[X] ∼= R
n+2 → heisR(1, n) defined by

the map
R

n+2 
 (u, (ak)0≤k≤n) �→ �0(u, P ) ∈ heisR(1, n) (8)

where

�0(u, P ) := uLn+1 +
n∑

k=0

akLk := uLn+1 + P (L) ≡ (u, (ak)0≤k≤n)

between the algebra (u, P ) ∈ u ∈ R × P ∈ Rn[X] and heisR(1, n).

3. The Schrödinger Representation and the Polynomial
Heisenberg Group Heis(1, n)

In the 1-dimensional case (more generally, in the finite dimensional case), there
is no problem in giving a meaning to the higher powers of the position operator:
they are well-defined self-adjoint operators in the Fock representation. In this
sense, as explained in the introduction, the 1-dimensional Fock representation
will be the building block of the construction that follows.

Let p, q, 1 be the usual momentum, position and identity operators acting
on the one-mode boson Fock space Γ(C)

Γ(C) ∼= L2(R) (9)

The maximal algebraic domain Dmax (see [4]), consisting of the linear combi-
nations of vectors of the form

qnpkψz; k, n ∈ N, z ∈ C

where ψz is the exponential vector associated to z ∈ C, is a dense subspace of
Γ(C) invariant under the action of p and q hence of all the polynomials in the
two non-commuting variables p and q. In particular, for each n ∈ N, the real
linear span of the set {i1, ip, iq, . . . , iqn}, denoted heisR(F, 1, n), leaves Dmax

invariant. Hence, the commutators of elements of this space are well defined
on this domain and one easily verifies that they define a structure of ∗-Lie
algebra on heisR(F, 1, n).
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Lemma 1. In the above notations, the map

Ln+1 �→ ip, L0 �→ i1, Lk �→ iqk; k ∈ {1, . . . , n} (10)

admits a unique linear extension from heisR(1, n) onto heisR(F, 1, n) which is
a ∗-Lie algebra isomorphism called the Schrödinger representation of the n-th
degree Heisenberg algebra heisR(1, n).

Proof. The linear space isomorphism property follows from the linear inde-
pendence of the set {1, p, q, . . . , qn}. The ∗-Lie algebra isomorphism property
follows from direct computation. �

In [10] (Theorem 1), it is proved that the unitary operators

W (u, P ) := ei(up+P (q)) ∈ Un(L2(R)); (u, P ) ∈ R × Rn[X] (11)

satisfy the following polynomial extension of the Weyl relations:

W (u, P )W (v,Q) = W ((u, P ) ◦ (v,Q)); ∀(u, P ), (v,Q) ∈ R × Rn[X] (12)

where
(u, P ) ◦ (v,Q) := (u + v, T−1

u+v(TuP + TvSuQ)) (13)

and for any u,w ∈ R, the linear operators Tw, Su : Rn[X] → Rn[X]
are defined by the following prescriptions:

Tw1 = 1

Tw(Xk) =
k−1∑

h=0

k!
(k + 1 − h)!h!

wk−hXh + Xk; ∀k ∈ {1, . . . , n} (14)

(SuP )(X) := P (X + u) translation operator on Rn[X]

Denote

WF,1,n := norm closure in B(Γ(C)) of the linear span of the operators (11).

The identity (12) implies that WF,1,n is a C∗-algebra.
In [10], it is proved that the composition law (13) is a Lie group law on

R × Rn[X] whose Lie algebra is heisR(1, n). Since the elements of heisR(1, n)
are parameterized by the pairs (u, P ) ∈ R × Rn[X], it is natural to introduce
the following notation.

Definition 2 (see [10]). The 1-mode n-th degree Heisenberg group is the set

Heis(1, n) :=
{

e�0(u,P ) : (u, P ) ∈ R × Rn[X]
}

(15)

with composition law

e�0(u,P ) ◦ e�0(v,Q) := e�0((u+v,T −1
u+v(TuP+TvSuQ)))

The name Heis(1, n) is motivated by the fact that, for n = 1, Heis(1, n)
reduces to the usual the 1-mode Heisenberg group.
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4. The Free Group-C∗-Algebra of Heis(1, n)

There are many well-known ways to associate a ∗-algebra (C∗-, Banach, . . .,)
to a group. We want to construct a C∗-algebra, canonically generated by the
elements of the group Heis(1, n) and in which these elements are linearly in-
dependent (this is used in Corollary 1 below). In the case n = 1, this property
holds in the Fock representation. For n > 1, we conjecture that this property
is still valid, but at the moment no proof is available. Therefore, we introduce
a more abstract C∗-algebra, obtained by extending to the non-linear Weyl op-
erators a construction used by Petz ([20], p. 14) for the usual Weyl algebra
(see [17] for the origins of this construction). In particular, we too refer to [18]
Ch. IV, Sect. 18.3 for the notion of minimal regular norm.

Definition 3. Let G be a group. The free complex vector space generated by
the set

{Wg : g ∈ G}
has a unique structure of unital ∗-algebra, denoted W0(G) and defined by the
prescription that the map g �→ Wg defines a unitary representation of G onto
W0(G), equivalently:

WgWh := Wgh; g, h ∈ G

(Wg)∗ := Wg−1 ; g ∈ G (16)
1 := We

The completion of W0(G) under the (minimal regular) C∗-norm

‖x‖ := sup{‖π(x)‖ : π ∈ {∗-representations of G}}; x ∈ W0(G)

(where ∗-representation means weakly continuous ∗-homomorphism of
W0(G) into the bounded operators of some separable Hilbert space) will be
called the free group—C∗-algebra of G and denoted W(G). Experience shows
that it is worth to emphasize that the term free is referred to algebra and not
to group.

Remark 2. Because of (16), a ∗-representation of W(G) maps the generators
Wg (g ∈ G), into unitary operators.

Remark 3. If G,G′ are groups, then any group homomorphism (resp. isomor-
phism) α : G → G′, extends uniquely to a C∗-algebra homomorphism (resp.
isomorphism) α̃ : W(G) → W(G′) characterized by the condition

α̃(Wg) := Wαg; g ∈ G

Definition 4. If G = Heis(1, n), its free group—C∗-algebra is called the 1-mode
n-th degree Weyl algebra and denoted

W0
1,n := W0(Heis(1, n)) (17)

For its generators, called the 1-mode n-th degree Weyl operators, we will use
the notation

W 0(u, P ) := We�0(u,P ) ; (u, P ) ∈ R × Rn[X] (18)
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By construction, the map

uF : W 0(u, P ) ∈ W0
1,n �→ W (u, P ) ∈ WF,1,n (19)

where the operators W (u, P ) are those defined in (11), is a group isomorphism.
Hence the definition of free group-C∗-algebra implies that it can be extended
to a surjective ∗-representation called the Fock representation of W0

1,n. We will
use the same symbol uF for this extension.

We conjecture that, in analogy with the case n = 1, the ∗-homomorphism
of W0

1,n onto WF,1,n is in fact an isomorphism and that there is a unique C∗-
norm on W0

1,n.

5. The Current Algebra of heisR(1, n) Over R

Denote

H0(R) := L1
R
(R) ∩ L∞

R
(R) =

⋂

1≤p≤∞
Lp
R
(R)

H0(R) has a natural structure of real pre-Hilbert algebra with the pointwise
operations and the L2-scalar product.

Lemma 2. For any ∗-sub-algebra T of H0(R) and n ∈ N, there exists a unique
real ∗-Lie algebra with skew-adjoint generators

{L0 , Lk(f) : k ∈ {1, . . . , n + 1}; f ∈ T }
where, with the notation

L0(f) := L0

∫

R

f(t)dt; L−1(f) = 0; ∀f ∈ T (20)

the maps f �→ Lk(f) (k ∈ {0, 1, . . . , n}) are real linear on T and the Lie
brackets are given, for all f, g ∈ T , by

[Li(f), Lj(g)] = 0; i, j ∈ {0, 1, . . . , n} (21)
[Ln+1(f), Lk(g)] = kLk−1(fg); k ∈ {0, 1, 2, . . . , n}, L−1(f) = 0 (22)

Proof. By definition, the Lie brackets of two generators defined by (21), (22)
are a multiple of the generators. To verify that the Jacobi identity is satisfied
notice that, for any i, j, k ∈ {0, 1, . . . , n}

[Li(f1), [Lj(f2), Lk(f3)]] = 0

unless exactly 2 among the indices i, j, k are equal to n + 1. Moreover, up to
change of sign one can assume that i = j = n + 1. In this case, one verifies
that

[Ln+1(f1), [Ln+1(f2), Lk(f3)]] = k(k − 1)Lk−2(f1f2f3)

[Ln+1(f2), [Lk(f3), Ln+1(f1)]] = −k(k − 1)Lk−2(f1f2f3)

[Lk(f3), [Ln+1(f1), Ln+1(f2)]] = 0

and adding these identities side by side the Jacobi identity follows. �
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Definition 5. The real ∗-Lie algebra defined in Lemma 2 will be denoted
heisR(1, n, T ). If I ⊂ R is a bounded Borel subset, we denote

TI := the sub-algebra of T of functions with support in I (23)

In analogy with the notation (8), we write the generic element of
heisR(1, n, T ) in the form

�(f̃) := Ln+1(fn+1) +
n∑

k=0

Lk(fk); f0, . . . , fn+1 ∈ T (24)

where, here and in the following, if (f0, . . . , fn+1) is an ordered (n + 2)-tuple
of elements of T , we will use the notation

f̃ := (f0, . . . , fn+1) (25)

6. Isomorphisms Between the Current Algebras
heisR(1, n,RχI) and heisR(1, n)

In the notations of the previous section, of Definition 5 and (6), for a bounded
Borel subset I of R, we define

RχI := {the real algebra of multiples of χI}
Thus,

heisR(1, n,RχI) ⊂ heisR(1, n,H0(R))

is the ∗-Lie sub-algebra of heisR(1, n,H0(R)) with linear skew-adjoint genera-
tors

{Lk(χI) : k ∈ {0, 1, . . . , n}}
and brackets

[Ln+1(χI), Lk(χI)] = kLk−1(χI); k ∈ {0} ∪ {2, . . . , n} (26)

for k ∈ {2, . . . , n} and the other commutators vanish. Recalling the notation
(20), one must have

L0(χI) = |I|L0

Lemma 3. In the notations of Sect. 3, a real linear map ŝI : heisR(1, n,RχI) →
heisR(F, 1, n) satisfying for some constants aI , bI , ck,I ∈ R

∗ := R\{0} and for
each k ∈ {1, . . . , n}

ŝI(L0) = aI i1 (27)
ŝI(Ln+1(χI)) = bI ip (28)

ŝI(Lk(χI)) = ck,I iq
k; ∀k ∈ {1, . . . , n} (29)

is a real ∗-Lie algebra isomorphism if and only if

ck,I = b−k
I |I|aI ; ∀k ∈ {1, . . . , n} (30)

The additional condition
c1,I = bI (31)
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implies that aI must be > 0 and

ck,I = |I|1− k
2 a

1− k
2

I ; ∀k ∈ {1, . . . , n} (32)

Remark 4. In the above statement, heisR(F, 1, n) can be replaced by
heisR(1, n) because of the real ∗-Lie algebra isomorphism between the two.

Proof. By definition, ŝI maps a basis of heisR(1, n,RχI) into a basis of
heisR(F, 1, n) because the constants bI , ck,I are non-zero hence it defines a
unique vector space isomorphism which is a ∗-map because the constants are
real. Moreover, (27), (28), and (29) imply that

[ŝI(Ln+1(χI), ŝI(L1(χI))] = [bI ip, c1,I iq] = bIc1,I [ip, iq] = bIc1,I i1

while (26) and (29) imply that

ŝI([Ln+1(χI), L1(χI)]) = ŝI(|I|L0) = |I|ŝI(L0) = |I|aI i1

The isomorphism condition then implies that

bIc1,I = |I|aI (33)

The same argument, using (26), shows that for all k ∈ {2, . . . , n}
[ŝI(Ln+1(χI)), ŝI(Lk(χI))] = [bI ip, ck,I iq

k] = bIck,I [ip, iqk] = bIck,Ikiqk−1

ŝI([Ln+1(χI), Lk(χI)]) = ŝI(kLk−1(χI)) = kŝI(Lk−1(χI)) = kck−1,I iq
k−1

and the isomorphism condition implies that

bIck,I = ck−1,I

⇔ ck,I = b−1
I ck−1,I = b−2

I ck−2,I = · · · = b
−(k−1)
I c1,I = b−k

I |I|aI

which is (30). Finally, if (31) holds, then (33) becomes

b2I = |I|aI

Thus, aI must be > 0 and bI = |I|1/2a
1/2
I which implies (32). �

Remark 5. In the following, we fix condition (31) and put

aI = 1 (34)

for all I so that the real ∗-Lie algebras isomorphism ŝI is given by (27) and
(32). Therefore, its inverse ŝ−1

I is given, on the generators, by:

ŝ−1
I (i1) = L0

ŝ−1
I (ip) = |I|− 1

2 Ln+1(χI)

ŝ−1
I (iqk) = |I|k/2−1Lk(χI); ∀k ∈ {1, . . . , n}

The reason why we introduce the additional conditions (31) and (34) will be
explained in Remark 7 at the end of Sect. 9.

Remark 6. Lemma 3 and condition (34) mean that, for any bounded Borel
set I ⊂ R, heisR(1, n,RχI) can be identified to a copy of heisR(1, n) with the
rescaled basis

{i|I|L0, i|I| 1
2 Ln+1, i|I|1− k

2 Lk, k = 1, . . . , n} (35)
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In analogy with (8), we parameterize the elements of heisR(1, n,RχI),
with elements of R × Rn[X], and we write

�I(u, P ) := uLn+1(χI) + P (L(χI)); u ∈ R (36)

where P :=
∑n

j=0 ajX
j is a polynomial in one indeterminate and we use the

convention

P (L(χI)) :=
n∑

j=0

ajLj(χI) := a0|I|L0 +
n∑

j=1

ajLj(χI) (37)

The image of such an element under the isomorphism ŝI is

ŝI(�I(u, P )) = i(u|I| 1
2 p + PI(q)) (38)

where by definition:

PI(X) :=
n∑

j=0

aj |I|1− j
2 Xj = a0|I|1 +

n∑

j=1

aj |I|1− j
2 Xj (39)

Introducing the linear change of coordinates in R × Rn[X] defined by

k̂I(u, P ) := (u|I| 1
2 , PI) ≡

(
u|I| 1

2 , (aj |I|1− j
2 )

)
(40)

where PI is defined by (39) we see that, in the notations (8) and (36), one has

ŝI ◦ �I = �0 ◦ k̂I (41)

7. The Group Heis(1, n,RχI) and Its C∗-Algebra

In the notations and assumptions of Sect. 6, we have seen that
heisR(1, n,RχI) is isomorphic to heisR(1, n). Since R

n+2 is connected and
simply connected, the Lie group of heisR(1, n,RχI), denoted Heis(1, n,RχI),
is isomorphic to Heis(1, n). In analogy with the notation (15), the generic
element of Heis(1, n,RχI) will be denoted

e�I(u,P ); (u, P ) ∈ R × Rn[X] (42)

Definition 6. For any bounded Borel set I ⊂ R, we denote

W0
1,n;I := W(Heis(1, n,RχI))

the free group-C∗-algebra of the group Heis(1, n,RχI)). In analogy with (18),
its generators will be called the one-mode n-th degree Weyl operators localized
on I and denoted

W 0
I (u, P ) := We�I (u,P ) ∈ W0

1,n;I (43)

Remark 7. Since the groups Heis(1, n,RχI)) and Heis(1, n) are isomorphic,
the same is true for the corresponding free group-C∗-algebras.

In the following section, we show that, in these C∗-algebra isomorphisms,
the group generators of W0

1,n;I are mapped into a set of group generators of
W0

1,n which depends on I and we introduce a construction that allows to get
rid of this dependence.
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7.1. C∗-Algebras Isomorphism

In the notations (8) and (42), the map

e�I(u,P ) ∈ Heis(1, n,RχI) �→ eŝI(�I(u,P )) ∈ Heis(1, n)

where ŝI the isomorphism defined in Lemma 3, is a Lie group isomorphism,
hence it can be extended to a C∗-isomorphism of the corresponding free group-
C∗-algebras.

This extension will be denoted with the symbol:

s0I : W0
1,n;I → W0

1,n

In view of the identity (41), and in the notations (18) and (43), the explicit
form of s0I on the generators is given by

s0I(W
0
I (u, P )) = W 0(k̂I(u, P )) (44)

where k̂I is the linear map defined by (40) and (u, P ) ∈ R × Rn[X].
It is clear from (40) and (44) that, as a vector space, s0I(W0

1,n;I) coincides
with W0

1,n. In this section, we will prove that the map

W 0(u, P ) ∈ W0
1,n �→ W 0(k̂I(u, P )) ∈ W0

1,n (45)

induces a C∗-algebra automorphism denoted kI . To this goal, we use

W 0(k̂I(u, P ))W 0(k̂I(v,Q)) = W 0(k̂I(u, P ) ◦ k̂I(v,Q))

and the following result.

Lemma 4. For all u ∈ R and P ∈ Rn[X], let k̂I be the linear map defined by
(40). Then, denoting with the same symbol k̂I its restriction on Rn[X], one
has:

k̂I ◦ Tu(P ) = T
u|I| 12 ◦ k̂I(P )

k̂−1
I ◦ T−1

u (P ) = T−1

u|I|− 1
2

◦ k̂−1
I (P )

k̂I ◦ T−1
u (P ) = T−1

u|I| 12
◦ k̂I(P )

k̂−1
I ◦ Tu(P ) = T

u|I|− 1
2

◦ k̂−1
I (P )

Proof. Since both Tu and k̂I are linear maps, it is sufficient to prove the lemma
for P (X) = Xk (k ∈ {0, . . . , n}). For k = 0, all the identities in the lemma are
obviously true. Let k ∈ {1, . . . , n}. Then from the identity (14) one has

T
u|I| 12 ◦ k̂I(Xk) = T

u|I| 12 (|I|1− k
2 Xk)

= |I|1− k
2 T

u|I| 12 (Xk)

= |I|1− k
2

[
k−1∑

h=0

k!
(k + 1 − h)!h!

uk−h|I| k−h
2 Xh + Xk

]
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=
k−1∑

h=0

k!
(k + 1 − h)!h!

uk−h|I|1− h
2 Xh + |I|1− k

2 Xk

= k̂I ◦ Tu(Xk) (46)

(46) is equivalent to

T
u|I| 12 ◦ k̂I = k̂I ◦ Tu ⇔ k̂−1

I ◦ T−1

u|I| 12
= T−1

u ◦ k̂−1
I

Replacing u by u|I|− 1
2 , this yields

k̂−1
I ◦ T−1

u = T−1

u|I|− 1
2

◦ k̂−1
I (47)

From identities (46) and (47), one gets

T
u|I| 12 ◦ k̂I ◦ T−1

u = k̂I

T
u|I|− 1

2
◦ k̂−1

I ◦ T−1
u = k̂−1

I

or equivalently

k̂I ◦ T−1
u = T−1

u|I| 12
◦ k̂I

k̂−1
I ◦ Tu = T

u|I|− 1
2

◦ k̂−1
I

�

Proposition 1. k̂I is a group automorphism for the composition law (13).

Proof. We have to prove that for all (u, P ), (v,Q) ∈ R × Rn[X], one has

(k̂I(u, P ) ◦ k̂I(v,Q)) = k̂I

(

(u + v);T−1
(u+v)

(
TuP + TvSuQ

)
)

We know that

k̂I(u, P ) ◦ k̂I(v,Q) = (u|I| 1
2 , PI) ◦ (v|I| 1

2 , QI)

where PI(X) = P (|I|− 1
2 X) and QI(X) = Q(|I|− 1

2 X). But from (2), we know
that

(u|I| 1
2 , PI) ◦ (v|I| 1

2 , QI)

=
(

(u + v)|I| 1
2 , T−1

(u+v)|I| 12
(
T

u|I| 12 PI + T
v|I| 12 SuQI

)
)

=
(

(u + v)|I| 1
2 , T−1

(u+v)|I| 12
(
T

u|I| 12 k̂I(P ) + T
v|I| 12 Suk̂I(Q)

)
)

Furthermore, from Lemma 4, we know that

T−1

(u+v)|I| 12
T

u|I| 12 k̂I(P ) = k̂IT
−1
(u+v)Tu(P )

Moreover, using

Suk̂I(Q) = k̂ISu(Q)
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We also have

T−1

(u+v)|I| 12
T

v|I| 12 Suk̂I(Q) = T−1

(u+v)|I| 12
T

v|I| 12 k̂ISu(Q)

= T−1

(u+v)|I| 12
k̂ITvSu(Q)

= k̂IT
−1
(u+v)TvSu(Q)

Hence, one gets

(u|I| 1
2 , PI) ◦ (v|I| 1

2 , QI) =
(

(u + v)|I| 1
2 , k̂IT

−1
(u+v)

(
Tu(P ) + TvSu(Q)

)
)

= k̂I

(

(u + v), T−1
(u+v)

(
Tu(P ) + TvSu(Q)

)
)

= k̂I

(
(u, P ) ◦ (v,Q)

)

and this proves the statement. �

Corollary 1. The map:

sI := k−1
I ◦ s0I : W0

1,n;I → W0
1,n

is a C∗-algebra isomorphism characterized by the condition

sI(W 0
I (u, P )) = W 0(u, P ); ∀(u, P ) ∈ R

n+2 (48)

Proof. (48) is clear from (44) and the definition (45) of kI .
We know that s0I is a C∗-algebra isomorphism. From Proposition 1, we know
that k̂I is a group automorphism for the composition law defined by (13).
Because of the linear independence of the free group algebra generators kI ex-
tends to a C∗-algebra automorphism. Thus, sI is composed of an isomorphism
with an automorphism and the thesis follows. �

8. The Inductive Limit

In the following, when speaking of tensor products of C∗-algebras, it will be
understood that a choice of a cross norm has been fixed and that all tensor
products are referred to the same choice.

For a bounded Borel subset I of R, let W0
1,n;I be the C∗-algebra in De-

finition 6 and let the isomorphisms sI : W0
1,n;I → W0

1,n defined by (48). For
π = (Ij)j∈F ∈ Partfin(I) define the C∗-algebra

W0
1,n;I;π :=

⊗

j∈F

W0
1,n;Ij

(49)

the injective C∗-homomorphism (C∗-embedding)

zI,π :=

⎛

⎝
(diag)⊗

j∈F

s−1
Ij

⎞

⎠ ◦ sI : W0
1,n;I →

⊗

j∈F

W0
1,n;Ij

= W0
1,n;I;π
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Then, for any π ≺ π′ ∈ Partfin(I), the map

zI;π,π′ :=
⊗

j∈F

⎛

⎝
(diag)⊗

Ij⊇I′∈π′
s−1

I′

⎞

⎠ ◦ sIj
: W0

1,n;I;π →
⊗

j∈F

⊗

Ij⊇I′∈π′
W0

1,n;I′

= W0
1,n;I;π′ (50)

is a C∗-embedding. Moreover, by construction and in the notations of Defini-
tion 6, for all u ∈ R and P =

∑n
j=0 ajX

n ∈ Rn[X], one has

zI;π,π′zI,π(W 0
I (u, P )) :=

⊗

I′∈π′
W 0

I′(u, P ) = zI,π′(W 0
I (u, P )) ∈ W0

1,n;I;π′

Lemma 5. The family
{
(W0

1,n;I;π)π∈Partfin(I), (zI;π,π′)π≺π′∈Partfin(I)

}
(51)

is an inductive system of C∗-algebras, i.e., for all π ≺ π′, zI;π,π′ is a morphism
and if π ≺ π′ ≺ π′′ ∈ Partfin(I) one has

zI;π′,π′′zI;π,π′ = zI;π,π′′ (52)

Proof. We have already proved that the zI,π,π′ are C∗-embeddings. Therefore,
it remains to prove (52). To this goal, for π, π′, π′′ as in the statement, using
the identity

⊗

I′∈π′
=

⊗

I∈π

⊗

π′	I′⊆I

one finds

zI;π′′,π′zI;π,π′ =

⎛

⎝
⊗

I′∈π′

⎛

⎝
(diag)⊗

π′′�I′′⊆I′
s−1

I′′

⎞

⎠ ◦ sI′

⎞

⎠

⎛

⎝
⊗

I∈π

⎛

⎝
(diag)⊗

π′�I′⊆I

s−1
I′

⎞

⎠ ◦ sI

⎞

⎠

=

⎛

⎝
⊗

I∈π

⊗

π′�I′⊆I

⎛

⎝
(diag)⊗

π′′�I′′⊆I′
s−1

I′′

⎞

⎠ ◦ sI′

⎞

⎠

⎛

⎝
⊗

I∈π

⎛

⎝
(diag)⊗

π′�I′⊆I

s−1
I′

⎞

⎠ ◦ sI

⎞

⎠

=
⊗

I∈π

⎛

⎝
⊗

π′�I′⊆I

⎛

⎝
(diag)⊗

π′′�I′′⊆I′
s−1

I′′

⎞

⎠ ◦ sI′

⎞

⎠

⎛

⎝

⎛

⎝
(diag)⊗

π′�I′⊆I

s−1
I′

⎞

⎠ ◦ sI

⎞

⎠

=
⊗

I∈π

⊗

π′�I′⊆I

⎛

⎝

⎛

⎝
(diag)⊗

π′′�I′′⊆I′
s−1

I′′

⎞

⎠ ◦ sI′
(
s−1

I′

)
◦ sI

⎞

⎠

=
⊗

I∈π

⎛

⎝

⎛

⎝
⊗

π′�I′⊆I

(diag)⊗

π′′�I′′⊆I′
s−1

I′′

⎞

⎠ ◦ sI

⎞

⎠

=
⊗

I∈π

⎛

⎝

⎛

⎝
(diag)⊗

π′′�I′′⊆I

s−1
I′′

⎞

⎠ ◦ sI

⎞

⎠ = zI;π′′,π

�
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Definition 7. For any bounded Borel subset I of R, we denote
{
W1,n;I , (z̃I;π)π∈Partfin(I)

}

the inductive limit of the family (51) i.e., W1,n;I is a C∗-algebra and for any
π ∈ Partfin(I) and in the notation (49),

z̃I;π : W0
1,n;I;π → W1,n;I

is an embedding satisfying

z̃I;π′zI;π,π′ = z̃I;π; ∀π ≺ π′ ∈ Partfin(I)

Remark. Intuitively one can think of the elements of W1,n;I as a realization of
the non-linear Weyl operators: (4) with finitely valued, compact support, test
functions.

8.1. Factorizable Families of C∗-Algebras

Definition 8. A family of C∗-algebras {WI}, indexed by the bounded Borel
subsets of R, is called factorizable if, for every bounded Borel I ⊂ R and every
Borel partition π of I, there is an isomorphism

uI,π :
⊗

Ij∈π

WIj
→ WI

If this is the case, an operator wI ∈ WI is called factorizable if there exist
operators wIj

∈ WIj
(Ij ∈ π) such that

u−1
I,π(wI) =

⊗

Ij∈π

wIj
(53)

Remark 8. In the following, for a given bounded Borel set I, when π ≡ {I} is
the partition of I, consisting of the only set I, we will use the notation

z̃I := z̃I;{I} : W0
1,n;I → W1,n;I

We want to prove that:
(i) the family of C∗-algebras

{W1,n;I : I-bounded Borel subset of R} (54)

where the algebras W1,n;I are those introduced in Definition 7, is factor-
izable in the sense of Definition 8;

(ii) for any bounded Borel set I, the operators

WI(u, P ) := z̃I(W 0
I (u, P )) ∈ W1,n;I ; W 0

I (u, P ) ∈ W0
1,n;I (55)

are factorizable in the sense of (53).
To this goal let us remark that, if I, J are disjoint bounded Borel sets in

R, then the map

(πI , πJ ) ∈ Partfin(I) × Partfin(J) �→ πI∪J := {πI ∪ πJ} ∈ Partfin(I ∪ J)
(56)

defines a canonical bijection between Partfin(I)×Partfin(J) and Partfin(I ∪J)
such that, if πI ≺ π′

I ∈ Partfin(I) and πJ ≺ π′
J ∈ Partfin(J), then πI∪J ≺

π′
I∪J ∈ Partfin(I ∪ J).
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Lemma 6. Let I, J be disjoint bounded Borel sets in R. Then the inductive
system of C∗-algebras

{
(W0

1,n;I∪J;πI∪J
)πI∪J∈Partfin(I∪J), (zI∪J;πI∪J ,π′

I∪J
)πI∪J≺π′

I∪J∈Partfin(I∪J)

}

(57)

is isomorphic to the inductive system of C∗-algebras
{
(W0

1,n;I;πI
⊗ W0

1,n;J;πJ
)(πI ,πJ )∈Partfin(I)×Partfin(J) ,

(zI;πI ,π′
I

⊗ zJ;πJ ,π′
J
)πI≺π′

I∈Partfin(I),πJ≺π′
J∈Partfin(J)

}
(58)

in the sense that, for each πI ∈ Partfin(I) and πJ ∈ Partfin(J), then there
exists a C∗-algebra isomorphism

uI,J,πI ,πJ
: W0

1,n;I;πI
⊗ W0

1,n;J;πJ
→ W0

1,n;I∪J;πI∪J

such that, for each πI ≺ π′
I ∈ Partfin(I) and πJ ≺ π′

J ∈ Partfin(J), one has
in the notation (56)

uI,J,πI ,πJ
◦ (zI;πI ,π′

I
⊗ zJ;πJ ,π′

J
) = zI∪J;πI∪J ,π′

I∪J
(59)

Proof. With the notations above, from (49) one deduces that

W0
1,n;I;πI

⊗ W0
1,n;J;πJ

:=

(
⊗

I′∈πI

W0
1,n;I′

)

⊗
(

⊗

J ′∈πJ

W0
1,n;J ′

)

≡
⊗

K∈πI∪J

W0
1,n;K = W0

1,n;I∪J;πI∪J
(60)

Denote

uI⊗J,I∪J : W0
1,n;I;πI

⊗ W0
1,n;J;πJ

→ W0
1,n;I∪J;πI∪J

the isomorphism defined by (60). If πI ≺ π′
I ∈ Partfin(I) and πJ ≺ π′

J ∈
Partfin(J), then clearly πI∪J ≺ π′

I∪J ∈ Partfin(I ∪ J) and from (50) we see
that

uI,J,πI ,πJ
◦ (zI;πI ,π′

I
⊗ zJ;πJ ,π′

J
)

= uI,J,πI ,πJ
◦

⎛

⎝

⎛

⎝
⊗

Ij∈πI

⎛

⎝
(diag)⊗

Ij⊇I′∈π′
I

s−1
I′

⎞

⎠ ◦ sIj

⎞

⎠

⊗

⎛

⎝
⊗

Jh∈πJ

⎛

⎝
(diag)⊗

Jh⊇J ′∈π′
J

s−1
J ′

⎞

⎠ ◦ sJh

⎞

⎠

⎞

⎠

=
⊗

Hl∈πI∪J

⎛

⎝
(diag)⊗

Hl⊇K∈π′
I∪J

s−1
K

⎞

⎠ ◦ sHl
= zI∪J;πI∪J ,π′

I∪J

which proves (59). �

Theorem 1. (i) The family of C∗-algebras defined by (54) is factorizable.
(ii) The operators defined by (55) are factorizable.
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Proof. We apply Definition 8 to the case in which the family F is the family
of bounded Borel sets in R. By induction it will be sufficient to prove that,
if I, J are disjoint bounded Borel sets in R, then there exists a C∗-algebra
isomorphism

uI,J : W1,n;I ⊗ W1,n;J → W1,n;I∪J

Since W1,n;I ⊗ W1,n;J is the inductive limit of the system (58) and W1,n;I∪J

is the inductive limit of the system (57), the statement follows from Lemma 6
because isomorphic inductive systems have isomorphic inductive limits.

The factorizability of the operators (55) follows from the identity
(54). �

From Theorem 1, it follows that, if I ⊂ J are bounded Borel sets in R,
then the map

jI;J : wI ∈ W1,n;I → wI ⊗ 1J\I ∈ W1,n;J (61)

is a C∗-algebra isomorphism. Since clearly, for I ⊂ J ⊂ K bounded Borel sets
in R, 1J\I ⊗ 1K\J ≡ 1K\I , it follows that

{(W1,n;I), (jI;J ), I ⊂ J ∈ bounded Borel sets in R} (62)

is an inductive system of C∗-algebras.

Notation: The inductive limit of the system (62) will be denoted

{W1,n;R, (jI), I ∈ bounded Borel sets in R}

Since the jI : W1,n;I → W1,n;R are injective embeddings, the family
(jI(W1,n;I)) is factorizable and one can introduce the more intuitive notation:

jI(W1,n;I) ≡ W1,n;I ⊗ 1Ic

9. Existence of Factorizable States on W1,n;R

In the notation (43) and with the operators WI(u, P ) defined by (55), using
factorizability of the family (W1,n;I) and of the corresponding generators, for
any I ⊂ R bounded Borel and any finite partition π of I, we will use the
identifications

W1,n;I ≡ jI(W1,n;I) ≡ W1,n;I ⊗ 1Ic ⊂ W1,n;R

WI(u, P ) ≡
⊗

I0∈π

WI0(u, P ); ∀(u, P ) ∈ R × Rn[X]

WI(u, P ) ≡
⊗

I0∈π

WI0(u, P ); ∀(u, P ) ∈ R × Rn[X]

(63)

omitting from the notations the isomorphisms implementing these identifica-
tions.
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Definition 9. A state ϕ on W1,n;R is called factorizable if for every I ⊂ R

bounded Borel, for every finite partition π = (Ij)j∈F of I and for every
WI(u, P ) as in (63), one has:

ϕ(WI(u, P )) =
∏

j∈F

ϕ(WIj
(u, P )); ∀(u, P ) ∈ R × Rn[X] (64)

The map (19) can be used to lift the Fock state ϕF on WF,1,n to a state,
denoted ϕ0, on W0

1,n through the prescription

ϕ0(W 0(u, P )) := ϕF (W (u, P )) (65)

(W 0(u, P ) ∈ W0
1,n , W (u, P ) ∈ Un(Γ(C))). Then, using the maps z̃I defined

by (55), for each bounded Borel set I ⊂ R, one can define the state ϕI on
z̃I(W0

1,n;I) ⊂ W1,n;I through the prescription that, for each W 0
I (u, P ) ∈ W0

1,n;I ,
one has

ϕI(WI(u, P )) = ϕI(z̃I(W 0
I (u, P ))) := ϕF (W (k̂I(u, P ))) (66)

Theorem 2. Under the assumption (34), if n = 1 then there exists a factorizable
state ϕ on W1,n;R such that, for each bounded Borel set I ⊂ R, one has

ϕ(WI(u, P )) = ϕF (W (k̂I(u, P ))); ∀(u, P ) ∈ R × Rn[X] (67)

If n ≥ 2, no such state exists.

Proof. Let I be a fixed bounded Borel set in R and let π be a finite partition
of I. From Definition 9, we know that ϕ is factorizable if and only if for
every I ⊂ R bounded Borel set, for every finite partition π of I and for every
WI(u, P ) as in (63), (64) holds. If condition (67) is satisfied, the identity (64)
becomes equivalent to:

ϕF (W (k̂I(u, P ))) =
∏

Ij∈π

ϕF (W (k̂Ij
(u, P ))); ∀(u, P ) ∈ R × Rn[X] (68)

Thus, the statement of the theorem is equivalent to say that, for n = 1 the
identity (68) is satisfied and, for n ≥ 2, not.
– Case n = 1. For P = a0 + a1X and u ∈ R, recalling the definition (40) of

k̂I , one knows that

W (k̂I(u, P )) = ei(u|I| 12 p+a0|I|1+a1|I| 12 q)

whose Fock expectation is known to be

ϕF (W (k̂I(u, P ))) = e−|I|(u2+a2
1)/4eia0|I| = (ϕF (W (u, P )))|I| (69)

It follows that
∏

Ij∈π

ϕF (W (k̂Ij
(u, P ))) =

∏

Ij∈π

(ϕF (W (u, P )))|Ij |

Therefore, if aI = 1, then

ϕF (W (k̂I(u, P ))) = (ϕF (W (u, P )))|I| = ϕF (W (u, P ))
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– Case n ≥ 2. Since, for n ≥ 2, the 1-mode n-th degree Heisenberg ∗-Lie
algebra heisR(1, n) contains a copy of heis(1, 2) (see Definition 1), the
algebra W1,n;R contains a copy of W1,2;R. Therefore, the non-existence
of a factorizable state on W1,2;R, satisfying (67), will imply the same
conclusion for W1,n;R. In the case n = 2, let P = a0 + a1X + a2X

2 and
u ∈ R. Then, using again aI = 1, (11) and (35) one has

W (k̂I(u, P )) = ei(|I| 12 up+a0|I|1+a1|I| 12 q+a2q2)

and from [10] (Theorem 2), one knows that

ϕF (W (k̂I(u, P ))) = (1 − 2iA)− 1
2 eia0|I|e

4C2(A2+2iA)−3|M|2
6(1−2iA) |I|

= (1 − 2iA)− 1
2

(

eia0e
4C2(A2+2iA)−3|M|2

6(1−2iA)

)|I|

where A = a2√
2
, B = a1√

2
, C = u√

2
and M = B + iC. On the other hand,

if π ∈ Partfin(I) with |π| > 1, then

∏

Ij∈π

ϕF (W (k̂Ij
(u, P )) =

∏

Ij∈π

(

(1 − 2iA)− 1
2

(

eia0e
4C2(A2+2iA)−3|M|2

6(1−2iA)

)|Ij |)

= (1 − 2iA)− |π|
2

(

eia0e
4C2(A2+2iA)−3|M|2

6(1−2iA)

)|I|

�= (1 − 2iA)− 1
2

(

eia0e
4C2(A2+2iA)−3|M|2

6(1−2iA)

)|I|

= ϕF (W (k̂I(u, P ))) (70)

�

Remark. Notice that the inequality in (70) holds for all values of the para-
meters A,B,C, including those for which infinite divisibility has been proved.
This suggests that the infinite divisibility of the vacuum distributions of the
generalized field operators is a necessary, but not sufficient, condition for the
possibility to induce a state on the C∗-algebra from states on its finite dimen-
sional approximations.

Lemma 7. In the case n = 1, the choice of the isomorphism ŝI (see Lemma 3)
given by

ŝI(L0((χI))) = aI i|I|1
ŝI(L2(χI)) = aI i|I| 1

2 p

ŝI(L1(χI)) = aI i|I| 1
2 q

gives rise to a factorizable state satisfying (67) if and only if the map I ⊂ R �→
aI has the form

aI :=
1
|I|

∫

I

p(s)ds
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for all Borel subsets I ⊆ R where p( · ) is a locally integrable almost every-
where strictly positive function on R. In this case, the factorizable state will be
translation invariant if and only if p( · ) is a strictly positive constant.

Proof. In the case n = 1, if aI �= 1, then the expression for W (k̂I(u, P ))
becomes

W (k̂I(u, P )) = ei(u|I| 12 a
1/2
I p+a0|I|aI1+a1|I| 12 a

1/2
I q)

consequently its Fock expectation is

ϕF (W (k̂I(u, P ))) = e−|I|aI(u
2+a2

1)/4eia0aI |I| = (ϕF (W (u, P )))aI |I| (71)

Therefore, the factorizability condition (68) can hold if and only if the map
I ⊂ R �→ aI |I| is a finitely additive measure. In this case, by construction
it will be absolutely continuous with respect to the Lebesgue measure hence
there will exist a locally integrable almost everywhere positive function p( · )
satisfying

aI |I| :=
∫

I

p(s)ds; ∀ Borel I ⊆ R

p( · ) must be almost everywhere strictly positive because, by Lemma 3, aI > 0
for any Borel set I ⊆ R. This proves the first statement of the lemma. The
second one follows because the Lebesgue measure is the unique translation
invariant positive measure on R. �
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