PATRICIANS, NOTAB ${ }^{-3}$ ES, CONSTRUCTION OF THE CITY

Building and Preservation of Palazzo

 Magio Grasselli in Cremona

```
M
Matra tidiann, compiled and publiseded by Leopoldo o Camillo Vol:
```



```
Mma diligenteracolta diuterequlle antiche scrizioni, nlle qualisifa
```



```
Sono in numerog, ed alter ne ha aggiunto in fine[ [.].). Ha dato occz/
Sionea ques'Opuscolol'\ideadel sig. Mercheses Ciuseppe Maggi, egre
```



```
\ Bianchis biography yfry.
In manuscripet.A., 3., 2 ofthe State Library of Cremona a long "leet
```



```
wn. interst in cames\mathrm{ and engraved. stones (f. IIr, lines 12,16: "da}
*)
```



```
Spigare ed interperare4.Se . convenga dividere in clasi per conoscer-
l
```



```
*)
```



```
*)
```



```
Mary)
$2r), listof the names of stones and gems in alphabecical order (Gli>
M,
deares Manfedin: I I would syy almost nochings, even though you
want me to write tyou abouts sones engraved by the ancients, ameos
and cornnelians and to enlighen you on how to put them into cate
*)
Giambatisa Biff and Paolom Manfedini is confrmed by be commis
*)
```



```
In fact, with the large hall and oher works of similar chonology,
```



```
dinian workhop begins. Along with his sons, there were cerain)
```



```
Mi(De' BoNI 840, p. IO32; AzzounN 2001, p. I2).
Withouten; L2, BIACH1 2009b, p. 335
Wa including sylisisic data,i, ibecomes very \ardodiderngming all the 
terprises and atributue them toc particulury member of the family. For
Neactivites of Giusepe.Manfredin' we reter, in particular to TAN
```



```
M198;
```

A commemorative pamphlet was published for the funeral of Giuscepe Magio: Nésoletwif fueralid 1824, see in this volume, Landi, Architecturanal Transjomanations: 3 Ma

"In the inventory of the good of Carolina Tarsis, compiled din 864 ,
the room is scecribbed hhe rom is described ass "gabineto" "ith walls
this
th solume Landi, Architetural Trans Sormations.
 the frontroom on the eop floor of of we wetern wing of P Palazo Ala P Pon zone seems to lead back to the same executor. The sophisisiated daste
and the deails of flowers and animals would find in inhese years in Cre

 group of watercoloured drawings are kept ti the Ala Ponzone C Civic
Musesm. Two examples of this ype wixth hegard to mural panining and
 Cremona (Azzolint 2001, pp. 130.131) and d those realized in 1889
by Lodovico Pogliagh i in Villa Pallavicino in Cicognolo (ibid, pp. by Lodovico
7447 .
13
${ }^{33}$ A similiar example can be found in Palazzo AlaP onzone in Cre
 garding these decorations we do not know on which analytical basis
was indicated "A Cremona, Callo Callina finiva con un'encausiz was indicated "A Cremona, Gallo Gallina finiva con un' 'ncaustiz
zazione un ambiente al piano terra di palazo Ala Ponzone, decorato
 o marmo. In questo caso la partece eas stat preparata a gesso e plvere
di marmo e compleata a marmorino lucidato, edopo un leggero dis

 teresting for boh hhese ypes of superimposition in order to clarify hey
tendencies of fhe partons and operators and the solutions adoped by

 sime, Landi, Architectural Transomanations.
 ${ }^{8}$ Ascr, Archivio Grassllil, b, 12, doc. about 187 , see in his vol ume, Landi, Architectural Trangoomation

Materials and Techniques of the Pre-Industrial Building Sites of Cremona: an Exercise in Architectural Archaeology on the Façade of Palazzo Magio Grasselli

 Davide Del Curto$T^{\text {his text }}{ }^{1}$ presents the results of the research carried out on the façade of Palazzo Magio Grasselli using methods of facade stratigraphy, an effective instrument of archaeological derivation
The investigation historical architecture to study building techniques since the 1970s. building, thanks to the presence of scaffolding installed for maintenance work on the roof. The observation were then compared with what gradually emerged from the examinations on the interior surfaces and spatial layout, the detection of stratigraphic units and the recognition of relative chronology.
The stratigraphic examination was carried out parallel with, and to support, the more general study of the building with a painstaking piecing together of the history of the building and it is uses via documented research comparing it with the contemporary building, ${ }^{3}$ immediately verified thanks to the examination of the finishes the hypoothesis that matured with regard to the construction history of the complex in particular with the formation of the building parallel to the road and on the work plan undertaken by Camillo Magio for the unification of the lots and the formation of the Palazzo and continued by Giovan Clemente Magio up until 1703. For this reason, the results are presented diachronically, as illustrated by the stratigraphic evidence erlative to each one of the construction nuclei which were united progressively during the second half of the 1600 s. The relative chronology refers to the phases suggested by historical and archive records and the spatial examinations of the structure.
As well as the "autopsy" carried out on the exterior, instruments were used to scrutuinse surfaces where simple observation was not leading to sufficiently convincing hypotheses or was not verified by the hypotheses alread formulated. In particular, I.R. thermography was used actively and passively for the non destructive surveying of the plaster on the interior walls, allowing for localised discontinuity of weaved brickwork which

124. At least five typologies of brickwork make up the façade of Palazzo Magio Grasselli, both concealed and emergent, under
the Igth century faux brick finishing.
indicative of particular moments or construction activities. The mortars and plasters were categorised analytically, identifying the similarities and differences useful for defining the relationships of relative chronology. ${ }^{5}$
Repeated examinations on the façade progressively highlighted the density and richness of the construction techniques and finishes: the plasters and above all the apparatus and treatment of the brick façade constitute an ensemble of important documentary value. It was also possible on the same façade, thanks to the protection provided by the I9th century plaster during the last ISO years, to recognize and compare the techniques and
work which took place from the I 5 oos to the 1800 . Thus, the construction work undertaken by Camillo Magio during the second half of the I6oos, to his involuntary merit, can be considered a small atlas of the construction work of Cremona during the period from the Renaissance to the industrial era (fig. I24).

The i soos: the Façade of Casa Lotica in Exposed Terra Cotta Brick
The tract running between the west end of the façade and the west shoulder of the window next to the carriageway or "bocchirale",' presents a brick facing of accurate execution which is still exposed from street level up to 7.6 metres, corresponding with the first floor. This is the brickwork of casa Lotica, ${ }^{7}$ bought by Nicolo Magio in 1646. Here, we are dealing with brickwork constructed with well formed bricks of a regular size (approximately $28 \mathrm{~cm} \times 7 \mathrm{~cm}$) ${ }^{8}$ with constantly paced head fascia in non aligned, alternating rows and Gothic weaving. The bricks are laid with a clay like mortar with an orangey-red hue and form joints about I cm high of a powdery consistency on the surface, almost "greasy" to the touch and pastier the more you penerrate the surface. This brickwork (Mr) is finished wer edge of the brick.
towing only just protruding to cover the upper
A tenacious top stratum with a slightly variable shade between rosy, red, and brown covers both the surfaces A tenacious top stratum with a slightly variable shade between rosy, red, and brown covers both the surfaces
of the bricks and the jointing mortar. The fine rosy stratum on the concave bottom of the joint covering takes on a better consistency and a dark red tone in the raised parts where the mortar covers the edge of the brick. The surface of the brick is slightly brown and darker compared with the natural shade of "stones" ${ }^{10}$ of a uniform colour and size which have been employed for this brickwork (MI). The samples taken from the surface of the brick and from the mortar of the joint covering demonstrate the limited thickness of this stratum, its compactness and uniformity. Here, we are dealing with a very thin stratum containing calcite, gypsum, clay like minerals and calcium oxalate, 1 in the form of weddellite in the proportions shown below. The presence of any other natural or artificial pigments was not detected (fig. I25).
It is possible to speak about the protective treatment of the brick curtain wall at the completion of accurate ex,
ecution, sometimes defined as "sogramatura" and here consistent in a semi-transparent stratum applied onto ecution, sometimes defined as "sagramatura" and here consistent in a semi-transparent stratum applied onto

. the already prepared facing and distended, probably by rubbing the already dry surface
with a brick wetted with limewater and coc with a brick wetted with limewater and coc binder, flaxseed oil, or more probably milk, taking into account is lower cost and the size of the façade. ${ }^{12}$
The term "sagramatura" is used above all to describe construction in the region of Emilia and refers to a finishing and protection tech, nique for brick facing which is an alternative
to plastering and consisent in the reativen to plastering and consistent in the treatment
of the curtains of new construction activities which renders surfaces smoother and more compact with a twofold aesthetic and pro, tective function. This treatment gives the sur, faces of the wall a homogeneous and almost monolithic look, enabling one to read in its transparency the subtle imprint of the grid of
the bricks. This was carried out immediately after bricklaying was concluded with bedding mortar protrud, ing slightly from the plane of the façade. This was then polished and rubbed manually with a soffer brick than those used for bricklaying. The operation was carried out by wetting the surfaces with a solution of limewa ter, thickened with gypsum and an organic binder (milk, casein, serum, oil, and so on...). The calcium car, bonate of the joints was mixed with brick dust from the rubbing, forming a very thin hydraulic plaster caus, ing the calcite to crystalize again and resulting in an effective layer of protection for both the brick facing and oints. Thave a certain uniformity of coloration and, unlike plaster, preserved the character of the brick surfaces.
Research carried out on pre-industrial building sites and historical construction techniques in the region of Emilia describes "sagramatura" as the variety of tinting and the characteristic elements of coloration in the city by the uniform tone of brick curtains ${ }^{13}$. "Sagramatura" is sometimes described as being synonymous with "arricciatura", that is a thin, transparent plaster with a calcium hydroxide and cocciopesto base, or in other words "arrotatura" grinding or towing via rubbing, without the addition of other materials except those obtained from the abrasion of the base. The coincidence between semantic and chronological evolution, for which "sagramatura/arrotatura" would be a more archaic practice, derived maybe from an operative analogy with the corresponding treatment for terra cotta floors. However, the idea that "sagramatura arrricciatura" were
carried out together from the carried out together from the i 700 only remains a hypothesis at the moment. ${ }^{1{ }^{1}}$
This treatment15 was carried out on the fifteenth and sixteenth century walls of casa Lotica probably by
"rubbing" the wall with a brick rather than with a brush or a rubbing the wall with a brick rather than with a brush or a rag, something that would have favoured the
deposit above all of clay like fragments on the bottom concave of the joints where, on the contrary, elements are distributed uniformly. The concentration of quartz and calcite are higher on the parts of the mortar in relief suggesting the use of a soffer brick compared to those used for bricklaying. As a result, rubbing with a red suggesting the use of a softer brick compared to those used for bricklaying. As a result, rubbing with a red
brick against the already hardened, rough surface of the joints favoured the transfer of cocciopesto from the brick utensil to the surface, giving shape in this way to a "sagramatura" as a contribution of material instead of a removal of the powdered clay from the walls by rubbing with a more tenacious brick. ${ }^{16}$ The operation certainly took place by wetting the surfaces with calcium hydroxide, contributing in this way to the formation of a thin, surface film with the characteristics of almost complete transparency and non-permeability to water and permeability to vapour. Furthermore, on the surfaces of the bricks neither scratches nor direction marks resulting from the circular motion extending from one brick to another can be detected, otherwise indicative of rubbing with a more tenacious tool. ${ }^{17}$
This façade (MI) was executed, and materials chosen, with care. The work started, leaving the facing exposed

122. Corresponding to the western edge, he brickwork of the fagade urred back to divide the adjacent lots. Although the clay mortar for the botom joint and f finishing motrar for the cover joint and facsimile in lime mortar.
it remains well sheltered by overhanging eaves. The finishing described is perfectly integral along with the limits detected from the western shoulder of the first window west of the carriageway, apart from the damage occurring during the construction of the windows with frames and vertical traces of brick infill for the insertion of the drain pipes. Other localized discontinuity, due to alterations and small repairs, was also detected (pl. xLiv).

Above, the brickwork (MI) extends to the height of the frames (excluded). To determine the quota and direction of the roof of casa Lotica, it is necessary to consider the large amount of stratigraphic evidence visible in the attic. The brickwork (MI) described for the principal façade continues to form the brie ftract perpendicular
to the street and proceeds to form the wall that separates the main part of the palazzo from the far western tract, i.e. casa Ramonda, purchased by Camillo Magio in 1666 to extend the property towards the direction of the 1.e. casa Ramonda, purchased by Camillo Magio in 1666 to extend the property towards the direction of the
cathedral. The plastered facade of this building rests against the perpendicular wall, without toothing, forming at least for the last two storeys an unmistakable relationship of "anteriority-posteriority" (fig. 126).

The sidewall that separates the two buildings at the height of the attic presents the same working of the joints as already described on the principal façade: clay mortar for the bottom joint, lime mortar for the finishing cover joint and the facsimile in lime mortar. The bricks are of a more variable and irregular size compared with those chosen for the brick facing. This process extends over the whole wall of the attic except for the trac corresponding to the depth of the loggia built during the second half of the seventeenth century which is clearly distinguishable for its weaving and the presence of a precise perpendicular discontinuity. The absence of equal to approximately $\mathbf{1 4 . 9}$ metres, similar to the present ridge beam of casa Ramonda.
The opposite, eastern facade of the same wall which separates the attic of the Palazzo ${ }^{18}$ from that of casa $R a$ monda allows us to determine with greater precision the quota and direction of the roof of the sixteenth century casa Lotica. The weaving is regular and was probably made uniform during the second half of the seven eenth century. This was followed by the raising of the roof towards the courtyard with no noticeable traces of a lower roof than the present one. Weaving discontinuity is clearly visible on the surface to the bottom of the great flue which is built at the base with recycled bricks and "bazzana" mortar and completed in the upper tract with an "external facing finished with a protective plaster for the bricks and joints. A trace of morta with an inclination of $25 / 30^{\circ}$ is an evident residue of a lower, older roof and separates the two sections. Go ing along this tract towards the south, it is possible that the structure of the roof was treated in the Lombard style, with a double pitch and structure in which the trusses support the ridge beam and purlin beams. The wards the courtyard to the south of casa Lotica and to the north on the median wall parallel to the facade. On \square the opposite eastern wall, ${ }^{19}$ as confirmed, a spacious

127. The direction of the pitches and structure of plastering of he direction of the pitches, height of the ridge beam ande (eastern wall of the attic, western wall of the attic 5.02).
the opposite eastern wall, as confirmed, a spacious
quadrangular hollow can be found for the accommo dation of the ridge beam, in a position compatible with the roof and the two pitches parallel to the present one but at a lower height. Following the demarcation of the northern pitch, one arrives at the façade by means of a structure of simple rafters that, like the trusses, were set up above the central tract of the median wall, includ ing between the two pilasters raised to support the sev enteenth century trusses. Towards the street, the rafters rested on lodgemenss, stil visble today, between the incides with the stretch of plaster , probably of a later date in its present consistency that finishes this wall in ternally, following the profile of the supports and defin ing a practicable and "sunny" attic with square, terra cotta tiles. Towards the courtyard, the pitch proceeded oprotect the courtyard façade and may have formed a bigger overhanging compared to the elevation towards
the street to cover the loggia or the access balcony to the main floor according to a layout not unknown to the builders of palazzos in Cremona during the second half of the fif eenth century. On the southern walls of th same attic, a perfect solution of the hori compatible with the direction of the hypoth esized pitches can be witnessed (fig. 127). The raising and shiff of the line of the ridg beam, in order to cover the augmentation of the building width due to the construction of the loggia, necessitated the raising of the façade of casa Lotica with brickwork which was very different from the Mr brick kaying, formed with recycled bricks and only mor tar of "bazzana" without cover joints and probably finished with a plaster with a clay like base. Thus, the height of the long cur-
tain of Corso XX Settembre dates to the second half of the seventeenth century and reflects the need to maintain the height of the reflects the need to maintain the height ofthe than the already significant height of the

128. The semi. volutes of the cornice were formed with 15 courses of Lesistance to to the section, bompensaing for the forcese of momentrem \sin shearing stress at the point in which they are ata a maximum. This skill is
resent in the resent in the first fifteen semi, volutes from the eastern end of the façade, work and conffrming how the renovation work and raising of the dom nagna and of Ferrance Mayio's house induding re rasisng of the domus angicipated the corresponding alerations of a ass Lotica which were
compled before 1692 when the interior had not yet bee finished.

completed before 1692 when 1

piano nobile" of cass Lotica and, above all, comprising the Italian Hall. - chould, therefore, be attributed The height of te cornice and the design of a semı-volute of the lower connice sho to the first phase of works conducted by Francesco Pescaroli, whilst the execution of the lengthening dorb
the course of the long season of renovations took place between I670 and I703 (pls. xLIxLII). The corbels are formed with fiffeen courses of recycled bricks shaped to determine a double curvature of the profile and inserted into the irregular brickwork of the cornice proceeding with the weaving. The first five courses at the bottom are shaped with shattered elements and simply placed against the wall. Above the sixth course, the the brickwork sustaining it to compensate for static moment The lower cornice is, therefore in phase with the brickwork of the frame and both date from the late seventeenth century. A couple of bricks laid on edge above the eighth course lend resistance to the section of the semi, volutes, compensating for shearing stress and momentum at the point in which these are strongest. This construction skill is present in the first fifteen semi, volutes from the east end of the facade, the tract corresponding to the domus magna of Magio and to the domus belonging to the branch of the second son; lacking in the rest towards the east, which corresponds with casa Lotica. This difference signals the resumption of construction work and confirms how renovation work and the raising of the domus magna and Ferrante Magio's house, including the cornice and the eaves, anticipated the corresponding repairs of casa Lotitca and was completed before 1692 when the interiors were not yet finished. However, the bricks on edge identify a limit not altogether coinciding with the boundaries between the passageway, and the construction of the relative vault would determine the necessity of altering this tract with the regular weaving of brickwork M_{I} which is interrupted both on the ground floor and the "piano nobile" (fig. 128).
A horizontal demarcation is visibly in phase with the brickwork (MI) and is a little under the height of the present sills of the "piano nobile", approximately 8.6 metres long and at a height of five "heads". The bricks which form them are of similar dimensions to those employed for the wall (about 28 cm x 7 cm) although placed as flat laid bricks rather than with Gothic weaving, head fascia alternate courses. This deals most probably with the demarcation of a tract of a string, course which enriched the brickwork of casa Lotica completing the image of a well formed and proportioned façade with a couple of double windows, respectively
at a centre distance of approximately 3 metres. ${ }^{21}$ The joint mortar has a very limited, regular thickness, suggesting a very accurate working of decorative details in terra cotta with perhaps a decorated façade or silhouette. A solution was proposed which was widespread in the city, rare examples of those surviving date back to the late I400s, for example Palazzo Cortesi. ${ }^{122}$ Today, only the crushed bricks remain after their reduction in thickness in line with the façade preliminary to plastering at the beginning of the 170os. This is easily seen at the western edge where this string, course ends. The string,course extends from this edge as far as the brickwork (MI) corresponding to the west wing of the entrance wall (fig. 129).

ly as wide as the palm of a hand, was achieved with a light perimeter relief equal to the thickness of a flange. The architrave was animated at the centre of a trapezoidal key which was smaller and simpler than the present one. ${ }^{2}$
Observation of the weaving of the brickwork around the window frames on the "piano nobile" chronological relationship between the brick fascia and those on edge to form the perimeter of the frames and those on edge to form the perimeter of the rames
which also, under careful observation, seem to be perfectly inserted and in phase with the brickwork underneath. Only close observation from the scaf, folding enables us to localize the discontinuity in the

 pending surfaces without chipping so that the new
bricks were laid protruding from the existing façade, then reduced to the plane of the façade in the most re cent removal of the plaster which is embedded in the brickwork, with a limited use of mortar but without the use of shims ${ }^{24}$ (fig. 130).

The recognition of the uniformity of the façade and its stratigraphic relationship, compared with similar evidence in the complex of the building, allows us to define with precision the limits of the brickwork (MI) and, consequently, the extension of the silhouette of casa Lotica. This included the entire portion of the façace between the present carriageway and the western edge to the confines of casa Ramonda. The same brickwork continues up to the cornice (excluded) so that casa Lotica had to be raised to this height with a double façade of the overhanging string course corresponding to the height of the floor already in existence (figg. 131/132),

The igoos and the Enlargement of the Domus of the Magio: Phase Relationships and Comparisons between Bedding Mortars

Close examination of the exposed brickwork with faux brick in the median tract of the façade allows us to integrate, via direct observation, the hypotheses relating to the planimetric and volumetric extension of the domus magna before this was affected by the seventeenth century transformation preceding the purchase of the

33. Ten bricks placed head to head illustrate che location of a semiciricular arch, between the chird and fourh windows on the
 3.8 merese and 5.3 metres high, equal to approximately $7 \times$ II Cremonese "braccia", corresponding to the passageway of the
house belonging to Ferante Magio.
ontiguous lots by Nicolò Magio: his cousin's house bordering the Regazzi's property in 1645; casa Lotica in 1646, casa Ramonda in 1666, immediately further west. The plan of the basement is a witness to this additional process with three embankments, corresponding to as many carriageways as there were in domus magna, the houss already belonging to Ferrante Magio and casa Lotica. The first embankment, from east to west, measure approximately $4 \times$ II m on the plan and corresponds to the fourth window counting from the east wing of he façade today. Ignoring the minute discontinuity of weaving and materials on the brick work façade between he third and fourth windows on the ground floor, the setting up of a semi-circular arch, of which ten brick are placed head to head, is still visible. Extending the arch illustrated by the bricks, there is a silhouette of an opening 3.8 metres wide by 5.3 metres high, equal to approximately $7 \times$ II Cremonese "braccia". 25 Th passageway served the house of the second son of the Magio family who occupied the plot which today passageway was found to the far west of the building lot, at the boundary with the domus magna. The dividing wall was demolished to make way for the great stairs and its position can still be seen from the joints in the ellar vaults of the wing leading onto the courtyard (fig. 133).
Today, the arched barrel vault in this carriageway is filled in with brickwork and lime mortar (M2) with a joint protruding from the surface of the terracotta which is not sealed. The limits of this wall are easily noted due to the difference in weaving, both towards the west, the brickwork and lime mortar of the domus magna, and towards the east, the brickwork of the house of the branch of the second son. The facing of the latter $\left(M_{3}\right)$ is formed with recycled bricks laid with "bazzana" mortar, unsealed and without a cover joint with pick axe marks and ready for furrher plastering. Given the loss of plaster due to the faux bricks, this type of brickwork is very noticeable in the tract of wall between the filled in passageway and the eastern end of the façade where it is interrupted by damage caused by the insertion of three windows with ashlar masonry frames and a drain nesse of execution and choice of materials and was evidently destined to be finished with plaster. The first ten to twelve courses above ground (considering that the level of the road in front of the facade of the palazzo was higher by approximately 20 cm before being reduced in I83II $)^{26}$ are laid with lime mortar, maybe Piacenza hydraulic lime according to the documented custom that foresaw its use rather than a mortar with a clay base The basement brickwork continues above ground, for which the same prescription was valid. ${ }^{27}$ This differ ence from the first course is very noticeable on sight and confirmed by the examination of the ingredients. A comparative analysis was undertaken on both the sample and a scrutinised sifting ${ }^{28}$ which contained calcium carbonate, differing appreciably between samples taken from the joints at the base of the wall and those tak
en at a height of I. 2 metres from the present level of the street. The calcite is present in a minimum per centage in the first sample ($\mathrm{I} \%$), with a more rele, vant percentage in the second one (9.9%). The cor responding percentage of alpha quartz plus muscovite varies symmetrically $(46 \%+49 \%$ in the mortar taken from he façace, 40.6%. 42% in the Besides the integral samples, the measurement was repeated on the finely sifted sample, obtained from sifting the entire sample. The results also confirm the proportions in tiny fractions: the percentage of calcite doubles in the "earthy" mortar but does not exceed 2%, confirming the fact that we are dealing with a mortar with very little lime in it: in the fine fragment of base mortar there was a concentrate of the lime binder, present in a percentage of 47%. The second embankment corresponds with the first window east of the present carriageway and indiates ic passageway of the dom sugna. The third which was chosen as the entrance to the palazze. Considering the tract of the façade relative to the do
mus magna, the first six windows east of the present carriageway present a constant centre distance equal to ap proximately 3.35 metres. The first five have frames in phase with the brickwork. The sixth window is in phase with the fill in brickwork of the carriageway of Ferrante Magio's house.
The present day main door entrance frame is in phase with the brickwork that surrounds it and so is the frame of the window immediately to the west of this. Here, the relationship with the brickwork is now towards the east, below and above with damage that is behind, with the successive tract of the brick work towards the west corresponding to the already described brickwork (MI) relative to the surviving structure of casa Lotica. The entire portion of the facade that comprises these windows is in brick and a mortar made with lime and clay ${ }^{29}$ in proportion and with joints not worked and prorrud a medium consistency more compact than those that are only made of clay mortar comparable with the depth of the joints of M_{I} and M_{3}, but softer and more friable than the mortar that covers the joints of MI. Except for two breakages due to the insertion of some drainpipes, the brickwork $\left(\mathrm{M}_{4}\right)$ is present in all the tracts on the ground floor corresponding to the domus magna from which the wall bay brickwork takes shape between the windows and extends vertically up to the height of the ashlar lintel of the window. This is also in phase, together with the fascia which connects the frames. To the east and west of this median tract, the fascia is applied to the underlying brickwork, as can be seen between the third and fourth window from the east (this is the house already belonging to Ferrante Magio) where this is formed with a rincoccio secured to the underlying brickwork (M_{3}) with nails, in part still visible (fig. 134)
The simple, visible and tactile comparison detected similarities between the M_{4} brickwork and the M_{2} brickwork which was used to fill in the passageway of Ferrante Magio's house: here we are dealing in both houses with recycled bricks bound with a grey (tending towards brown) clay mortar with a slightly earthy
consistency which powders under pressure from one's nails. The brickwork was compared analytically (granulometric curve, ratio binder/aggrecate and type of binder, expressed as a percentage of CaCO) with samples taken from mortars used on the ground floor to form the following brickwork: the frames of the first window to the east of the passageway (CO4); the wall of the domus magna (C08); the frames in phase with the same domus magna (Cio); the brickwork to fill in the passageway (CII); the frames of Ferrante Magio's house (Cis). These mortars are similar to the parameters considered and are of the same modality of manufacture on site as the same raw materials and the same unique building phase (fig. 135).
This circumstance merits ulterior confirmation of how, contextually to the reconstruction of the façade of the
domus magna, the remodelling of the window frames on the first floor of casa Lotica and the amplification of the barrel vault at the entrance reassume the same profile centring in a unique, coherent design. The mortars described above present a granulometric distribution which is also comparable with the bedding mortar of the brickwork (M_{3}) of the facade of Ferrante Magio's house. This bedding mortar is, however, clearly different from the previous one for the almost completely clay-like composition and minimum percentages of carbonate (2%) and gypsum (3%)
Above the keystones of the ashlar lintels of the windows on the ground floor, uniformly brickwork proceed ing to the "piano nobile" laid with mortar of "bazzana" (Ms), which is distended both to the east and the
west of the presentday carriageway, overlaps M_{4}. This was verified thanks to the presence of areas devoid of plaster. In both situations the weaving of the architraves is easily visible with regard to the fourth, fifth and eighth windows to the west which are all similar in manufacture, size of elements and presence of the reliev, ing arches. These architraves are in phase with the brickwork (M) , further confirmation of the fact that the windows were formed during construction work at the end of the IGoos with the same shape and dimensions

135. Comparison of the bedding mortars of the median tract of the façade.

136. In the median tract of the façade, a solution of horizontal continuity distinguishes the brickwork in brick
and lime morar with window frames in phase with he and lime mortar with window frames in phase with the
ground floor of the overhanging brickwork and morar of "bazzana" " which forms sth "piano nobile" and he f frames.
The same discontinuiy s s also found one The same discontinuiritis is als found on the two courtyard facades, suggesting an intentional construction choice rather
than a contingent heterogeneity of materials duving the 1 zth century building site.
as the present day ones. The small area not covered in plaster between the fifth and sixth windows to the east also presentsts the same weaving and size of brick, work and window frames in the overhang formed with the same controlled insertion of bricks on edge protruding from the plane of the façade. The solution of horizontal continuity and that of the corre, sponding tract of the domus magna distinguishes the brickwork and lime mortar with frames in phase moved towards she street by more than one metre where a portion (M_{4}) with the ground floor of the overlying brick, of farrel vault is separated from the preexisting one by a work and mortar of "bazzana" (Ms) that continues

on the "piano nobile" to the window frame (included) indicating a succession of building phases or build, ing lots during the longterm seventeenth century building site. The same discontinuity of weaving and, above are also found on the two courtyard facades and indicates an intentional construction choice rather thana con tingent heterogeneity of materials. Similarly, a lime and clay mortar was used to lay the brickwork of the arch es of the porch in the courtyard up to the height of the floor on the "piano nobile". The brickwork of the log gia continues in "buona bazzana", reintroducing the same discontinuity described for the façade on the road. Notwithstanding the fact that several interventions and redefinitions of the windows render things less read, able, the sequence can be observed in the first tract of the façade east of the courtyard to the fourth window of the corner towards the loggia (fig. 136)
Thus, Camillo Magio intervened radically on the domus magna which perhaps needed both maintenance work done and to be brought uptodate. In the great cellar corresponding to the hall of the "piano nobile", the northern wall under the façade appears to have been shifted towards the street by more than one metre, corresponding to a portion of the barrel vault separated by the preeexistent fabrication joint. The façade of
Ferrante Magio's house was almost certainly rebuilt after 1576^{30} (fig. 137).

The chronological relationship between the windows on the ground floor and the "piano nobile" and the underlying brickwork testifies to a long formation process. The windows on the ground floor, from east to west, have the following chronological relationship with the underlying brickwork:
I, II, III: breakage in the brickwork of Ferrante Magio's house. The cornices are constructed with the same
bricks (M_{4}) used for the renovation work of the domus magna and their realization is therefore connected to the years immediately after 1658 ;
IV, V, VI, VII, VIII, IX, X, XI: in phase with brickwork during the renovation of the domus magna;
$\mathrm{x}, \mathrm{xI}, \mathrm{xII}, \mathrm{xIII}$ b breakage in the brickwork of cass Lotica with drawings and similar dimensions to preceding ones.
The windows of the "piano nobile" have, from east to west, the following chronological relationship with the underlying brickwork:
, II, . Vi. Vin the brickwork of Ferrante Magio's house;
IV, $\mathrm{V}, \mathrm{VI}, \mathrm{VII}, \mathrm{VIII}, \mathrm{IX}, \mathrm{X}, \mathrm{XI}$ in phase with the brickwork of the renovated domus magna. This series of win dows also presents the relieving arch in phase corresponding to X and XI , to mean only one, coordinated xII, XIII: breakage in the brickwork of casa Lotica with drawings and dimension ones, although only in xII is the relieving arch also depicted.
Furrher comparisons of adjustment operations on the façade of the late medieval building lots are deducible from the examination of the hopper fronts and the stratigraphic relationship that the relative nails demonstrate with regard to the cellar vaulss: these are only in phase in the tract corresponding to casa Lotica, while all the remaining apertures demonstrate noticeable signs of damage, adjustment and tampering, witnessing to the fact that it was, above all, the houses already belonging to the Magio family that underwent most alterations during the second half of the 1600 while casa Lotica was an already consolidated articulation of the façade. The fronts. The alterations during the seventeenth century only concerned the ashlar moulding. This was rather taken as a reference for imposing quotas and the positioning of the apertures on the new façade. The result was, therefore, a facade of windows with an almost constant centre distance in the median tract (from the fourth to the tenth window) with measurements deriving from the extremes (first, second, third, eleventh and twelfth). In this sense, the large seventeenth century cornice takes the merit in a certain way for the uniformity of this composition, lessening the perception of the irregular positioning of the openings in the top fascia and forming a plastic element able to characterise the broad development of the façade. Finally, due to a lack of full stratigraphic evidence, it is difficult to think that the brickwork using "bazzana" mortar (as in Ferrante Magio's house) laid with mixed mortar (the domus magna) was intentionally left without plaster for years and that the surfaces resisted erosion under the action of atmospheric agents up to its completion in 1876 . It is more likely that in order to guarantee the protection and ornamentation of the new palazzo, the aligned façades were unified with a clay-based plaster and protected with a yellow ochreetinted lime mortar of which only a small
trace remains around the windows on the "piano nobile". The tract of the facade towards the cathedral, corresponding with casa Ramonda, was realized between 1780 and 1830 (an interval defined essentially by the gaps in the archives). This tract was in the same perfect shape it is in today. gaps in the archives. This tract was in the same perfect shape it is in today.
by a central hall of a double height on the "piano nobile" and of Palazzo Affaitati which is characterised resulted in a façade with three central, square windows and a faux mezzanine to be replicated on the two side with as many other faux windows. The shape of the cornice in terra cotta under the exuberance of the anthropomorphic herm was not changed, nor was the sequence of small, rectangular windows surrounded by a frame in relief inserted into the sequence of the cornice. The semi volutes were a widespread solution in the city (mostly demolished) or on the faccade of Palazzo Cattaneo in Contrada Sforzosa ${ }^{33}$ (which still exist) The ashlar frame of the windows on the ground floor and above all the fascia which connects them, a representation of a course of regularization in rustic brickwork can be found in Villa Schinchinelli in
Cavallara ${ }^{3+}$ (belonging to Camillo Magio's brother in law) in which the facades are like those of the loggia of our palazzo and articulated with square insets. The use of ashlar frames was still widespread: from the façade entirely covered with ashlar plaster of Palazzo Vidoni, ${ }^{35}$ to the ground windows of Palazzo Schinchinelli Martini and the already cited Palazzo Cattaneo to Teatro Ariberti, then Filodrammatici. ${ }^{35}$ Francesco Pescaroli had adapted, to the preerexisiting models well known to him and his commissioners, syntheses simplified by a vast and elusive repertory that goes from Serlio ${ }^{33}$ to the Juliesque inheritance of nearby Mantua, to the Palazzo of Genoa of Rubens, above all the second volume, numerous editions of which spread a long way to the commercial itineraries that touched the state of Milan.

The Nineteenth Century: the Restoration of the Eaves and the Completion of the Façade
Annibale Graselli bought the palazzo in 1873. The last works for the channelization of rainwater and then the drainage system date from about forty years before; the plaster on the façade was much earlier. In 1876 (the palazzs
being free by then of the previous occupants), being free by then of the previous occupants),
the municipality solicited Grasselli to repair he leakage caused by the weathered eaves but the circumstances justified a complex interven tion. With a letter dated 27 March, 1876 , An
nibale Grasselli informed the Commissione 'Ornato that "with the necessity of having to provide for restoration work which was nec essary for the eaves of the house in Via S. Gal lo No. 21, after due consideration, Cavaliere Sig.re Annibale Grasselli along with the in dications of the respective completion of the simple ornamentation in red requested for the windows on the "piano nobile" and the en rance", the architect, Vincenzo Marchetti, presented a kind of selection of samples with typologies of frames for the completion of the windows of the "piano nobile". It is interest, alternative were traced on paper, cancelling the

138. Some deails of the "Type of house located in Via San Gallo
 forseen and not tealized. On the righthehand side: the alterations of the windows headstones requested by hy co Commission " "that a faceting should be carried out on the median keystone of the windows on the should be carried out on the median keystone of the windows on the
ground floor and also on the doo f fame") were drwn
design of the general state of the current conditions and only the elements that were the subject of alteration were represented with red lines, that is the solutions for the architraves of the windows of the "piano nobile" the adjustment of the headstones of the windows on the ground floor and the carriageway, the dimensions of the faux windows of the faux mezzanine. The contemporaneous interventions on the eaves, the drainpipes and above all the plastering were ignored as these were neither the competence of the commission nor the sub, ject of the "dimanda" or request.
On 16 April, the Commissione d'Ornato agreed to the request for the type of arched ceiling architraves, choosing between the models proposed, and countermarked it with the letter "A". At the same time, they recommended that a faceting should be carried out on the median keystone of the windows on the ground floor and also on the door frame. Affer only five days, on 21 April, Grasselli addressed the Commission personally and firmly exclude either that Marchetri had simply transerred the alternative proposals to she commissioners submitting an interjectory drawing, without having left precise indications for the Commission. ${ }^{39}$ To overcome the misunderstanding, the commission met again the next day, 22 A pril, inviting Marchetti himself to attend and, having "the pleasure to be able to second the desire of your very illustrious Lordship [...] agreed that the and, having "he pleasure to be able to second the desire of your very ilustrious Lordship $[\ldots]$ agreed that the
ornamentation proposed in the request and indicated in type with the letter B be carried out"." In this way, Grasselli obtained the permission to replicate the ground floor frames on the "piano nobile", renouncing the residual, Baroque traces of the palazzo in favour of a structured design, maybe more modern and certainly adherent to a certain historic taste with the accentuation of the rustic tone of the windows on the ground floor to which keystones were added in ashlar relief ("a faceting") and the alteration of the proportions of the faux windows on the mezzanine (fig. 138).
The construction of the vault in the "sala grande" ${ }^{41}$ on the "piano nobile" and the reduction of the small windows that form the second arrangement of apertures had already been decided upon during the eighteenth

139. The faux 1 tht century windows were square, measuring approximately $1.2 \times 1.2 \mathrm{~m}$. To make room for the high keystones
of the windows of che "piano nobile", it was necessary to increase the height of fhe window sills by two courses altering these

century. The height of the architraves had already been lowered by $15,20 \mathrm{~cm}$. On the façade, the problem was century. The height of the architraves had already been lowered by 1520 cm . On the facade, hhe problem was
probably resolved with a carved decoration, a tinted board to impede the sight of the structure from the road without altering the silhouette of the aperture and the dimension of the frames. This solution, accuratel registered with Marchetti relief allowed for the alignment with the other faux windows which completed the
design of the facade opportunely with a square, faux mezzanine necessary to the composition of this facad and characterised by the significant height of the "piano nobile". The "completion of the simple outlines of the decoration requested for the windows of the piano nobile", that is an imitation of the over-windows on the ground floor, resulting from the diatribe with the Commissione d'Ornato, however, resulted in an increase of three courses at the level of the window sills of the three small windows of the hall in order to keep them sufficiently at a distance from the new, significant keystone which was almost double the height of the previou one. The alteration of the height was to be extended to all of the faux windows on the mezzanine to preserve the alignment given to it by Vincenzo Marchetti in the description in the drawing. The new design of the apertures, however, cannot have been totally satisfactory considering the new proportions of the façade. The of the window sills changed this ratio ($1.20 \times 1.00 \mathrm{~m}$ approximately) without, however, bringing them back an established ratio and neessitating this course of vignetes to be moved three courses above the new keyston and three rows under the moulding of the frames on which the semi volutes rest. The small windows and faux windows were reduced so much in height that the architraves were lowered by three courses and reduced further in width, obtaining in this way a series of rectangles well distanced both from above and from below by approximately $\mathrm{I} .17 \mathrm{~m} \times 0.72$ with a ratio of $\mathrm{I}: 1.62$, almost shaped ${ }^{2}$ like an aural section (fig. 139). From the documentation concerning the diatribe between Annibale Grasselli and the Commissione d'Ornato, it is still possible to note how the "completion" of the eighteenth century redesign also took into consideration the frames on the ground floor. In the drawing attached to the request, the architect, Marchetti, traced two red segments above each of the windows to complete the drawing of the tripartite headstone, simulating the effec fa double overhang which is still visible today. The project had the intention of accentuating in this way th the architraves and enriching the shoulders with further projecting elements which were not executed. The xamination of the documented data, in this case the drawing by Vincenzo Marchetti, illustrates once more the power of this instrument in analysing historical construction. In this case, it was very useful in determining the subject, proportions and effective consistency of the "completion" of the nineteenth century restoration of the façade and indispensible in orientating the results of the "autopsy" examination, along with the painstaking iterpretation of the stratigraphic evidence on the façade.
The drawing, however, tells us little about the construction of the stone eaves which substituted the preexisten wooden ones or the finishing touches of the plaster on the big window frames. Each hypothesis can be seen in he tints used to integrate and complete the ochre plaster with a clay-like consistency and lime trims that cover he seventeenth century semi volutes of which survive integral traces on the walls and eaves and across th
stairway that rises from the small, kitchen courtyard:³ a cornice in Sarnico stone, to substitute the wooden joists, great Beola slabs for the projecting planking, carved Botticino risers for the bargeboard with an assortmen of lithographs totally coherent for their commercial style and physical mechanical properties with the taste and merchandizing documentation of Cremona of that period in the recurring interventions for the ston transformations of the wooden overhang.
The stone elements of the eaves do not necessarily fit in with the completed design of the nineteenth century, probably because they are too various in colour and texture and were consequently plastered and tinted as the testify. The plaster treatment of the stone elements of the eaves reflects both a protective intention, the Sarnice sandstone used for the cornice being noted for its poor durability, and for aesthetic reasons. In this sense, it is interesting to consider the graduated alternation of the "new" red tint and of the "old" ochre tint in the area of the cornice: the first rising to cover the only shoulders of the small windows, real or faux, introducing a horizontal chromatic limit that attenuated the perception of the architectonic element (the faux window) in favour of the ionic architrave on which the seventeenth century yellow ochre tint survives. The same yellow ochre shade continues on the surfaces of the underside of the cornice, alternating in this area with red an exalting the chiaroscuro and the plasticity of the elements that form the frames. Above the capital of the architrave, the red tint starts again also covering the Sarnico stone cornice and the Beola stone slab with a subtl stratum of plaster in which some remnants tending towards a slightly more brownish tint are still visible, protecting and masking it at the same time.
 cornice. This has to do with a plaster with a very smooth finish and "lime" tint, with colours described dark grey shading to accentuate the insets of the faux windows. The microscopic observation of the polished section highlights, already at low magnification, the continuity and adherence of the superficial strata, the regularity of the interfaces between the body of plaster, the plaster made of slaked lime called "fioretto" 4 " of Lodi and recommended or whitewashing and more refined work because the bright white contrasts with the grey binder of the arriccio and for the aggregate with fine, uniform granules $/$ and the bright red stratum completely adherent to the plaster to indicate a lime distension on a wet background. The pigment is a natura, earthy red, i.e. iron oxide with traces of silicon and clay-/ike impurities. From a chemical point of view, this does not exclude the use of other pigments, for example Mars red $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$. The superficial morphology of th section, the modality of adhesion of the tint ochre and cocciopesto (pls. xLVxLV).
ements of the eaves Theonly barge board elements of the eaves. The only barge board in Botticino limestone probably remained in sight, maybe to recall and tear in the passage. The Marchetti project foresaw a rustic completion (not realized) of these shoulder that would have enriched the design with raised elements, resuming and accentuating the motif of the window on the ground floor. This also foresaw the remodelling of the wainscot, probably already in existence but marked by the lowering of the level of the road in 1831 . These marks correspond with brief, visible parapets in relief to the base of the air vents. The plaster wainscoting terminates near the shoulders of the passageway with two corners in sandstone with
surfaces worked with a chisel, probably to favour the grip of a plaster destined to unite these elements chromatically to the rest of the base fascia. The present wainscoting was probably renovated in 1907^{47} and the irregular position of the late medieval facings joined into a single façade. Evident signs of this progressive alignment are visible to the west of the passageway in the tract corresponding to casa Lotica, the facade of which is leaning off the plumb line towards the interior a little above the height of the presentday window sills on the ground floor. During the course of construction work in the 16oos, this defect was corrected by lining the external wall, consolidating it and improving the alignment with respect to the shoulders of the passagewa and the tract of the façade to the east. The lining is made up of five courses of bricks placed immediately above the present-day wainscot and proceeds with a series of flanged tiles that extended up to the fascia which joine with the window frames on the ground floor. Pick marks are still very visible at the side of the frames and nea

 about 5.5 cm on the ground floor behind the corresponding tract of the "piano nobile". The façade of casa
Lotica shows further traces of past stabilizing repairs: the wall of the "piano nobile" shows a difference in thickness of about 17 cm in the two rooms towards the street, being thicker in the space above the passageway. ${ }^{48}$ This confirms the hypothesis that this tract of the façade was tampered with in order to widen the carriage
access to the courtyard, an operation not without consequences on the stability of the overlying wall which was, thus, reinforced from the interior with a lining of the thickness of two bricks. The same discontinuity proceeds to the eaves where the difference in thickness is limited to one brick. A similar intervention of external
lining is visible at the base of the bordering casa Ramonda. lining is visible at the base of the bordering casa R amonda.

Today, the faux brick finishing covers the tract of the façade to the east of the vertical limit of plaster removal
corresponding to the carriageway. Traces of the same plaster are also present to the west of this limit, indicating how selective removal only eliminated the parts at risk of falling, preserving those adherent to the brickwork which were expected to be renovated. The presence of these fragments causes us to consider the intent and
outcome of the completion encouraged by Annibale Grasselli and Vincenzo Marchetti. They demonstrate outcome of the completion encouraged by Annibale Grasselli and Vincenzo Marchetti. They demonstrate
in the first place that at the termination of work, the faux bricks extending the whole façade and the eighteenth in the first place that at the termination of work, the faux bricks extending the whole façade and the eighteenth
century restoration were an intervention using a seventeenth century plaster with a claydlike base, in part preserved and utilized as a base for the new plaster. Here, we are dealing with plaster formed of two (or locally
three) strata on heterogeneous brickwork made up of the remains of the houses which were united and elevated during the second half of the i600s:

A "rinzaffo" or rough coat with well dampened mortar with slaked lime and medium-grained sand to form a base which is easy to grip and to regularize the unevenness at the base, penetrating between the joints above all between the clay-like ones, maybe already eroded due to exposure to atmosphere agents. This
stratum is frequently displaced by residues of the preceding seventeenth century plaster with a clay-like stratum is frequently displaced by residues of the preceding seventeenth century plaster with a clay ike
base, applied in thicknesses also relevant to the regularization of the underlying brickwork and the protection of its joints;
a second stratum or "intonaco" with an incision of faux brick, prepared with a thinner mortar than the previous one and clay and also a local thickness superior to $3 / 4 \mathrm{~cm}$,
a finish with a slaked lime base and finely sifted sand on the surface plus a red tinted mortar applied with "lime".

The workdays can be seen in the subtle demarcations of discontinuity on the surfaces and in the body of the
mortar. It is plaster made on site with lime, dampened and inert due to non airtight sifting, so much so that mortar. It is plaster made on site with lime, dampened and inert due to non airtight sifting, so much so that
between one day and the next, a lack of homogeneity of composition and impurities (presence of traces of lime between one day and the next, a lack of homogeneity of composition and impurities (he canonical succession of
lumps, various granulometry, float traces) are evident. Under close examination the the functional strata is shown to be liable to local variations due to the irregularity of surface grip and the
consequent necessity to adapt the thickness and also the number of strata. On the ground floor, the triple strata consequent necessity to adapt the thickness and also the number of strata. On the ground floor, the triple strata
is present in the tract of the façade to the east of the carriageway where it covers the remains of the two ancient houses of the Magio; above the string,course, there are only two strata and a red tint, the granulometry of which
leaves a rough surface. The few traces to the west of the passageway (between the twelfth and the thirteenth leaves a rough surface. The few traces to the west of the passageway (between the twelfth and the thirteenth of the brown coating which is even thinner, dry, pointed and tinted. Between the third and fourth window to the east, the façade forms a dihedron corresponding with the planimetric intersection of two perspectives respectively corresponding to the house already belonging to Ferrante Magio and the domus magna, the
discontinuity highlighted by the doubling of the subcornice. To the east of this limit, the plaster is applied in discontinuity highlighted by the doubling of the sub,cornice. To the east of this limit, the plaster is applied in
two strata with a body containing clay on which a reticule of faux brick and a very tenacious and inert finish
upon which a red "lime" tint was applied.
The executive sequence of the functional strata is detectable in the gaps due to the insertion of the hooks then removed with local removal of the surfaces. For example, considering (pl. XLIV), one notes how the finish, ing stratum relevant to the workday to the right surmounts the relevant surfaces of the preceding day to the left plaster to the right, probably due to the fixing and successive removal of a metal hinge. Under this gap emerges

The Development of the Urban Network and Building Reforms: Channelling of Rainwater and the Use of "Modern Gutters" in Cremona during the Nineteenth Century
 angelo Landi

In 1856 , lingering on a description of Cremona, the priest, Angelo Grandi commented on the precariou condition of the city's channels and, more generally, the drainage system of which he wrote "the Marchionis Aqueduct that crossed the fortification ditch was destroyed in a war at the beginning of the 18 th century and it was never thought to rebuild it". ${ }^{1}$ The unbearable stench coming from the sewage affected a large part of by the Municipal Council had not resulted in a coherent plan for the drains, channels and ditches that crossing the entire city, collected and carried away refluent water from small firms and habitations. In Cremona, admired for "the magnificence of its temples and palazzos, for the elegance of most of its houses", the third epidemic of cholera struck the city's poor heavily, resulting in widespread criticism of the public administration.
Academic studies on the "health question" ${ }^{\text {" }}$ and on the principal urban reforms ${ }^{4}$ in Cremona during the nineteenth century have shown a social and economic scene, where the Municipal Council (led by Lodovico Schizzi) gave the go ahead for important renovations which went beyond empirical "theories of stench". The
relationship between the urban environment and the health of the population was clearr from the I 830 the relationship berween the urban environment and the health of the population was clear; from the 1830 os the substantially inherited from medieval expansion and considered by then inadequate: its aim was to implement the transportation of goods on wheels, safeguard the health of citizens and add lustre to the city. ${ }^{5}$. A_{n} intervention of such importance was made possible thanks to a systematic plan, governed by municipal regulations. ${ }^{6}$ The plan was directed to correct the numerous incongruities in public spaces, but with precis orders also for private habitations, even if the economic and political difficulties of the first half of the nineteenth century notably limited the action of the Municipal Council, which was forced to postpone building reform that had already been planned.
Concessions given for the installation of a network of systems (rain water and foul drains in particular) with regard to the urban structure were the first stimulus that gradually led to better health conditions in the city. The industrial revolution in its first pale dawn entered private habitations through the introduction of technological systems:' initially limited to the bourgeoisie or aristocracy, they often resulted in changes t building. During the nineteenth century, a particular relationship of reciprocal influence was established between road works and building restoration; components of a system in which the border between private and public space became increasingly flexible.
The influence that traffic regulations had on the architecture of private buildings, including those less "important" buildings which contribute to our understanding of the "image of the historical centre",
only been partially examined. On the streets, buildings are strictly connected to the road surface, water channels, drainage ditches. Later with the introduction of drinking water, power and light,'s streets became part of the technological network, and at an urban level, their infrastructural development "directed" the restoration of the façades and the internal arrangement of the habitations. The nineteenth century restoration of the facade of Palazzo Magio Grasselli1i ${ }^{10}$ has suggested a research method to probe questions concerning the transformation of the "urban face", documented in the archives of the Commissione d'Ornato and Licenze Edilize ("Building Licences"), in which the regulations of the traffic police, with particular reference to the channelling of rainwater, played a decisive but offen undervalued role (fig. I42).

