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Abstract

Coordinate measuring systems acceptance and reverification is based on

standardized tests. This means that, although these tests yield a lot of use-

ful information to diagnose any machine malfunction, the single test is just a

go/no-go gauge. After conducting the test, the system may or may not conform

performance statement. Test design aims for the maximum simplicity, involving

repeated measurements of different measurement standards in specified conditi-

ons, and comparing the results with specification limits (maximum permissible

errors). This makes the nature of these tests statistical and the test success

probability depends on the actual behavior of the coordinate measuring system

under test. The aim of this work is to analyze the statistical properties of tests

for the performance verification of coordinate measuring systems. In particular,

as they are the most widespread in industry, we will analyze the ISO 10360

series of standards tests in-depth, proposing operating characteristic curves for

them.
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1. Introduction

Coordinate Measuring Systems (CMS) are complex. Differing from conven-

tional measuring systems, which in most cases can perform only a single kind

of measurement (e.g. a ruler or caliper measures only size features, a gonio-

meter measures only angles, etc.), CMSs are usually flexible. They perform a5

vast range of different measurement tasks, ranging from the simple thickness

or diameter measurement to the geometric tolerance verification and even the

free-form surface scan. Therefore, the uncertainty for CMS measurements is

“task-specific” [1, 2], i.e. the uncertainty a CMS can yield will depend strongly

on the measurement task the CMS itself is performing.10

However, if the uncertainty changes as the measurement task changes, the

uncertainty is not adequate to state the overall performance of the CMS. The

uncertainty is no longer a parameter based on which a ranking of CMS can

be proposed, nor it is possible to evaluate it once and for all through a cali-

bration procedure. So it is often hard for the CMS buyer to identify whether15

the CMS meets his requirements. The availability of uncertainty only after the

measurement has been performed is a major industrial issue. Furthermore, it is

difficult to check, through an uncertainty evaluation only, whether the CMS is

performing as expected and whether there is complete traceability to the meter.

Therefore, tests have been introduced for the “acceptance and reverification”20

of CMS, completely defined in national and international standards. Probably

the most widespread standard of this kind is the ISO 10360 series, which at

present consists of ten published parts and a few more presently being drafted.

In this series, several tests have been developed which aim at verifying whether

a CMS performs as stated by either the manufacturer (acceptance test) or the25

user (reverification test). These procedures act as “go/no-go” gauges and alt-

hough much information is provided by the measurement operation involved in

performing the test (and this is useful for the machine diagnostics), ultimately

the test is passed or not passed, no intermediate possibility is considered. This

limits the usefulness of the test in understanding what is going on with the30
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machine, and where the machine itself can be improved.

In this paper, a statistical point of view on the tests proposed by the ISO

10360 series of standards is described. The aim is to evaluate the probability

the tests state the CMS is behaving according to the stated performance, which

is usually defined as the “operating characteristic” (OC) curve of the test. This35

helps us to understand what the test error probability is, i.e. the probability

of either stating the CMS is misbehaving when it is behaving correctly or vice

versa. The OC curve can be calculated also if the operator alters the test

conditions by changing the number of sampling points or length measurements.

Also the test uncertainty (related to the measuring equipment) influences the40

test result, and can be considered in the OC curve. The proposed results are

useful for both the CMS manufacturer, helping him to correctly evaluate the

performance of his machine (e.g. when declaring it in the system brochure) and

the user when planning the machine test.

2. State of the art45

Although performance verification of CMS is a widely discussed issue in lite-

rature, finding works that analyze in depth what conducting a performance test

means is hard. Most of the proposed works, like those proposed by Hope and

Blackshaw [3], Neuschaefer-Rube et al. [4], Acko et al. [5], Moroni et al. [6], and

El Asmai et al. [7] deal with the definition of the artifacts to use for performance50

verification. Accurate artifacts are fundamental for effective performance veri-

fication. However, these papers neglect the impact that the specific procedure

for the application of these artifacts can have on the performance test result.

They just try to prove that they are “compatible” with the “standard test”

results. In addition some authors, such as Curiel-Razo et al. [8], extended the55

application of the ISO 10360 series methodology to other systems which are not

exactly CMSs (leap motion controller).

Swornowski [9] discusses the limitations of the ISO 10360-2:2009 approach

to performance verification of coordinate measuring machines (CMM). In par-
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ticular, he criticizes the fact that the standard describes the test as if it is con-60

ducted in ideal conditions, while in practice alignment and deflection of length

measurement standards should be taken into account. Furthermore, the test is

supposed to be conducted under a no-load condition, which is not coherent with

the usual CMS working condition. But again, Swornowski does not analyze the

test and its statistical aspects. Furthermore, some of the objections he raises65

are addressed in the ISO/TS 23165:2006 [10] standard.

Piratelli-Filho and Di Giacomo [11] apply factorial designs [12] to analyze

the output of the CMS performance test described in the ASME B89.4.1 stan-

dard (now known as ASME B89.4.10360.2:2008 [13]). This is interesting, as

the authors consider the results of the measurements involved in the test as70

random variables, and analyze them accordingly. Their aim is to evaluate the

“uncertainty” of the CMS, considering a series of influencing factors. This is

not completely correct, because the uncertainty in coordinate measurement is

always task-specific [1]. What they evaluate is the influence on the measure-

ment result of the orientation and length of the length measurement standard75

adopted in the test. Although this is surely relevant, it is interesting anyway as

it describes a statistics-based method for the (on-line) performance verification

of CMMs.

Franceschini et al. [14, 15, 16] discuss the possibility of setting up an on-line

control for CMMs. In particular, the possibility of applying control charts was80

studied initially [14], and then improved through the definition of a standard

“witness-part”, i.e. a part to be periodically measured to guarantee the CMM is

still behaving correctly [15, 16]. Although this approach is completely different

from the one proposed in the verification tests described in the international

standards, which is off-line and periodical, it is anyway interesting as it describes85

a statistics-based method for the (on-line) performance verification of CMMs.

Finally, part 5 of the ISO 10360 series of standards has been revised recently

[17]. A few papers [18, 19] have been published in recent years discussing the

novelties of the revision. However, this does not include any discussion on the

statistical aspects of the procedure.90
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3. Tests in the ISO 10360 series of standards

The ISO 10360 series of standards consists of ten published parts, plus a few

more parts still being drafted. Part 1 [20] is devoted to defining the various terms

common to the other parts of the standard, including those related to the CMS

as a device (probing system, rotary table, stylus system,. . . ), the operation of95

the CMS, the artifacts to be used in the tests, and the performance of the CMS

(although many more are defined within the other parts of the standard). It

proposes a classification of CMSs based on their kinematic structure as well. The

remaining parts describe the procedures for testing CMS. Each part describes

the test(s) proposed for different kinds of CMSs, including CMSs equipped with100

contact (point-to-point and scanning) probes, optical distance sensors, imaging

probing systems, multiple probes, articulated arm CMMs, and laser trackers.

A few kinds of CMSs are not covered yet, including computed tomography

scanners.

Every proposed test is related to a “performance indicator”, which in most105

cases is a “maximum permissible error” (MPE) for the CMS operating in a speci-

fic way (e.g. scanning, probing point-to-point, etc.). The proposed performance

indicators are listed in Tab. 1-3. It is worth noting that the symbols adopted

in the various standard are not completely coherent. This is due to the diffe-

rent years in which the standards were published. Symbols before 2010 differed110

from those adopted later. The International Organization for Standardization

is currently working on a homogenization of the symbols, so for instance ISO

10360-5:2010 was made consistent in 2020.

As the reader may note, there are a total of 50 performance indicators defined

in the current edition of the ISO 10360 series of standards. Although this may115

seem a very large number, it is worth noting that most of them can be grouped

two of categories:

� Probing error indicators, in which the performance index is the range of

a series of radii measured on a reference sphere (PForm.Sph.5Ö25:j:Tact,MPE,

PForm.Sph.1Ö25:SS:Tact,MPE,PForm.Sph.Scan:k:Tact,MPE, PFV2D,MPE, PForm.Sph.1×25:j:ODS,MPE,120
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Standard Indicator Symbol

ISO 10360-2:2009
CMMs used for
measuring size [21]

Maximum permissible error of
length measurement

EL,MPE

Maximum permissible limit of
the repeatability range

R0,MPL

ISO 10360-3:2000
CMMs with the axis of
a rotary table as the
fourth axis [22]

Maximum permissible radial
four-axis error

MPEFR

Maximum permissible tangential
four-axis error

MPEFT

Maximum permissible axial four-
axis error

MPEFA

ISO 10360-5:2020
CMMs using single and
multiple stylus
contacting probing
systems [17]

Maximum permissible single-
stylus form error

PForm.Sph.1Ö25:SS:Tact,MPE

Maximum permissible
single-stylus size error

PSize.Sph.1Ö25:SS:Tact,MPE

Maximum permissible multi-
stylus form error

PForm.Sph.5Ö25:j:Tact,MPE

Maximum permissible multi-
stylus size error

PSize.Sph.5Ö25:j:Tact,MPE

Maximum permissible
multi-stylus location error

LDia.5Ö25:j:Tact,MPE

Maximum permissible scanning
mode form error on a sphere

PForm.Sph.Scan:k:Tact,MPE

Maximum permissible scanning
mode size error on a sphere

PSize.Sph.Scan:k:Tact,MPE

Maximum permissible scanning
mode form error on a ring gauge

PForm.Cir.Scan:lo:Tact,MPE

Maximum permissible scanning
mode size error on a ring gauge

PSize.Cir.Scan:lo:Tact,MPE

Maximum permissible
opposing-styli projected lo-
cation error on a sphere

LDia.proj.Sph.2Ö25:j:Tact,MPE

Maximum permissible
opposing-styli projected lo-
cation error on a ring gauge

LDia.proj.Cir.Scan:j:Tact,MPE

ISO 10360-6:2001 Esti-
mation of errors in com-
puting Gaussian associa-
ted features [23]

Maximum permissible error MPEq

Table 1: Performance indicators in the ISO 10360 series of standards (part 1).
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Standard Indicator Symbol

ISO 10360-7:2011
CMMs equipped with
imaging probing
systems [24]

Maximum permissible error of bidi-
rectional length measurement

EB,MPE

Maximum permissible limit of the bi-
directional repeatability range

RB,MPL

Maximum permissible error of unidi-
rectional length measurement

EU,MPE

Maximum permissible limit of the
unidirectional repeatability range

RU,MPL

Maximum permissible error of Z bi-
directional length measurement

EBZ,MPE

Maximum permissible error of Z uni-
directional length measurement

EUZ,MPE

Maximum permissible error of XY bi-
directional length measurement

EBXY,MPE

Maximum permissible error of XY
unidirectional length measurement

EUXY,MPE

Maximum permissible squareness er-
ror

ESQ,MPE

Maximum permissible error of ima-
ging probe bidirectional length mea-
surement

EBV,MPE

Maximum permissible error of ima-
ging probe unidirectional length me-
asurement

EUV,MPL

Maximum permissible probing error PF2D,MPE

Maximum permissible probing error
of the imaging probe

PFV2D,MPE

ISO 10360-8:2013
CMMs with optical
distance sensors [25]

Maximum permissible probing form
error

PForm.Sph.1×25:j:ODS,MPE

Maximum permissible limit of pro-
bing dispersion

PForm.Sph.D95%:j:ODS,MPE

Maximum permissible probing size
error

PSize.Sph.1×25:j:ODS,MPE

Maximum permissible probing size
error All

PSize.Sph.All:j:ODS,MPE

Maximum permissible length measu-
rement error

EBi:j:ODS,MPE,
EUni:j:ODS,MPE

Maximum permissible flat form mea-
surement error

PForm.Pla.D95%:j:ODS,MPE

Maximum permissible limit of the ar-
ticulated location value

LDia.5×25:Art:ODS,MPE

ISO 10360-9:2013
CMMs with multiple
probing systems [26]

Maximum permissible multiple pro-
bing system form error

PForm.Sph.n×25::ODS,MPE

Maximum permissible multiple pro-
bing system size error

PSize.Sph.n×25::ODS,MPE

Maximum permissible multiple pro-
bing system location error

LDia.n×25::ODS,MPE

Table 2: Performance indicators in the ISO 10360 series of standards (part 2).
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Standard Indicator Symbol

ISO 10360-10:2016
Laser trackers for
measuring
point-to-point distances
[27]

Maximum permissible error of
length measurement (unidirecti-
onal)

EUni:L:LT,MPE

Maximum permissible error of
length measurement (bidirectio-
nal)

EBi:L:LT,MPE

Maximum permissible error of
probing form

PForm.Sph.1×25::SMR.LT,MPE

Maximum permissible error of
probing size

PSize.Sph.1×25::SMR.LT,MPE

Maximum permissible error of lo-
cation

LDia.2×1:P&R:LT,MPE

ISO 10360-12:2016
Articulated arm
coordinate measurement
machines (CMM) [28]

Maximum permissible error of
articulated location error, tactile

LDia.5×5:Art:Tact.AArm,MPE

Maximum permissible error of
bidirectional length measure-
ment

EBi:0:Tact.AArm,MPE

Maximum permissible error of
unidirectional length measure-
ment

EUni:0:Tact.AArm,MPE

Maximum permissible error of
probing form, tactile

PForm.Sph.1×25::Tact.AArm,MPE

Maximum permissible error of
probing size, tactile

PSize.Sph.1×25::Tact.AArm,MPE

Table 3: Performance indicators in the ISO 10360 series of standards (part 3).

PForm.Sph.n×25::ODS,MPE, PSize.Sph.1×25::SMR.LT,MPE, PForm.Sph.1×25::Tact.AArm,MPE)

� Error of length measurement, in which the performance is given by the

maximum measurement error yielded by the measurement of a set of ca-

librated standards of length, like a series of gauge blocks or a laser in-

terferometer (EL,MPE, EB,MPE, EU,MPE, EBZ,MPE, EUZ,MPE, EBXY,MPE,125

EUXY,MPE, EBV,MPE, EUV,MPE, EBi:j:ODS,MPE, EUni:j:ODS,MPE, EUni:L:LT,MPE,

EBi:L:LT,MPE, EBi:0:Tact.AArm,MPE, EUni:0:Tact.AArm,MPE)

These two kinds of indicators derive directly from those included in the first edi-

tions of the ISO 10360-2:2009 [29, 30]. In particular, PForm.Sph.1Ö25:SS:Tact,MPE

and EL,MPE, which are geared toward a CMM equipped with a single-stylus130

touch-trigger probe, are probably the most widespread and applied, the other

indicators being of more recent introduction and applicable in fewer cases. Mo-

reover, from a statistical point of view most of the indicators can be reduced

to these two by simply changing some parameters withing the models, e.g. the
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Figure 1: The concept of PForm.Sph.1Ö25:SS:Tact. The coordinates are scaled to the sphere
radius. Please also refer to Fig. 4 of ISO 10360-5:2020 [17].

sample size or the test uncertainty. Finally, the main CMM manufacturers cur-135

rently still ignore many indicators. Only recently have some indicators, like

R0,MPL, been introduced by a few manufacturers. Therefore, the remainder

of this work will focus on PForm.Sph.1Ö25:SS:Tact,MPE, EL,MPE, and the related

acceptance/reverification tests.

4. Single-stylus form error140

The ISO 10360-5:2020 defines [17] the “single-stylus form error” PForm.Sph.1Ö25:SS:Tact

(Fig. 1) as

observed form of a test sphere, the measurements being perfor-

med by a CMM with a single-stylus (SS), using the discrete-point

probing mode taking 25 points on a single sphere (1 Ö 25).145

This error is strictly related to the repeatability of the single point probed by

the CMM and the probing system under test attached to it. The measurement of

a test sphere requires only small displacements of the sensor itself (compared to

the typical measurement volume of a CMM). It is reasonable that the volumetric

error added in this case is then quite small. The error aims at characterizing the150

potential performance of the CMM when the mechanical structure is perfect.
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The related performance index is PForm.Sph.1Ö25:SS:Tact,MPE, which is defined

[17] as

extreme value of the single-stylus form error, PForm.Sph.1Ö25:SS:Tact,

permitted by specifications.155

Please note that the definition of PForm.Sph.1Ö25:SS:Tact and PForm.Sph.1Ö25:SS:Tact,MPE

are extremely generic: the number of sampling points is defined, but neither the

distribution of these points on the test sphere nor the fitting principle are defi-

ned. Without the definition of these two parameters, PForm.Sph.1Ö25:SS:Tact,MPE

cannot be adopted to state the performance of a CMM. Therefore, the standard160

[17] includes a specific test to verify this performance indicator. The test can

be summarized as follows.

1. Take a reference sphere. The diameter of the sphere must be at least equal

to 10 mm and at most equal to 51 mm. The geometric deviation of the

sphere shall be “far lower” (specific limits are suggested in the standard)165

than the PForm.Sph.1Ö25:SS:Tact,MPE of the CMM under test.

2. Sample 25 points on the reference sphere. The pattern of the points can be

defined by the operator (provided that the points are approximately evenly

distributed over at least a hemisphere of the test sphere); a suggested

pattern is given in the standard (Fig. 2).170

3. Fit a Gaussian (unconstrained least-squares) sphere to the sampling points.

To do this, considering a generic sphere with center [x0 y0 z0] and ra-

dius r, the distance of the ith point [xi yi zi] from its surface is:

di =

√
(xi − x0)

2
+ (yi − y0)

2
+ (zi − z0)

2 − r (1)

The Gaussian fitting sphere can be calculated by solving

min
x0,y0,z0,r

25∑
i=1

d2
i (2)
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Figure 2: Suggested distribution of the sampling points for the test of the single-stylus form
error. The coordinates are scaled to the sphere radius. Please also refer to Fig. 2 of ISO
10360-5:2020 [17].

4. Calculate the single-stylus form error as1

PFTU = max
i
di −min

i
di (3)

1For the sake of compactness, from now on PForm.Sph.1Ö25:SS:Tact will be referred to as
PFTU and PForm.Sph.1Ö25:SS:Tact,MPE as PFTU,MPE, as in the former edition of ISO 10360-
5:2010 [31].
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5. The single-stylus probing performance is verified if175

PFTU ≤ PFTU,MPE − UPFTU
Acceptance test

PFTU ≤ PFTU,MPE + UPFTU
Reverification test

(4)

where UPFTU
is the uncertainty of the measurement of PFTU.

Please note that UPFTU
is not, in general, influenced by the CMM under test,

but only by the equipment (e.g. the reference sphere, gauge block) adopted for

the test. The ISO/TS 23165:2006 standard [10] gives details on how to estimate

this uncertainty. The presence of the uncertainty in the formula is dictated by180

the ISO 14253-1:2017 standard [32]. This standard requires that uncertainty

always “plays against” who is performing the test. Therefore, when a supplier

performs an acceptance test, the uncertainty is subtracted from the limit, so

the odds of the test passing are reduced. Instead, if a customer performs a

reverification test the uncertainty is added, so the odds of passing the test are185

increased.

From the definition of the test, it is clear that the PFTU is the difference

of the maximum minus the minimum, i.e. the range, of the set of 25 values.

If this set of values can be seen as a set of random variables following some

specific statistical distribution, then PFTU will follow some (different) statistical190

distribution. The knowledge of this statistical distribution would allow the

calculation of the probability the test is passed as PFTU,MPE varies, which is the

aim of the present work. Unfortunately, the distribution of the range of a finite

set of random variables is seldom known. But if the variables are normally and

independently distributed, then the distribution of the range is known [33, 34].195

Measurement results, here including residuals from a Gaussian sphere, have

often proven to be normal. Therefore, in the following it will be assumed the

terms di are distributed according to a normal distribution and independent,

i.e. di ∼ NIID
(
µ, σ2

)
. The latter hypothesis is never verified. The Gaussian

sphere is fitted on the same sampling points for which the distances di are200

calculated. This generates some correlation between the di seen as random
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variables. However, this correlation, as three parameters only are fitted, is

usually very small.

Consider a set of n random variables di ∼ NIID
(
µ, σ2

)
. Define the random

variable205

w =
maxi di −mini di

σ
(5)

Hartley has demonstrated [33] that the cumulative probability of this random

variable is

Pn (W ) =

(∫ + 1
2W

− 1
2W

φ (x) dx

)n
+

+ 2n

∫ ∞
1
2W

φ (u)

(∫ u

u−W
φ (x) dx

)n−1

du

(6)

where φ (x) = 1√
2π
e−

1
2x

2

is the probability density of the standard normal dis-

tribution. When Hartley obtained this result, integrating Eq. (6) was rather

difficult, but at present any computer can numerically solve it.210

Eq. (6) allows the calculation of the probability the single-stylus probing

performance test is passed for given values of σ2, PFTU,MPE, and UPFTU
. This

probability can be summarized in a single graph expressing this probability as a

function of
PFTU,MPE

σ when UPFTU
= 0 (Fig. 3), as often considered in common

(and incorrect) industrial practice. In the context of statistical inference a curve215

which defines the probability the null hypothesis of the test is not rejected given

some specific condition (usually a specific violation of the null hypothesis itself)

is called the “operating characteristic” (OC) curve of the test, and then in the

following the curve of the probability the single-stylus probing performance is

verified will be referred to as the OC curve of the test. In Fig. 3 two points220

have been highlighted: the one for which
PFTU,MPE

σ = 4, and the one for which

PFTU,MPE

σ = 6. The first one is linked to the classical value of the expansion

factor, K = 2, for the expanded uncertainty U evaluation. In this case, it is

commonly assumed that P (x− U ≤ y ≤ x+ U) ∼= 0.95, where x is the reference

13
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Figure 3: Operating characteristic curve of the single-stylus probing performance test.

value of the measurand and y is the measurement result [35]. It is worth noting225

that P (PFTU < PFTU,MPE| PFTU,MPE

σ = 4) = 0.57: in practice, if PFTU,MPE =

4σ, nearly once every two tests the CMM will be declared “not behaving cor-

rectly”. It is apparent that, supposing σ is known, stating PFTU,MPE = 4σ is

not a good choice. A better choice could be stating PFTU,MPE = 6σ. In fact, in

this case, P (PFTU < PFTU,MPE| PFTU,MPE

σ = 6) = 0.995 that means the test is230

(wrongly) failed only once every 182 tests on average, that is probably accep-

table, considering that CMMs are usually verified once a year. Please note this

can be considered a “six-sigma” approach.

4.1. Influence of the sample size (number of sampling points)

As stated in §4, the number of sampling points in the single-stylus probing235

error test is fixed and equal to 25. Therefore, a discussion on the influence
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Figure 4: Operating characteristic curve when the sample size changes.

of the number of sampling points could appear superfluous. However, other

performance parameters of CMSs, e.g. MPETij or PFTj,MPE, are based on tests

requiring more than 25 sampling points. A discussion on them can be useful to

understand how the probability of failing the test could influence the statement240

of the performance index. Fig. 4 shows how the OC curve changes as the sample

size changes.

As one might expect, as the sample size increases the probability of passing

the test decreases. As the sample size increases the probability of encountering

points with an abnormally high distance from the Gaussian fitting sphere incre-245

ases. Since the range is influenced only by the maximum and minimum distance,

the range itself is likely to increase. Even if the increase of the sample size can

increase the accuracy in the definition of Gaussian sphere, the same structure of
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the test is such that this will not alter its result, as it always includes the single

point dispersion. In fact, the probing error test is, in the end, based on single250

probing points (only the maximum and minimum deviating points influence the

range). These results suggest that great care should be taken in the evaluation

of performance indices when many sampling points are involved in the test. In

fact, in most cases, the indices requiring many points are calculated in situations

in which the CMM accuracy is limited by its operating mode (e.g. in MPETij255

the accuracy is limited by the dynamic distortion of the machine structure, as

the CMM operates in scanning mode), and this calls for lower performance if

compared to the single-stylus probing error. The increase in the sample size

also calls for a reduction of the performance indexes to allow the CMM to pass

the test. This makes hard to understand whether low performance is due to260

inaccuracy or due to large test sample size.

4.2. Influence of the test uncertainty UPFTU

The ISO 14253-1:2017 standard [32] requires the measurement uncertainty

to be considered in any statement about the conformance to tolerances based

on measurement results. In the field of CMS testing, this means a reduction265

(acceptance test) or an increase (reverification test) of the limit value for the

performance index considered, as highlighted by Eq. (4) for the single-stylus

probing error. The discussion proposed so far has completely neglected this

issue, concentrating on the pure test. Now, if uncertainty is considered, the

situation changes. Fig. 5 plots how the OC curve changes as the test un-270

certainty changes. The test uncertainty has been expressed as a fraction of

the PFTU,MPE, i.e. UPFTU
/PFTU,MPE. An acceptance test has been considered

for the verification, i.e. PFTU ≤ PFTU,MPE + UPFTU , but both positive and

negative values have been considered for UPFTU
/PFTU,MPE. Therefore, posi-

tive values of UPFTU
/PFTU,MPE refer to the acceptance test and negative values275

UPFTU
/PFTU,MPE to the reverification test. The reverification test does not pre-

sent any particular issue (the probability of passing the test simply increases)

but, in the case of the acceptance test, the situation is more complicated. The
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Figure 5: Operating characteristic curve when the test uncertainty is considered.

test uncertainty depends on the form deviation and calibration uncertainty of

the test artifact. Even if ultra-precision spheres, with a nanometric form devi-280

ation can be manufactured, yielding calibration uncertainties smaller than 0.1

µm is difficult. Therefore, the minimum test ucertainty is of the same order of

magnitude. This means that testing CMMs, for which a PFTU,MPE ≤ 1 µm is

stated, is very difficult because the uncertainty strongly increases the probabi-

lity of not passing the test. At present the same CMM manufacturer states that285

probably their highest accuracy machines are characterized by an accuracy that

is better than their PFTU,MPE suggests, but they cannot state this because no

reference artifact with an adequately low uncertainty is available
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4.3. Method validation

Validating the method requires the hypotheses to be verified. The cumula-290

tive probability in (6) is based on the normality and independence of the values

in the sample. As stated in §4, values are not independent so testing their

independence would be improper.

Normality can be verified instead. The PForm.Sph.1Ö25:SS:Tact,MPE test has

been run 100 times on a “Zeiss Prismo 5 VAST HTG” tactile CMM. The value295

stated by the manufacturer for the PForm.Sph.1Ö25:SS:Tact,MPE of this machine is

equal to 2 µm. The data are made available [36]. After fitting the Gaussian

sphere and calculating the radius of each probing point, the Anderson-Darling

test [37] was applied to each set of radii. The distribution of the resulting p-

values is shown in Fig. 6, the minimum p-value being 0.007 (the unique value300

below 0.1). As there is no statistical evidence of non-normality in any dataset,

it is proved that in general the radii probed on the reference sphere are normally

distributed.

5. Length measurement error EL

The ISO 10360-2:2009 defines [21] the “length measurement error” EL as305

error of indication when measuring a calibrated test length using

a CMM with a ram axis stylus tip offset of L, using a single probing

point (or equivalent) at each end of the calibrated test length.

The length measurement test is dual with the single-stylus probing error test.

The latter aims at testing the machine within a limited volume, to extract the310

sensor contribution of the error as far as possible. The first instead measures a

length. If the length is adequately large compared to the measuring volume the

volumetric error of the machine will be necessarily involved. However, the length

measurement error includes de facto also the probing error. A single probing

point or equivalent for each end of the calibrated test length is taken. Therefore,315

any purely random and non-volumetric error is retained in its assessment. If the
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Figure 6: Histogram of the p-values obtained from 100 Anderson-Darling normality test.

length measurement was based for example on the measurement of the center of

the spheres of a ball bar through Gaussian fitting of the two spheres of the ball

bar itself, the averaging effect of Gaussian fitting would reduce or even eliminate

the random error contribution.320

The performance index related to the length measurement error is the “max-

imum permissible error of length measurement” EL,MPE, defined [21] as

extreme value of the length measurement error, EL, permitted

by specifications.

The L symbol in EL stands for the perpendicular distance of the stylus tip to325

the ram axis of the CMM. Of course, this is meaningful only in case of CMMs,

and not for a generic CMSs. A particular case is L = 0, i.e. the tip coincides

with the ram axis of the CMM. The test in this case is more complete, and is
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usually considered by CMM manufacturers. Furthermore, tests for optical CMS

are usually inspired by this test for E0. Therefore, in the following only this330

specific case will be considered.

The procedure for testing E0 is more complex and time consuming than

the one for the single-stylus form error because the whole measuring volume of

the CMS must be investigated. The overall procedure can be summarized as

follows.335

1. Select seven positions (locations and orientations) in the measurement

volume along which the test will be conducted2.

2. Select five length measurement standards (e.g. gauge blocks, step gauge,

laser interferometer,. . . ) to be measured (Fig. 7). The length measu-

rement standards can be different for every considered direction. The340

longest length measurement standard should cover at least 0.66 · l, where

l is the machine travel in the considered position. Each calibrated test

length must differ significantly from the others in length. Their lengths

must be well distributed over the measurement line.

3. Measure each length measurement standard three times for each position345

(total 105 length measurements).

4. For each measurement, calculate the length measurement error, E0, by

calculating the difference between the indicated value and the calibrated

value of each test length (where the calibrated value is taken as the con-

ventional true value of the length).350

5. The length measurement performance is verified if

E0 ≤ E0,MPE − UE0
Acceptance test

E0 ≤ E0,MPE + UE0 Reverification test
(7)

where UE0 is the uncertainty of the measurement of E0 (which in ge-

2The most recent edition of the ISO 10360-2:2009 standard [21] requires four of these
directions to be selected along the volumetric diagonals of the measurement volume, and
suggests that the remaining three be parallel to the three Cartesian axes of the machine and
passing through the center of the measurement volume.
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Figure 7: An example of the use of gauge blocks as artifacts for the execution of the length
measurement error test (courtesy of Politecnico di Milano).

neral depends only on the equipment adopted for the test). The ISO/TS

23165:2006 standard [10] gives details on how to estimate this uncertainty.

Again, the presence of the uncertainty is dictated by the ISO 14253-1:2017355

standard.

In most cases E0,MPE is not expressed as a constant, but as a function of

the nominal or calibrated length l of the measured length standard, e.g.

E0,MPE = a+ b · l (8)

where a and b are constants specific for the considered CMS. This suggests that

in general E0,MPE is proportional to the measured length, i.e. as the measured360

length increases the absolute measurement accuracy is likely to reduce.

From this description, it is apparent that the length measurement error test
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is a set of 105 separated tests, which are considered together. Now, consider a

single length measurement error evaluation, and the acceptance test (in case of

reverification test the solution is similar). Suppose that E0 ∼ N
(
0, σ2

j

)
, where365

j ∈ {1, 2, . . . , 5} is an index denoting a length standard. In practice, it has been

supposed that the length measurement error is distributed according a Gaussian

distribution, with a null expected value, and a variance which depends on the

considered length standard. It is worth nothing that this normality assumption

is probably a severe simplification of the reality. The presence of residual sy-370

stematic errors, scale errors, and calibration errors of the reference standards

can easily make E0 non-normal and with an expected value differing from zero.

However, this simplified model is the only one allowing an easy calculation of

the operating characteristic curves. To allow the statistical discussion of the

test, it is then accepted. It is easy to prove (see e.g. Montgomery and Runger375

[38]) that P (|E0| ≤ E0,MPE − UE0
) can be calculated as

P (|E0| ≤ E0,MPE − UE0
) =

=P (E0 ≤ E0,MPE − UE0
)− P (E0 < UE0

− E0,MPE) =

=Φ

(
E0,MPE − UE0

σj

)
− Φ

(
UE0 − E0,MPE

σj

)
=

=2Φ

(
E0,MPE − UE0

σj

)
− 1

(9)

where Φ (x) denotes the cumulative distribution function of the standard nor-

mal distribution calculated at x. This is the probability that a single measure-

ment conforms to the stated E0,MPE. To consider all the measurement results

together, independence of each measurement result from any other must be380

supposed. The probability that two independent events happen together is the

product of the probability of the two events [38]. Supposing that
E0,MPE−UE0

σj
=

E0,MPE−UE0

σ ∀j (i.e. it does not depend on j or the size of the length standard),
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the probability that the test is passed is equal to3

P (“test passed”) =

[
2Φ

(
E0,MPE − UE0

σ

)
− 1

]105

(10)

Please note that supposing that
E0,MPE−UE0

σ = k, where k is a constant, if385

E0,MPE is expressed as in Eq. (8), means to state that σ = 1
k (a+ blj), that

is, the dispersion of E0 is proportional to the size of the considered length

measurement standard, which is reasonable.

Similarly to what has already been done for the single-stylus form error

test in §4, operating characteristic curves based on Eq. (10) can be propo-390

sed, plotting the probability the test is passed as a function of
E0,MPE

σ when

UE0
= 0 (Fig. 8). A few points have been highlighted. The point for which

for which
E0,MPE

σ = 2 is linked to the classical value of the expansion factor,

K = 2, for the expanded uncertainty U evaluation. It is worth noting that

P (E0 < E0,MPE| PFTU,MPE

σ = 4) = 0.0075: in practice, if E0,MPE = 2σ, the test395

is seldom passed. It is apparent that, supposing σ is known, stating E0,MPE = 2σ

is not a good choice. Even the point for which E0,MPE = 3σ is not good. In

fact, in this case P (E0 < E0,MPE| E0,MPE

σ = 3) = 0.75 that means the test is

(incorrectly) failed only once every 4 tests on average, which is still not accep-

table. Although this is a sort of “six-sigma” approach, the CMS manufacturers400

should consider larger values when stating the performance indices of their sys-

tems. For example, choosing 3.5σ leads to a probability that the test is passed

approximately equal to 0.95, which still signifies a fail once every 20 tests on

average.

5.1. Influence of the sample size (number of sampling points)405

As stated in §5, the number of sampling points in the length measurement

error test is fixed and equal to 105. Therefore, a discussion on the influence

3The ISO 10360-2:2009 standard allows ten additional measurements to be performed in
case a single measurement fails the test: if all these ten measurements pass the test, then the
test is passed. Here, for sake of simplicity, this possibility is neglected.
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Figure 8: Operating characteristic curve of the length measurement error test (n = 105).

of the number of sampling points could appear superfluous. However, this can

be deemed useful in the case a company decides to increase the number of

replicates, position or length standards to increase their knowledge of machine410

behavior, or vice versa to reduce it to shorten the time required by the test. Fig.

9 shows how the OC curve changes as the sample size changes (here n denotes

the overall number of measurements taken).

As expected, as the sample size increases the probability of passing the test

decreases. This is obvious, considering the formula generating the OC curve is415

P (“test passed”) =

[
2Φ

(
E0,MPE − UE0

σ

)
− 1

]n
(11)

These results suggests that manufacturers should not vary the number of mea-

surements when stating E0,MPE. Increasing it could lead to an overestimation of
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Figure 9: Operating characteristic curve when the sample size changes.

the performance parameter, and conversely reducing it to an underestimation.

5.2. Influence of the test uncertainty UE0

The ISO 14253-1:2017 standard [32] requires the measurement uncertainty420

to be considered in any statement about conformance to tolerances based on

measurement results. In the field of CMSs testing, this means a reduction

(acceptance test) or an increase (reverification test) of the limit value for the

performance index considered, as highlighted by Eq. (7) for the length mea-

surement error test. The discussion proposed so far has completely neglected425

this issue, concentrating on the pure test. Now, if uncertainty is considered,

the situation changes. Fig. 10 plots how the OC curve changes as the test

uncertainty changes. The test uncertainty has been expressed as a fraction of

the E0,MPE, i.e. UE0
/E0,MPE. An acceptance test has been considered, i.e. the
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Figure 10: Operating characteristic curve when the test uncertainty is considered.

test is verified if E0 ≤ E0,MPE +UE0 , but both positive and negative values have430

been considered for UE0/E0,MPE. Therefore, positive values of UE0/E0,MPE re-

fer to the acceptance test, and negative values UE0
/E0,MPE to the reverification

test.

Considerations similar to those of the probing error test can be drawn. In

the case of the reverification test, a large uncertainty increases the probability435

the test is passed. Usually this is not an issue (unless one suspects the CMS is

not behaving correctly). In the case of the acceptance test instead, the problem

of testing high accuracy CMSs arises. It is difficult to have a test uncertainty

smaller than 0.1 µm, especially when lengths above 100 mm are involved. Tes-

ting CMMs for which E0,MPE ≤ 1 µm can therefore be very difficult. In some440

cases CMSs manufacturers cannot state the real performance of their systems
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because they cannot test them.

5.3. Method validation

The results proposed in §5-5.1-5.2 are based on several assumptions:

� E0 values are normally distributed;445

� E0 values are zero-mean;

� E0 values are independent.

The assumption according to which
E0,MPE−UE0

σj
=

E0,MPE−UE0

σ ∀j is actually

required only to yield (10) and the related OC curves, but is not fundamental

in the model.450

Differing from the case of the PForm.Sph.1Ö25:SS:Tact,MPE test, the hypotheses

in this case are not verified. The E0,MPE test was run 12 times on a “Zeiss Prismo

5 VAST HTG” tactile CMM. The value of E0,MPE stated by the manufacturer is

2+ L
300 µm, where L is the measured length in [mm]. The data is made available

[36]. Again normality has been verified by applying the Anderson-Darling test.455

The test has shown that the data are not normally distributed. In addition, Fig.

11 shows that often the E0 values are not zero-mean. Independence was not

tested. This was actually expected, as residual systematic errors, scale errors,

and calibration errors of the reference standard are always present in CMM

tests.460

It is worth noting that the problem of non-normality can be solved by ap-

plying the Johnson transformation [39]. This has been tested: all datasets can

be normalized. The non-zero mean makes the calculation of (10) more compli-

cated, but still possible, as (9) changes into:

P (|E0| ≤ E0,MPE − UE0) =

=Φ

(
E0,MPE − UE0 − µj

σj

)
− Φ

(
UE0 − E0,MPE − µj

σj

) (12)

With this in mind, OC curves are still a useful tool to evaluate the applica-465

bility of the E0,MPE test.
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Figure 11: Example of a typical result of the E0,MPE test. Green crosses indicate the measured
values for E0, red lines the test uncertainty, and blue lines the actual value of E0,MPE

6. Conclusions

The problem of verifying the performance of coordinate measuring systems

is usually considered a black-box. In practice the test consists of a simple series

of measurements, whose results must comply with some tolerance interval or,470

with a more proper term, maximum permissible error. But, as measurement

results are always characterized by some variability, which is by itself strictly

linked to the system performance, there is always the possibility of the test

failing, despite the actual performance of the machine.

By analyzing the performance verification tests defined in the ISO 10360475

series of international standards from a statistical point of view, the present work

characterizes the probability that the tests fail under specific assumptions. The

analysis relies in particular on the assumption that the measurement results are

distributed according to a normal distribution, as commonly found in practical

applications of measurement. The influence of the sample size and of the test480

uncertainty on the probability of the test failing has been assessed as well.
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These results may help the coordinate measuring system experts to better

understand the meaning of the results of the tests they are performing, by

giving them a clearer look at the probabilities of the test failing. Moreover, they

can help the coordinate measuring system manufacturers to state the value of485

the performance indices of their machines correctly, avoiding that under- and

over-estimation. Under-estimation could lead to seeming non-competitive with

other products; over-estimation could lead to frequent test failures, damaging

the corporate image at the customer.

Finally, the ISO 10360 series test series tests should be discussed again con-490

sidering their statistical implications. As any test, they are subject to “type

I” (stating a well-functioning system malfunctioning) and “type II” (stating a

malfunctioning system well-functioning) errors. The current formulation of the

tests neglects this. Acceptance and reverification tests differ in the respective

impact of these two kind of errors: therefore, a different consideration should495

be taken into account.
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