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ABSTRACT
With the continuous evolution of the types of attacks against
computer networks, traditional intrusion detection systems,
based on pattern matching and static signatures, are in-
creasingly limited by their need of an up-to-date and com-
prehensive knowledge base. Data mining techniques have
been successfully applied in host-based intrusion detection.
Applying data mining techniques on raw network data, how-
ever, is made difficult by the sheer size of the input; this is
usually avoided by discarding the network packet contents.

In this paper, we introduce a two-tier architecture to over-
come this problem: the first tier is an unsupervised cluster-
ing algorithm which reduces the network packets payload to
a tractable size. The second tier is a traditional anomaly de-
tection algorithm, whose efficiency is improved by the avail-
ability of data on the packet payload content.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access
(e.g., hacking, phreaking); I.5.3 [Clustering]: Algorithms;
C.2.3 [Network Operations]: Network monitoring

General Terms
Security, Experimentation.

Keywords
Intrusion detection, anomaly detection, unsupervised clus-
tering, quality of clusters, K-means, principal direction di-
visive partitioning, self-organizing maps.

1. INTRODUCTION AND MOTIVATIONS
One of the most excruciating pains in both the intrusion

and virus detection fields is the constant need for up-to-
date definition of the attacks. This follows from the use of
a “misuse detection” approach, which tries to define what
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is anomalous instead of defining what is normal. While this
kind of approach has been widely successful and is imple-
mented in almost all the modern antivirus and intrusion de-
tection tools, its main drawback is that, when facing an un-
known attack, misuse-based systems are substantially use-
less. In the antivirus world this problem has been more or
less successfully approached with round-the-clock response
team and signature distribution methodologies. In the in-
trusion detection world, maintaining such a knowledge base
up to date is substantially a lost battle.

The problem does not lie only in the sheer number of vul-
nerabilities that are discovered every day: there is also an
unknown number of unexposed vulnerabilities that may not
be immediately available to the experts for analysis and in-
clusion in the knowledge base (which, in general, does not
happen for viral code). In addition, some forms of attacks
could even be studied by a particularly skilled attacker on
the spot, just to hit a single or a few systems (again, this is
not what you would expect from a virus). In fact, misuse-
based IDS are particularly effective against the so-called
“script kiddies”, unskilled attackers that rely on commonly
known attack tools, for which a signature is usually widely
available.

Additionally, computer attacks are usually polymorph,
since there are different ways to exploit the same vulner-
ability. Thus, it is correspondingly more difficult to develop
appropriate signatures: either we generate a number of sig-
natures to cover each possible variation of the attack, or
we try to generalize the signatures, risking to generate false
positives.

In some cases this is inherent to the attacks, for instance
the “unicode” related bugs, since for each character there are
multiple possible Unicode encodings. But let us examine
the ADMutate tool (http://www.ktwo.ca/c/ADMmutate-
0.8.4.tar.gz), developed by the Canadian hacker “K2”: this
tool enables an aggressor to encrypt the shellcode of a stack-
smashing buffer overflow attack [21], and to append this en-
crypted shellcode to the decryption algorithm. Even if now
most IDS have a specific signature for the decryption code
specific to ADMutate it’s easy to understand that this prin-
ciple can be indefinitely applied, in many forms.

An obvious solution would be to go back to the basics, and
try to implement an anomaly detection approach, modeling
what is normal instead than what is anomalous. This is
surprisingly similar to the earliest conceptions of what an
IDS should do [1].

Surprisingly enough, anomaly detection systems have been



successfully implemented (at least in academic projects) in
an host-based fashion, but have so far spectacularly failed
to be useful in network-based systems, with a few excep-
tions. This is due both to commercial reasons, and to real
problems with anomaly detection systems. They show an
alarming tendency to generate huge volumes of false posi-
tives, they do not clearly define “what is wrong”, but instead
rely on statistical measures of “weirdness”. In addition, it
has always been a difficult task for researchers to understand
what to monitor in a network traffic flow, and how to de-
scribe and model it. Specific, limited “anomaly detection”
signatures have been developed and implemented in tradi-
tional commercial IDS systems, in order to detect common
signs of attacks (for instance, the presence of binary codes
in unusual places). However, there are no (or very few) fully
fledged network-based anomaly detection systems.

In this work we propose a novel architecture for a network-
based Intrusion Detection System based on unsupervised
learning and data mining techniques. We believe research
in this particular field to be increasingly important, since
the misuse detection approach has been widely studied and
implemented, but is now beginning to show its limits; so, it
is our opinion that future research should explore anomaly
detection systems to properly complement existing misuse
detection ones.

It is important to note that, since failures and strengths
of such approaches are symmetric, some systems try to inte-
grate different approaches [26], but there are difficult and in-
triguing problems of metrics, fusion and normalization when
working on data coming from different sources, somehow
tied to the “multisensor data fusion” problems already un-
der consideration in the field of robotics [2]. We will not try
to address such problems, due to space limits; however, it is
important to keep in mind that we are trying to develop a
paradigm that should complement, not substitute entirely,
the misuse detection approach.

Our proposed architecture aims to be efficient and prop-
erly structured to be realistically implemented: to this end,
we have studied carefully the performance of the algorithms.
We also made use of real network data, not generated ad hoc
by us for test purposes, to ensure that our results are reliable
and not biased by our own unconscious assumptions.

The remainder of the paper is organized as follows: in
section 2 we will propose a novel architecture for a Network
IDS completely based on unsupervised learning techniques.
We will examine both the tiers of the proposed architecture
in the following sections; in particular, section 3 will focus
on the results we obtained in the use of clustering algorithms
on the payload of TCP packets, and section 4 will introduce
the concept of anomaly detection on sequences of data and
proposes our preliminary results on the subject. Finally, in
section 5 we will draw our conclusions, and set the course
for further developments.

2. A TWO-TIER ARCHITECTURE
We propose an innovative architecture for a network-based

anomaly detection IDS, based on unsupervised learning al-
gorithms. We chose to focus on this class of algorithms
because they exhibit the following interesting properties:

• Outlier detection: unsupervised learning techniques
are capable of identifying “strange” observations in a
wide range of phenomena; this is a characteristic we

definitely need in an anomaly based IDS;

• Generalization: unsupervised learning techniques are
also quite robust and gave us the hope of being able
to resist to polymorphic attacks;

• Unsupervised learning: we wanted to create a model
totally orthogonal to the misuse based model, which
is dependent on the input of expert knowledge, so
we tried to develop an IDS which needed no a priori
knowledge inputs;

• Adaptation: a learning algorithm can be tuned totally
to the specific network it operates into, which is also
an important feature to reduce the number of false
positives and optimize the detection rate.

The problem we are trying to analyze in the unsuper-
vised learning framework is the following: we wish to de-
tect anomalies in the flow of packets on a TCP/IP network.
This apparently simple problem statement hides a number
of subproblems.

A TCP/IP packet, over an Ethernet network, has a vari-
able dimension between 20 and 1500 bytes. The first 20
bytes (or more, depending on the number of options) con-
stitute the IP header, and we possess full knowledge of its
meaning. Another sequence of up to 20 bytes is the header of
the upper layer protocol, usually either TCP, UDP or ICMP.
We have full knowledge also of the meaning of this header,
but in the case of connection-oriented protocols (most no-
tably TCP) these headers may need inter-correlation in or-
der to be fully deciphered.

If we look at the data carried by the packet (the pay-
load), the situation grows even more complex: we could add
knowledge about upper layer protocols such as HTTP, FTP
and so on, but this would add complexity, decrease the gen-
erality of the IDS (limiting it to well-known protocols) and
generally imposing a performance cost. It is computation-
ally infeasible to perform a full, real-time reconstruction of
the sessions of traffic of a large network at such a high level.
In addition, the higher the protocol layer we consider, the
more the IDS will become sensible to reconstruction prob-
lems, possibly leading to attack windows [27].

However, even if we do not try to reconstruct sessions, we
cannot hope to understand what is going on by looking at
one packet at a time: we need to correlate what is happening
over time, either by observing a rolling window of packets
in parallel or by using algorithms with a memory property.

Unfortunately, the computational complexity of unsuper-
vised learning algorithms scales up steeply with the size of
the considered data. A realistic (even ambitious) limit is of a
thousand, or little more, dimensions (or features). So, if we
tried to apply an unsupervised learning algorithm directly
to raw data, we could feed the algorithm only with a sin-
gle packet at a time. As we said before, this would greatly
impair the ability of the algorithm to discover correlation
between packets over time.

A few algorithms can be optimized to treat data with
many thousands of dimensions, but only in the case that
they are sparse (for instance, a word/document incidence
matrix in a document classification and retrieval problem
[5]), but we are dealing with dense data. Our tests have also
shown that traditional dimension-reduction techniques, such
as dimension scaling algorithms [4] or Principal Component
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Figure 1: Architecture of the IDS

Analysis [13], are quite ineffective to treat these data, since
by their nature they tend to “compress” outliers, and this
is exactly the opposite of what we want to achieve.

Many existing researches on the use of unsupervised learn-
ing algorithms for intrusion detection purposes solve this
problem by discarding the payload and retaining only the
information in the packet header. This is clearly not an op-
timal solution, since it leads to an unacceptable information
loss: most attacks, in fact, are detectable only by analyz-
ing the payload of a packet, not the headers alone. The
algorithms show nevertheless interesting, albeit obviously
limited, intrusion detection properties. In section 4 we will
analyze them in depth, with their points of strength and
their shortcomings.

In order to solve this problem, we developed the concept
of a two-tier intrusion detection system, which allows us to
retain at least part of the information related to the payload
content. Our work hypothesis was that on most networks,
the traffic would belong to a small number of services and
protocols, regularly used, and so that most of it would be-
long to a relatively small number of classes.

Thus, in the first tier of the system, an unsupervised clus-
tering algorithm classifies the payload of the packets, observ-
ing one packet at a time and “compressing” it into a single
byte of information. This classification can be added to the
information decoded from the packet header (or a subset of
this information), and passed on to the second tier.

The second tier algorithm instead takes into consideration
the anomalies, both in each single packet and in a sequence
of packets. It is worth noting that most of the solutions
proposed by previous researchers in order to analyze the
sequence of data extracted by the packet headers could be
used as a second tier algorithm, complemented by our first
tier of unsupervised clustering.

The architecture is fully explained in Figure 1. We have
analyzed both the tiers and built functional prototypes that
have confirmed our hypotheses.

3. CLUSTERING THE PAYLOAD

3.1 Requirements and algorithm selection
In the first tier of our architecture we need to find an algo-

rithm that receives in input the payload of a TCP or UDP
over IP packet (on an ethernet segment this means up to
1460 byte values which can be interpreted as vectors of vari-
able size) and classifies them in a “sensible” way. An ICMP
packet does not pose problems, since the simple decoding of
the protocol header usually gives us all the information we
need (albeit some covert communication protocols use the
payload of an ICMP packet this can be ignored for simplicity
at this level of analysis).

TCP is used to carry the data of an high number of upper
layer protocols. We do not want, however, to rely on domain
knowledge (for example the well-known ports list) to pre-
divide traffic by type, for at least three main reasons. First,
if we use the port field (or any other indicator in the header)
as a trusted information source, we would be assuming that
every port is actually used for its proper communication
protocol. Thus a connection which for example gives the
output of a shell command over an HTTP communication
channel would not be detected an anomalous connection.

Secondly, previous researches have shown that neural al-
gorithms can recognize protocols automatically [31], so a
clustering algorithm should be able to do the same. We will
show that this is true, at least partially.

Finally, we set up to use as little a priori knowledge as
possible in our research, trying to understand how much
knowledge could be gathered by using unsupervised algo-
rithms alone. In [20] the authors fully explore the com-
plementary approach of using supervised data mining tech-
niques along with domain knowledge for intrusion detection
purposes, with interesting results.

A “sensible” automatically generated classification should,
in principle, keep as much information as possible for the
second tier algorithm about the “similarity” between pack-
ets. Obviously, since our end goal is to detect intrusions,
the classification should also show the property to separate
packets with anomalous or malformed payload from normal
packets, and should also divide the payloads reflecting the
divisions between protocols as well as possible.

This is a typical clustering problem. A classic definition
of clustering is:

Definition 1. Clustering is the grouping of similar objects
from a given set of inputs [10].

Another is:

Definition 2. An algorithm by which objects are grouped
in classes, so that intra-class similarity is maximized and
inter-class similarity is minimized [9].

Even if conceptually simple, there is an endless variety
of algorithms designed to solve this problem. To solve a
clustering problem we must decide both the measure of sim-
ilarity between elements, and an efficient algorithm to find
an acceptable solution, since finding the “optimal” solution
(which maximizes both the intra-class similarity and mini-
mizing inter-class similarity) would be an NP-hard problem.



For many algorithms we also need a criterion to define
a correct or acceptable number of classes, while some algo-
rithms automatically discover this number and others are
quite tolerant to an arbitrarily high choice.

Another interesting characteristic of many clustering al-
gorithms is a built-in capability to detect outliers, classically
defined as follows:

Definition 3. An outlier is an observation that deviates so
much from other observations as to arouse suspicions that
it was generated by a different mechanism. [11]

We studied most of the proposed algorithms (we cannot
report our findings in this paper, but a comprehensive re-
view can be found in [12]), and we chose to implement three
widely used techniques, representative of three different ap-
proaches to the problem: the K-means algorithm, which is
a centroid-based approach; the principal direction partition-
ing, a hierarchical divisive approach [3]; and Kohonen’s Self
Organizing Maps algorithm [15], which is a competitive neu-
ral approach.

3.2 Experiments and results
As noted before, we needed experimental data to feed into

the algorithms, in particular dumps of common network
traffic, in the format described by the “libpcap” libraries.
As of our knowledge, there is only one source of test data
which makes the full payload available for inspection: the
dataset created by the Lincoln Laboratory at M.I.T., also
known as “DARPA IDS Evaluation dataset”. In particu-
lar, for the experiments described in this paper, portions of
the 1998 dataset, which are commented and described by a
master’s thesis [14].

It is important to note, however, that these data have been
artificially generated specifically for IDS evaluation. In fact,
in [25] there is a detailed analysis of the shortcomings of
this traffic sample set. In particular, the author notes that
no detail is available on the generation methods, that there
is no evidence that the traffic is actually realistic, and that
spurious packets, so common on the Internet today, are not
taken into account. While this is probably true, it does not
actually matter a lot for our experiments. We need to be
able to show that our architecture is capable of detecting
attacks mixed in background data, and we can do this only
under test condition.

As a preliminary step, we developed a parser to import
data from the libpcap format into the Matlab environment,
since it seems that there are no tools currently available
to do this. This tool will be released under GPL. Our ex-
perimental implementation was limited for simplicity to the
TCP protocol over IP, but an extension to the UDP protocol
would be straightforward.

None of the algorithms we chose predefines a metric for
distance, and as a tentative experiment we chose to use a
simple euclidean distance criterion between vectors of data.
We are conscious that this choice has no real theoretical sup-
port, but our experiments have shown that it works well.
More work could be done to study other, maybe better
suited, distance functions. In particular, we are currently
studying lexical distances as an alternative.

We trained the algorithms with a wide variety of param-
eters, on various subsets of the dataset. It is important to
discuss how we evaluated the results. There are three main
ways to evaluate an unsupervised classification:

• Inspection-based: by manually inspecting the classifi-
cation and checking if it “makes sense” to us;

• Expert-based: by letting an expert manually classify
the same data and see if the results are comparable;

• Task-based: by evaluating the algorithm against the
result of the task it is trying to accomplish; in our case
this would mean evaluating it using the performances
of the complete architecture as a criterion.

While the latter method is the most appealing, we needed
some preliminary criteria to evaluate the algorithms even
without a fully functional architecture. We used the expert
classification for little datasets, but it was impossible to ap-
ply to huge volumes of payloads; so we resorted to both
manual inspection and “proof of concept” tasks to evaluate
the correctness of the classification.

In particular, in Figure 2 we present the results of the
training of a 10× 10 Self Organizing Map that creates a di-
vision of the data in 100 clusters. The network was trained
for 10.000 epochs. The histograms represent the number
of packets (on y-axis) present in each cluster (on x-axis).
Please remind that for graphical reasons the number of pack-
ets on y-axis may be differently scaled in the various pic-
tures.

The network was trained with a representative subset of
traffic, and then used to classify two sets of about 2000 pack-
ets: the first representing normal (albeit different) traffic,
the second being the dump of a vulnerability scan with the
“Nessus” tool (www.nessus.org). We used a Nessus scan as
representative of anomalous traffic, since it is a really bru-
tal aggression which should not go unnoticed, and generates
also a huge volume of TCP traffic. We delayed experiments
with true network attacks for the second stage tests (see be-
low at section 4). The difference in the distribution of pack-
ets is noticeable, and this is a first proof of the usefulness of
our approach (albeit not complete!). In the next section we
will show how such differences over a time window can be
detected, and we will also show that the classification results
are significative even on a packet-by-packet base.

Additionally, manual inspection proved that most of the
resulting clusters made “sense”, which means that the pack-
ets falling in the same classes were either the same type of
files, or the same portions of protocols (i.e. all the e-mail
traffic fell into a narrow group of classes; all the FTP com-
mands fell into another group of classes . . . ).

We noted an extreme inefficiency in Matlab built-in al-
gorithms. A network training time is about linear in the
product of the map dimensions (i.e. for a n · m network,
the time is about O(n ·m)). The training time is linear in
the number of epoch, O(n). But, strangely, in the Neural
Network Toolbox implementation of Kohonen’s algorithms
the training time is not linear in the number of items in
the training set, nor in the number of dimensions of the
vectors: it grows linearly in both dimension and cardinal-
ity until it exhausts system resources, but afterwards the
I/O costs make it explode exponentially. The S.O.M. Tool-
box (http://www.cis.hut.fi/projects/somtoolbox/) showed a
much better behavior.

In Figure 3 we present instead the results of a division
in 50 classes operated by the principal direction divisive
partitioning algorithm, in the same experimental conditions
used for the S.O.M. traffics. We can see that also in this



Figure 2: Comparison between the classification of
normal traffic (above) and Nessus traffic (below) by
a 10x10 S.O.M. network.

case the distribution of packets varies wildly between nor-
mal and Nessus traffic. The manual inspection also confirms
the impression of a sensible classification.

It is well worth noting that in the PDDP algorithm there
is an additional open problem to solve. At each step of
the algorithm we must choose the cluster which is going
to be split. We would like, obviously, to choose the most
“scattered” leaf of the hierarchical divisive tree. Various
ways to define the scattering of a leaf have been studied
in [29], but for our implementation we chose the simplest
(a measure of variance). Other variants could certainly be
experimented, and maybe lead to better results.

The computational cost of the PDDP algorithm during
training is critical, because it happens that the first step of
the algorithm is the most costly (since the training set is split
at each step). Normally, for computing the Principal Direc-
tion, Matlab uses a SVD (Singular Value Decomposition)
algorithm with a time complexity O(p · q2 + p2 · q + q3) with
p and q sizes of the matrix (which means cardinality and di-
mensionality of the training set). This proved impractical,
so we used an highly efficient implementation of the Lanczos
algorithm, with bidiagonalization and partial reorthogonal-
ization, which offers a complexity of O(p · q · r2), where r is

Figure 3: Comparison between the classification of
normal traffic (above) and Nessus traffic (below)
over 50 classes by a principal direction algorithm

the rank of the matrix and so r = min{p, q} [18]. However,
even this algorithm shows difficulties when the cardinality
of the training set grows. The problem could be difficult to
solve in a real world application.

In Figure 4, finally, we see that the K-means algorithm
does not behave as well as the other two algorithms. Aside
from the distribution of traffic which is not as distinct, man-
ual inspection reveals that K-means clusters are less respon-
dent to our expectations. In addition, the random initial-
ization of the algorithm makes the quality of the final re-
sult unpredictable, since it converges rapidly to a local (not
global) minimum in the distribution of the centroids.

K-means is globally the fastest algorithm we tested, show-
ing really no performance problem; however, the corrections
necessary to eliminate or reduce the random initialization
weakness (for instance using the so-called “global K-means”
algorithm [23]) make the algorithm completely untractable.
There is, however, a divisive variant of the K-means algo-
rithm, which is compared to the PDDP algorithm in [28]
and for which interesting properties hold, which could solve
the locality problem. We will repeat our tests on it as our
research proceeds.

Overall, it is our opinion that the S.O.M. algorithm works



Figure 4: Comparison between the classification of
normal traffic (above) and Nessus traffic (below)
over 50 classes by a K-means algorithm

best, closely followed by the PDDP algorithm which is ham-
pered by its performance problems. K-means could be a
good choice if the locality problem was solved without un-
reasonable computational costs.

In a famous article, some years ago, J. Frank, [6], while
commenting on the future trends of artificial intelligence,
pointed at the clustering algorithms as a possible future ap-
proach to intrusion detection. Today we can overall confirm
that his intuition was correct.

4. DETECTION OF ANOMALIES

4.1 Requirements and previous researches
Aside from clustering the payload, the first tier of our

architecture also decodes the IP and TCP packet headers.
The second tier receives in input a handful of data, about
30 entries, for each packet. This algorithm should mainly
deal with two problems:

1. Intra-packet correlation: to analyze the content of each
packet looking for indicators of anomaly;

2. Inter-packet correlation over time: to recognize anoma-

lous distributions of packets (we saw a clamorous ex-
ample in figures 2, 3 and 4).

To perform the second type of analysis, the algorithm
must either observe a rolling window of data and/or be able
to keep memory of past observations. There is an open
trade-off at this point, since enlarging the time window (or,
correspondingly, increasing the weight of the memory) for a
better correlation could blind the system to atomic attacks,
which represent a significative share of network-based at-
tacks. In fact, most misuse-based network IDS work very
well by analyzing a single packet at a time. But a statisti-
cal system, by its own nature, could be better at detecting
significative variations over a long time than single attack
packets.

There is a wide range of algorithms that can be used to
detect anomalies in time series, but they are mostly lim-
ited to numeric and strictly ordered time series. Packets are
neither totally numeric nor strictly ordered. Missing these
characteristic, we cannot apply powerful mathematical in-
struments such as spectral analysis.

Excluding supervised algorithms and proposed algorithms
lacking any real experimentation, there are just a handful
of analysis methods that could be applied to our problem.
Many of them have already been used for IDS purposes,
mostly in host-based approaches, often examining the se-
quence of commands executed by a user [19]. The use of
our two-tier approach which reduces network traffic to a few
significative values could allow to apply such algorithms.

Instance Based Learning (IBL) is a class of algorithms
which represent concepts by the means of a dictionary of
“already seen” instances. There are both supervised and
unsupervised variants, and an unsupervised one has been
proposed for host-based intrusion detection purposes [17].
However, it seems that this algorithm works well for prob-
lems where the number of instances in the dictionary is quite
limited. More studies would be needed to apply this ap-
proach to network data.

Clustering Algorithms are not directly suitable for this
purpose, since they are not time dependent. However, they
can be intuitively used for detecting time sequence anoma-
lies by applying them to a rolling window of packets: some
authors proposed the use of a S.O.M. to detect attacks in
the DARPA dataset, by applying it not to packet data but
to a TCP connection summary, with 6 characteristics for
each connection [22]; others, instead, used a S.O.M. to an-
alyze network traffic, discarding the payload and putting
the header information in a rolling window. The prototype,
called NSOM, can detect denial of service attacks [16]. We
will see how their approach can be expanded and used as
a suitable second stage in our architecture. Other authors
propose to explicitly use time as a feature, and to show the
packets to a S.O.M. one at a time [7]. This is, in our opin-
ion, a mistake, since time on a network is even more relative
than elsewhere, and even if a time scale could be derived,
a S.O.M. cannot really handle a linearly increasing measure
like that in a useful way.

P.H.A.D., Packet Header Anomaly Detection [24], is a
simple statistical method, with high performances, which
detects about 50% of the attacks in the DARPA ’99 dataset.
It could be combined with our first stage, but has the con-
spicuous disadvantage that it does not identify intra-packet
anomalies, but just inter-packet sequence anomalies.

Information theoretic methods have also been proposed,



Figure 5: Classification of normal traffic on port
21/TCP by a S.O.M. algorithm

such as the Parzen Window method presented in [33]. Be-
ing formulated as a statistical hypothesis test, it has an “ac-
ceptable false detection rate” parameter that can be used
for tuning; in addition, it does not need training, but it has
an unacceptable running time. A discounting learning algo-
rithm has been used in the Smart Sifter prototype [32], and
should combine a smooth running time with good detection
rates. However, it lacks reports of real world experimenta-
tion.

Other algorithms have been proposed to detect anomalies
in a less general fashion, for instance various researchers have
proposed algorithms to detect the spread of active worms on
the base of the anomalous traffic they generate [30]. Albeit
interesting, these algorithms lack the generality we are look-
ing for.

4.2 Proposals and experiments
Our objective is to add the classification of payloads pro-

duced by the first stage as one of the features analyzed by
any of these algorithms, thus extending their ability to de-
tect attacks also to the content of the packet. A precondition
is that attack payloads are “classified differently” from nor-
mal payloads. We can give proof of concept examples of
this.

In Figure 5 we can see how a trained first stage 10 × 10
S.O.M. network classifies 5000 packets with the destination
port set to 21/TCP (FTP service command channel). It
can be observed how all the packets fall in a narrow group
of classes. Any kind of unsupervised learning mechanism
should be able to “learn” such a strong correlation.

Using the vulnerability database ArachNIDS (available at
the URL: www.whitehats.com/ids), we ran the same S.O.M.
on the packet captures of some FTP server attacks. For in-
stance, the payload of the format string wu-ftpd bug exploit
(ArachNIDS code IDS453) is classified in class 69, which is
not one of the usual classes for FTP traffic.

Even more interesting is the result we obtain when an-
alyzing the globbing denial-of-service attack (ArachNIDS
code IDS487). The aggressor tries to overload the FTP
server by sending a command similar to the following ones:
LIST */../*/../*/. . . , or LIST */.*/*/.*/*/. . . , or any

long combination of wildcards. The S.O.M. classifies all the
known variations of the attack in a single class, number 97,
which does not contain any normal FTP traffic. Signatures
for this attack for misuse based IDS are difficult to write:
this is an example of polymorphism in the attacks. We verify
that S.O.M. algorithms are indeed resilient to these manip-
ulations, while in order to achieve a generalized match with
a signature based system we would need to write a signature
matching /* (which is what Snort actually does), but this
leads invariably to a number of false positives.

A buffer overflow attack (ArachNIDS IDS 287) is classified
into class 81, which does not contain any normal FTP traf-
fic. This attack uses the NOP Intel x86 hexadecimal code
(0x90) as “padding”, because it is sometimes difficult to un-
derstand where, exactly, code execution will begin. This is a
common feature for many buffer overflow exploits: most IDS
thus detect a long sequence of NOP as a possible shellcode.
Sneaky attackers, however, use a jump to the following in-
struction (0xeb 0x00) instead of a NOP to fool the IDS.
But even if we substitute the NOP codes with 0xeb 0x00

and run the algorithms again, the attack is still classified
into class 81.

We also implemented a preliminary second-tier algorithm,
using a S.O.M. to analyze a rolling window of packets. We
employed different combination of parameters, but a 15×15
network used to analyze 10-20 packets at a time with a
reduced feature set (including the source and destination
ports, the TCP flags, and some of the IP header fields) gave
us the best results. We wish to stress this point, since the
algorithms proposed in the literature have been applied to
more or less arbitrary selections of features of the packets:
our tests suggest that a deeper analysis should be done to
guess which features are really important and which can
be safely discarded. The importance of correctly choos-
ing features for machine learning problem has been widely
discussed in literature (see [8]), and our problem is not an
exception: in our tests, keeping all the features effectively
blinded the system, while selecting accurately a subset of
them brought forth good results.

This experimental second tier has been applied to the net-
work traffic both including and excluding the results of the
first tier (in fact by excluding it, it substantially replicated
the NSOM prototype [16]). Preliminary results show an
increment of up to the 75 % in the detection rate over a se-
quence of attacks, but also (obviously) a limited increase in
false positives. The system, with an appropriate buffer, can
handle a 10 Mbps dataflow even in our test implementation.
It could easily scale up to fast ethernet speeds.

On the basis of these observations, we can infer that com-
plementing any of the algorithms described in 4.1 with a first
stage of payload classification, as we described in this paper,
can successfully increase the detection rate of the systems.

5. CONCLUSIONS
We have described an innovative model of Anomaly Based

Network Intrusion Detection System, totally based on unsu-
pervised learning techniques. We have described the overall
architecture of the system and proposed our first empirical
results on a test implementation. We have extensively tested
candidate algorithms for the first tier, and albeit there is an
open question on which kind of distance would better suit
the payload contents. We have given proofs of the concept
of the second tier, and also preliminary results on a proto-



type. These results, however, should be considered quali-
tative until the full architecture of the system is integrated
and tested, and appropriate thresholds are studied in order
to optimize the detection rate versus the false positive rate.
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