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Abstract— The goal of this work is to illustrate how measure-
ments collected during walking by inertial sensors embedded in
the shoes’ sole can be used to reveal the underlying terrain type.
The final aim is to enable the automatic, real time adaptation
of the actuated bottom cushioning of the innovative Wahu
shoe for the sake of safety and comfort. For this purpose, the
gait patterns of the normal walk of different healthy subjects
on four different surface types, with different hardness and
friction, are collected offline and represented through the three
accelerations’ time history. These signals are pre-processed and
segmented into two different ‘’elementary” items, a ‘’walk”
object, made of a sequence of subsequent steps, and a ‘’mean
step” object. In both cases, time and frequency attributes
are computed and the most explicative selected through a
principal component analysis. A cubic SVM classifier is then
trained with the experimental data from multiple walking trials
and its performance investigated on different validation sets.
Confusion matrices show that the complete ‘’walk” segment
performs much better in terms of prediction power and this
is encouraging for further development of the methodology in
real time.

I. INTRODUCTION

Real time recognition of the terrain on which vehicles or
people move and walk has become a recent, sensor enabled
capability, which can ensure greater efficiency in the motion
and of course higher safety, thanks to the possibility of
accordingly adapting driving style or walking trait, see for a
comprehensive illustration [1]. In the field of vehicles, [2],
including autonomous ones, [3], [4], the issue of preventive
recognition of the type and quality of the terrain is of obvious
importance because it implies, in many cases, the success of
the vehicle’s task, [5]. Here, the studies are numerous and
within a frontier research path. Regarding moving people,
several literature works, see for example [6], have addressed
the issue of ground type and quality recognition, in particular
its slipperiness or adherence, in the context of research
related to the walking of individuals with different types of
mobility pathologies or prostheses, [7]. Here, the goal is to
make walking as quiet as possible. On the other hand, even
when it comes to people practicing sports, soil condition
prediction methods are essential for a more efficient exercise.
The common denominator of all systems for automatic
terrain recognition is the employment of sensors. Video
cameras, laser or lidar sensors can be used, [8], [9], [10],
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while, at the other extreme, to reduce costs, increase minia-
turization and decrease algorithmic complexity, even the
simpler, but innovative, inertial sensors, [11], can be suf-
ficient in some cases, by positioning them in locations of
the body that mostly reflect the effect of the terrain on
the person’s gait. Subsequently, measurements gathered from
the sensors are usually preprocessed so as to maintain their
richest informative content which eventually will feed up an
intelligent, computation algorithm that outputs an estimate
of the terrain’s type, quality and other related characteristics.
One of the locations on the human body most correlated with
an individual’s walking is the foot, but detecting the outside
soil typology by barefoot tests does not make sense. It is
therefore necessary to develop a methodology for obtaining
information on the type of terrain on which one is walking
with a sensor suitably positioned in the shoe. This can be
accomplished just by using inertial sensors, the only sensing
units capable of being embedded in a shoe, being integral
with the person during the whole walk and even being
capable of finely measure the dynamic quantities related to
the walk itself. In [12] an inertial sensor is embedded in the
heel of a shoe and it is shown that the acceleration signals
exhibit different characteristics according to the type of soil.
Inspired by this, we devise a methodology to extract relevant
information from acceleration signals with the purpose of
terrain recognition.
The proposed approach is definitely new in the literature on
sensor related features linked to the study of human walk
and its environment, although the employed inertial sensors
are exactly those that characterize the so-called wearables,
electronic worn devices nowadays widely used for many dif-
ferent purposes, for example monitoring, notification, danger
detection and others. These wearable devices are in fact able
to track movement on real time basis and at a high frequency.
Thereby, in this paper, we describe the experimental setup
that makes us possible to register an individual’s daily
walking dynamic pattern. This obtained by wearing very
common sneakers with inertial sensors suitably embedded
in the shoe’s sole. Subsequently, we illustrate the machine
learning approach to concretely extract from acceleration
data the required information employed to distinguish the
type of terrain and apply the algorithm to validate it and
discuss its performance on different subjects, demonstrating
the offline feasibility of the terrain identification but also
opening up the way to a possible future on board arrangement
of ground recognition and the successive possible shoe
adaptation for comfort and safety.



II. PROBLEM STATEMENT AND EXPERIMENTAL SETUP

The goal of this work is the identification of different
ground surfaces an individual is walking on, by only using
the measurements provided by an Inertial Measurement Unit
(IMU) embedded in a shoe sole. The final task is to close
the loop for an autonomous shoe sole actuation. In fact, the
shoe prototyped by Wahu, a start-up company at E-novia, a
company which supports enterprises in selected and strategic
business areas, has the innovative feature of being able to
change the morphology of its sole, in order to adapt to a
particular terrain, Fig.1. For example, a rougher and uneven
terrain would call for a shoe sole which provides more
cushioning, whereas a hard and smooth one would require
a flat sole. Furthermore, the actuation of the shoe could be
decided to increase personal safety on more slippery terrains.

Fig. 1: The two actuation states of the shoe developed by
Wahu

In the scientific literature, there are unfortunately no
studies available on the description of the deformation of
the shoe’s sole during motion on different terrains and,
consequently, on the derivation of a dynamic model of the
shoe. This is mainly due to the fact that each footware
producer usually makes its own tests to assess the properties
of the shoes and their sole (see [13]). Therefore, in this study,
a new black-box, machine learning approach is illustrated,
making use of accelerations measured at the sole level to
derive insight in the shoe-sole response to different ground
surfaces and subsequently to get an automatic, intelligent
classification of the most common walking terrains. In doing
this, one can refer to [5] as a related research.
Since the actuated Wahu shoe is not yet available in its
operable version, we have explored the sneakers market
in order to identify an existing shoe model that could be
used for experiments to collect the data and to validate
the algorithm. The selected model is a commercial sneaker
characterized by some bumps on the sole, which make it
quite similar to the Wahu shoe, when the latter are set in
pumped mode (see Fig. 2). One of the shoes, chosen for
experimental trials, was then equipped with a miniaturized
IMU LSM6DS3H, by ST Microelectronics) placed in the
sole inside a tiny housing underneath the heel and glued. A
key feature of the selected IMU platform is the possibility to
mount it on a small and low power board, as the one which

will be employed in the final Wahu product.

Fig. 2: The experimental sneaker’s sole and, in red, the IMU
position.

Through the sole incorporated IMU, accelerometer mea-
surements along the three axes are collected: the x-axis is
in the same direction of the forward motion, the z-axis is
perpendicular to the floor, positive upwards, and the y-axis
is placed to obtain a right-handed frame. All measurement
campaigns are performed using a sampling frequency of
fs = 200 Hz and measured data are collected using a
Vector CANalyzer and then imported in Matlab, where the
data-driven algorithms are developed. The experiments were
conducted considering four young adults each one of them
had to walk wearing the chosen experimental sneakers on
four different terrains.
Accordingly to [12], terrains with different hardness are
considered. First, hard surfaces like linoleum and asphalt
have been taken into account, then a softer but more irregular
surface such as trail, that represents a sort of uneven ground
like the typical one of mountain path or something like a
flower bed (that is the place where we made the tests) and,
the fourth surface was a slippery one made by wet grates.
The terrains selection made according to the key of hardness
finds its main motivation in the fact that usually, terrains
characterized by high stiffness are more reliable and can be
seen as ‘safe’ while, on the other hand, terrains like trail
or wet grates represent a less safe situation in which we
need the shoe in pumped mode to help the person who is
walking. Finally, all experiments were performed walking
straight forward, and, to make the algorithm robust to speed
variations, at different speeds.

III. IMU BASED WALK INSPECTION ON DIFFERENT
TYPES OF TERRAIN

In this Section, a preliminary analysis of the acceleration
patterns on the different surfaces is performed, analyzing,
for each terrain, the intra-subject variability and differences.
Then, the two ways used to preprocess the measured data
in order to find the most informative signals, from which to
extract features for terrain identification, are described.

A. Preliminary analysis of walk-terrain patterns

The goal of the preliminar analysis is to verify the exis-
tence of different behaviors in the sole level accelerations on
each of the four different terrains. To reveal, at a first visual
inspection, the differences between the ground surfaces, all
subjects’ walk signals were resampled, to guarantee that they
are composed by the same number of samples. and grouped



for the same terrain Raw IMU accelerations are noisy and a
preprocessing must be performed in order to correctly handle
the data.
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Fig. 3: Accelerations of the reference walks on the three axes
for each terrain.

Noise reduction is carried out with a digital low-pass filter
(Savitzky-Golay filter, see [14]). This filter performs a data
smoothing operation based on a least square polynomial
approximation of the signal. Therefore its two parameters
are w, the width of the window of data considered when
fitting, and p, the degree of the polynomial used for fitting.
The parameters chosen for this experiment are w = 15,
p = 5. With this choice the filtered signal is very close
to the original one, but without the high frequency noise
(f > 30 Hz ) that affected the original measurement. Then,
each one of the filtered, single accelerations is segmented
in slots, each containing six consecutive steps. To highlight
a single step, the positive peak (corresponding to the heel
strike phase of the gait) in the acceleration along the x-axis is
detected by imposing a suitable threshold on its height (peak
value must be higher than a certain threshold), prominence
(peak value must have a vertical drop of more than a certain
threshold from the peak on both sides without encountering
either the end of the signal or a larger intervening peak)
and distance (peak values must be distant at least as much
as a certain threshold from the previous peak). In this
analysis these parameters were set this way: the minimum
height at 20 m/(100 ∗ s2) the minimum prominence at
10 m/(100 ∗ s2) and the minimum distance at 80 samples
(0.4 s)

Furthermore a selection based on the walking pace is

enforced. An estimation of the walking pace is done by
taking into account the time passing between a step and
another. A reference pace is considered (60 steps per minute),
and if a walk is either too fast or too slow it is discarded
(+/- 10 steps per minute). This is done to prevent walks
with too different speeds from the others from joining the
average. Finally, the ”reference walk” for each terrain is
defined by averaging sample-by-sample all the walks on the
same terrain.

As shown in Fig. 3, some remarkable differences are
present in the ”reference walks” on different terrains. At a
first inspection, each single-axis acceleration exhibits signifi-
cant pattern differences, in particular in the number, location
and characteristics of local maxima and minima. On the y-
axis, these differences are more evident and can be extracted
by an appropriate choice of features. The irregularities in the
behavior on the three axes of the reference walks on the wet
terrain are the expression of a more irregular way to walk
on that terrain.

B. IMU based shoe behavior featuring: walk and average
step

Once the differences in the accelerations on different
terrains have been highlighted, it is necessary to describe
define the best features to capture these patterns. However
the ‘’elementary” signal considered from which to extract
these features is yet to be determined. To do so, we followed
two approaches: one which considers all the data relative to
the last six steps and one which focuses only on the span of
a step by superimposing and averaging these last six steps.

In the first approach, that we named walk, the basic
‘’objects” are the linear accelerations along the three axes
of a continuous sequence of six steps, Fig. 5. The algorithm
to build these elementary sequences, for each kind of sur-
face, loads all the raw accelerations Fig. 4, filters the high
frequency noise and splits the signals in series of six steps
by automatically recognising the acceleration’s peaks due to
a heel strike. Then, we scale each signal over a fixed time
axis, this operation guarantees that each signal is made up
of the same number of samples. Finally, the walk signals are
ready for the features’ extraction phase.

In the second approach, each linear acceleration behavior
is focused for what concerns a single step, then six different
consecutive steps on the same ground surface are averaged
sample-by-sample to form the average step acceleration
behavior in the x, y and z directions, Fig. 6. The algorithm
we use to build the average step loads all the raw acceleration
signals collected during the experiments keeping only the
ones that contain gaits in a specific range of pace. Signals
are then split in steps. In particular, we are only interested on
the so called stance phase, i.e. when the foot is in contact
with the surface and we want to discard the swing phase,
when the foot is not in contact. To perform this operation,
we take inspiration from the method explained in [15] and
we make it suitable for our setup. To understand how the
method works, we have to mention that linear accelerations
are quite constant and close to zero during swing phase
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Fig. 4: An example of the raw signal ax measured by the
IMU
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Fig. 5: An example of the elementary building-block walk
for ax

instead they vary a lot during the stance phase. We consider
only the accelerations along axes x and z, because they
clearly show the gait cycle, then we compute the variance of
the squared norm of the signals from a sliding window of a
certain dimension. The variance is a signal always positive
that is close to zero during swing phase and much bigger
during stance phase, by comparing it with a fixed threshold
it is possible to distinguish the two phases. Once, we have
obtained the stance phase for all the steps contained in the
raw signals we scale each step over a fixed time axis, in
this way every step is composed by the same number of
samples. Finally, six consecutive single steps over the same
surface are considered and averaged sample-by-sample to get
the average step for the three linear accelerations.

IV. GAIT FEATURES SELECTION

For the first approach, also referring to [11], an initial,
comprehensive set of 70 features is chosen, for each of
the three accelerations (49 in the time domain and 21 in
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Fig. 6: An example of the elementary building-block average
step for ax

spectral domain). In addition to classical statistical entries,
the entropy and power of the signal, its time domain zero-
crossing rate and frequency domain band power ratio are
included.
To reduce the dimensionality of the task, which means an
easier application of the future onboard terrain detection
algorithm, features selection with NCA (Neighborhood Com-
ponent, Analysis) [16], is then carried out. Thanks to this
method, the most informative features are reduced to 13,
taken from both time and spectral domains. The new features
set is reported in Tab I. As shown later on in this paper, the
extended and compressed sets of features ensure the same
classification performance, with the latter guaranteeing an
important improvement in dimension reduction.

Time Domain Frequency Domain
Feature Unit Axis Feature Unit Axis
mean m/s2 x, y band power ratio - y

std. deviation m/s2 z
median m/s2 x, z

maximum m/s2 z
entropy - -

mean absolute
deviation m/s2 z

zero-crossing
rate - y, z

TABLE I: Features subset for the walk approach after selec-
tion with NCA

Conversely to the first approach, the average step approach
focuses on building three accelerations’ profile for a single
step, (Fig. 6). Therefore, the generic signal associated to
an average step is smaller in number of samples than the
walk one. This difference has an impact on the choice of
the features to be extracted. In fact, due to the smaller
number of samples which the average step is composed of,
it is impossible to extract meaningful features in the spectral
domain. So, the extracted 18 features are all in time domain
and are shown in Tab II.



Time Domain
Feature Unit Axis
mean m/s2 x, y, z

std. deviation m/s2 x, y, z
norm m/s2 x, y, z

maximum m/s2 x, y, z
skewness - x, y, z

zero-crossing rate - x, y, z

TABLE II: Features extracted for average step approach

V. AUTOMATIC TERRAIN CLASSIFICATION ALGORITHM

Once the features’ selection phase is completed for both
walk and average step approaches, the corresponding re-
gressor vectors are clearly defined. Each input regressor is
a vector containing the selected features for each walk or
average step calculated from the real experiments.
The classification algorithm is firstly described and then the
results on the experimental data will be commented and
examined.

A. Machine learning based classification

The used classification algorithm is called Cubic Support
Vector Machine (c-SVM), a supervised, discriminative clas-
sifier that iteratively generates separating surfaces, like any
SVM algorithm, given the labeled training data, [17]). The
reasons that drove the choice to c-SVM are multiple: firstly
it has always provided good results in every test we made,
compared to other classifiers as Decision Trees or Nearest
Neighbor, secondly the cubic kernel has worked finer than
the linear or Gaussian radial basis function ones, thirdly the
training phase is faster and lighter (in terms of memory
allocation) with respect to a standard feed forward neural
network and lastly the prediction model is compact and
shallow.

B. Classification algorithm training and validation

From both approaches, (walk and average step), training
and validation phases have been conducted in the following
scenarios:

1) Randomly split all the data in two subsets: one for the
training phase (70%), one for the test phase (30%). With
this scenario it is simply desired to assess the ability of
the algorithm to correctly classify unseen data points
contained in the validation dataset.

2) The second scenario is set out to verify the ability
of the learning algorithm to classify correctly the data
coming from a person that is not included in the training
dataset. Thus, the procedure to built the training and
validation regressors is slightly different. In fact, the
training regressors are the data of three out four of
the subjects, the fourth is used to build the validation
regressor regressor.

3) The third situation evaluates the robustness of the al-
gorithm with respect to data collected at different gait
speeds. Therefore, in this case the training regressor
contains the walks at faster pace (from 65 to 85 spm),

while the validation regressor is formed by data at a
slower pace (from 45 to 60 spm).

Before the training phase, a column-wise normalisation
of the regressors is performed, because different features
contain values of different order of magnitude that may
undermine the performance of the classification algorithm.
Finally, to ensure robustness, a 5-fold cross-validation is
adopted.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The algorithm just described is executed on a computer
with Intel i7-8565U processor, 16 GB RAM and a Nvidia
GTX 1050 GPU. The software used is MATLAB. Once
the regressor is built (with the average step approach or
the walk approach) and the machine learning algorithm is
decided (always c-SVM), it is enough to train the latter with
the former in order to construct the predictor. The hyper-
parameters of c-SVM are shown in Table III and in each
test the multi-class predictor has been trained using the one-
vs-one method.
Then, the predictor is fed with the data that was separated

Box constraint Kernel scale

Test 1 avg. step 1 4.6
walk 1 4.0

Test 2 avg. step 1 4.6
walk 1 4.0

Test 3 avg. step 1 4.6
walk 1 3.0

TABLE III: Hyperparameters of Cubic SVM

before training and it tries to classify them. These results
are compared with the true tags of the data. To show how
well each predictor behaves we decided to use the confusion
matrix, as it provides a quick visual representation of how
well the predictor behaves for each surface.

The first test shows satisfying results for both approaches,
with a very good performance for all the surfaces. Con-
versely, the second (Fig. 7) and third tests are able to
display some issues with the classification. The approach
that extracts the features from the walk performs better
in all the tests. The single average step approach has its
performance deteriorate heavily in the second and third tests.
Hence, it is advisable to consider the whole walk for the
classification. Another observation possible by looking at the
tests with an external person as a validation set, is that there
are classifications more difficult than others. In particular,
it is very difficult to correctly assess whether the terrain is
asphalt or wet grates. We believe that this is due to the
fact that the two surfaces are intrinsically very similar and,
except the moment when the subject is actually slipping,
the accelerations recorded are also comparable. While this
classification performs poorly, the identification of the trail
surface does remarkably well, as perhaps it is the surface that
distinguishes itself the most. Considering the test about the
robustness with respect to different speeds these results are
confirmed. Again the walk approach performs much better
than the other one. Again the most difficult classification is



Fig. 7: Confusion matrices for the two approaches, consid-
ering the external person test.

the one regarding asphalt or wet grates. Furthermore we see
no worsening of performance with respect to the basic case,
so we conclude that the walking speeds are not very relevant
in this classification problem.
Robustness is assessed by evaluating the performance while
classifying a walk of a user not belonging to the data-set and
while classifying walks at different speed. As stated above,
the algorithm behaves robustly to these tests, especially for
the trail classification.

VII. CONCLUSION AND FUTURE WORK

This work investigates the feasibility of a terrain identifi-
cation algorithm based on the xyz accelerations measured by
an inertial sensor embedded in a shoe sole. The motivation
of this research is to detect the different terrain conditions
in order to adapt accordingly the sole cushioning in the
innovative Wahu shoe. Data are collected on four different
surfaces, with four different subjects walking both at their
normal speed and at an accelerated pace. Afterwards, sig-
nificant features are outlined and extracted from the original
signals, previously cleaned up and suitably compressed into
standard segments, a “single average step” and a sequence
of a certain number of steps, called “walk”. A cubic SVM
classifier is then trained on data from multiple young adults
walks and its performance evaluated on different test sets.
Also the robustness of the terrain recognition with respect to
different walking speeds is taken into account. It is possible
to state that the approach that extracts the data from the
‘’walk” performs much better, particularly in the test trials.

This, in turn, corresponds to the real situation the method
will have to work at, that is classifing a terrain based on
a generic, previously unknown, walk. Future work should
focus on collecting more data from male/female individuals,
in a broader range of age, walking on the same and on
new kinds of terrain. Furthermore, from an algorithmic point
of view, the possibility to employ also the IMU gyroscope
measurements should be deepened to understand if a finer
terrain detection could be obtained relying also on rotational
velocities at the sole level. The study of an unsupervised
classification algorithm could also be worth a further in-
vestigation to cluster together similar terrains that require
the same shoe actuation. To end up, the developed terrain
detection algorithm should be implemented in real time on a
suitable processing unit combined with the inertial platform.
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and F. Auat Cheein, “Classifying agricultural terrain for machinery
traversability purposes,” IFAC-PapersOnLine, vol. 49, no. 16, pp. 457–
462, 2016.

[5] M. Mei, J. Chang, Y. Li, Z. Li, X. Li, and W. Lv, “Comparative
study of different methods in vibration-based terrain classification for
wheeled robots with shock absorbers,” Sensors, vol. 19, no. 5, p. 1137,
2019.
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