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Abstract— Machine learning and data analytics are becoming
pervasive also in the analysis of human behaviour as more
and more miniaturized sensors can observe and quantify
human activities. The so-called wearables are particularly tiny
transducers which give the possibility to understand an indi-
vidual’s behaviour possibly enabling innovative services such
as gait analysis based identification, foot pressure analysis, fall
prevention and automatic recognition of dangerous situations.
In this work we investigate an innovative experimental setting
where accelerations are captured, during walking, by an Inertial
Measurement Unit embedded in the shoe’s sole. The goal is
to identify who is wearing the shoe by simply analyzing his
gait. User classification is then performed comparing different
machine learning methods, relying either on the k-Neareast-
Neighbour or on the Linear Discriminant Analysis algorithm.
An extensive experimental campaign was carried out on five
young adults and a comparative analysis of the accuracy
of the methods proves that machine learning recognition of
gait identity via shoe embedded accelerometer is feasible and
sufficiently reliable.

I. INTRODUCTION AND PROBLEM STATEMENT

New opportunities in the market, such as the internet
of things (IoT) and smart mobile devices, have accelerated
the development of wearable technology. Wearables ensure
many benefits to users, offering them a sense of safety
and productivity while providing health incentives or long-
term and continuous monitoring of physiological parameters.
Provided that wearable devices can also automatically define
the identity of a currently monitored person, the respective
measurement data would be very useful to activate some
assistance strategy or to intervene with implementation tools,
if available.

In particular, gait analysis has benefited from the advent
of wearables, making this research area quite attractive. The
personal way of walking carries a series of important infor-
mation that can be exploited both for medical applications,
such as pathologies diagnosis [1], [2], which is not the issue
tackled in this paper, and for security purposes, such as
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biometric identification [3], [4], [5]. Moreover, gait recog-
nition based on such devices doesn’t need an explicit user
interaction. Gait-based biometric studies can be classified
into three categories: machine vision-based, [6], wearable
sensor-based and floor sensor-based ones, [7]. This work falls
in the ambiance of wearable inertial sensor-based approaches
and, as such, has the advantage of not requiring sophisticated
specialized equipment such as high definition cameras or
pressure/force sensing ground-platforms.

Fig. 1: The Wahu shoe with its innovative active sole.

Many studies have proved that human gait is a unique fea-
ture that can be used for the robust identity recognition, for
example, [8], [9]. Among the numerous research works on
gait-based biometrics, in [10] authors suggest a smartphone-
based gait recognition method built on data collected from
young adults walks and on machine learning, while gait
recognition is performed in [11] with different methods.
Instead, Gadaleta et al. proposed an approach that relies on
convolutional neural networks [12]. The feasibility of gait
recognition was demonstrated in these studies for young
adults, where the gait fluctuation is relative small since they
have a quite constant and established walking style and a
stable gait pattern.

This paper deals with two machine learning, gait-based,
identity recognition solutions whose innovativeness lies in
the fact that the sensed accelerations are collected through
an Inertial Measurement Unit (IMU) placed and glued into
the sole of the shoe. The final aim is to embed the IMU
in the new Wahu shoe, Fig.1, both for sensing purposes
and then for actuation. There will be the possibility of
creating innovative services for the user, such as gait analysis
based identification, foot pressure analysis or fall prevention.
The ultimate goal of this active sole will be to adapt its
morphology both to the external environment, like terrain,



temperature or humidity, and to the state of the user.

Fig. 2: The sneaker used for the test campaign with the IMU
embedded and glued in the right-shoe heel.

II. EXPERIMENTAL SETUP

Since one of the main criticalities related to the identity
detection problem via worn sensors is the repeatability of the
experiments, the sensors themselves must be the most perma-
nently attached to the individual’s walk. Several alternative
solutions would have been possible, as already analyzed in
the work of Derawi, [13], in particular it is common to
equip with sensors ankles, hips and legs. In our work it was
decided from the beginning to embed the sensor elements
in the shoe. Indeed, this decision is mainly motivated by
the application itself, since the final product will be the
Wahu sensorized shoe. In particular, the employed sensor
is the IMU LSM6DS3HTR, whose specifications (storage
capacity, self-life, battery usage, etc.) can be found in [14].
For ensuring that each experiment is done with exactly the
same reference system, the IMU is fixed on a tiny board,
powered by a 8.4V external battery, under the heel of a
common sneaker shoe employed for the test campaign. The
IMU is drowned in the sole with hot glue, which works
also as a shield from possible damages (see Fig. 2), and
connected by-wire, through a Vector CANalyzer data logger,
to a laptop computer. The IMU firmware is written in order
to collect the accelerations along the three axes defined as in
Fig. 3, with a sampling frequency of 200Hz. Data from the
gyroscope, also collected by the IMU, are measured but not
stored for now, leaving the employment of angular velocities
information to a possible future development of the research.

On the basis of the above described data acquisition equip-
ment, the routine of the experiments is defined and, in
particular, each tester is asked to walk straight on a flat
pavement as much as possible maintaining a constant speed.
The trials have been carried out on different types of surfaces,
assuming the terrain flat and without a relevant roughness.
Specifically, the tester had to walk repeatedly indoor on
linoleum floor and outdoor on an asphalt road.

III. DATA PRE-PROCESSING

As previously illustrated, the available walking data are
captured from a 3-axis accelerometer and are denoted as

Fig. 3: The orientation of the IMU reference system (x, y, z)
with respect to the user one (ξ, υ, ζ).

ax, ay and az . The three accelerations are not treated sepa-
rately, instead a combined signal was used, simply consisting
of the sum of the three accelerations:

ac = ax + ay + az (1)

Other combinations of the three elementary signals were
tested but provided much weaker results. The choice of
compacting the three accelerations is a common practice in
many wearable related algorithms, see for example [15], and
it is justified by two main considerations:

• using a single compact signal makes the algorithm more
efficient and this aspect is crucial in view of our future
on-board implementation;

• exploiting the total acceleration signal allows a better
identification of the gait typical peaks and valleys,
easing the job of segmenting the overall walk into many
subsequent steps.

Once the total acceleration signal, ac, is computed, our
approach consists of primarily decomposing the whole gait
into a sequence of single steps; a velocity filter removes
potential steps outside the nominal range of velocities
considered as acceptable. The individual steps are then
normalized over a fixed number of samples and finally fed
to a machine learning (ML) algorithm capable of predicting
the user whom the steps belong to. The overall procedure,
shown in Fig.4, will be analysed in the following section.
MATLAB has been used for the algorithm implementation.

The filtering phase is composed of two different and
parallel smoothing operations:

• a low-pass filter with bandwidth 0.01Hz returns the
signal employed for valleys detection. Due to this
operation, a considerable amount of information about
the gait are lost, but the obtained noise-filtered wave
still preserves the real position of its stationary points,
which are much better discernible;

• a low-pass filter with bandwidth 10Hz returns the
signal that will be actually used in the classification
stage. The higher cut-off frequency allows to attain a
signal still able to univocally describe the user’s gait



Fig. 4: The workflow chart of the algorithm from the sensor raw data to the classification output label. The block diagram
shows all the intermediate stages through which the signals flow, before being fed to the machine learning algorithm.

signature, removing at the same time the high-frequency
measurement noise.

In the segmentation phase a negative-peaks, i.e valleys,
detection algorithm is implemented to identify and succes-
sively isolate the single steps within a gait. This particular
choice is simply justified stressing the behaviour of signal ac,
shown in Fig.5. Indeed, the presence of two maxima in each
step i may induce MATLAB to a wrong decomposition
of the entire walk, while, on the contrary, the detection of
the valleys negative minima, clearly distinguished one from
the other, allows an identification less incline to potential
errors. To perform this task, the MATLAB built-in function
findpeaks is exploited and its optional parameters Minimum
Peak Distance and Minimum Peak Height are suit-
ably tuned; in particular, these two empirical thresholds are
fixed in order to specify the minimum distance between two
adjacent valleys and their minimum depth. As a result, the
output of the valleys detection are the integer indices of the
samples characterizing the valleys in the signal ac. These
information are used in the following to split the entire gait
acceleration into single steps.

Fig. 5: The waveform of ac smoothed with the low-pass
filter at 0.01Hz. The vertical red dashed lines locate the
boundaries of each single step.

A velocity filter is next implemented with the aim of
removing the steps that are too slow or too fast within the
gait. In order to establish lower and upper bounds (Nmin

samples,
Nmax

samples) on the total number of samples that we decide to

associate to the description of a single ‘’standard velocity”
step, an additional series of tests was carried out with par-
ticipants walking very slowly or at a higher speed. All steps
characterized by a number of samples smaller than Nmin

samples

or greater than Nmax
samples are eventually discharged. This

velocity filter also provides a serviceable tool to ultimately
remove wrong or outlier steps obtained as output of the
segmentation phase.

At this point, all the single available steps for each tester’s
walk are considered ‘’valid”, but they still are characterized
by a generic number of samples belonging to the interval
[Nmin

samples; Nmax
samples]. To make all steps directly comparable

with each-other, a step-length normalization is performed us-
ing MATLAB interp1 function, which employees the nearest
neighbour interpolation method. The period length was set
to 210 samples, that is the average length of a step when
accelerometer’s data are sampled at our frequency of 200Hz.

The final product of the data pre-processing phase is the
step table which stores the time-amplitude information of
each user’s step, i.e. a table with as many rows as the
overall number of steps, labelled for each user, and as many
columns, 210, as the number of samples that describe a
‘’standard velocity” young adult step, post-processed with
a period normalization.

Fig. 6: The Pareto Chart shows the trade-off between the
variance explained by the signal after the dimensionality
reduction and the consequent number of PCs taken.



IV. MACHINE LEARNING ALGORITHMS FOR IDENTITY
RECOGNITION

In this Section we illustrate the two methods aimed at
identifying the individual who is wearing that certain shoe
by means of his gait signature expressed via acceleration data
collected during normal walking experiments from the IMU,
integral with the shoe’s sole. The first relies on a standard
algorithm, the k-Nearest-Neighbour [16], which does not
require any a-priori assumption on the collected data, the
second, the Linear Discriminant Analysis [17], is based
on the hypothesis that the observations in each prediction
class can be modelled with a normal probability distribution.
Overall, the classification procedure establishes a mapping
between the pre-processed acceleration signal and the person
to be recognized.

Before entering in the details, a preliminary consideration,
valid for both the methods, should be made. A first idea
was to pick the predictors to be fed to the ML algorithms,
among some standard statistical features like mean, variance,
skewness index and kurtosis index, quantities easy to be
associated to characteristics of the signal ac. As long as the
classification algorithm was tried out on a reduced subset of
the overall dataset, the statistical predictors provided satis-
factory results in terms of accuracy, however performance
downgraded using the whole bunch of data.

Therefore, the innovative intuition of this paper is to select
as features directly the samples of each step for a total of 210
predictors per step. It is evident that a so accurate description
of the signal is more keen to univocally discriminate one
walk from another, however the dimensionality of such a
problem is difficult to be managed. To overcome this draw-
back, the Principal Component Analysis (PCA) is employed,
see [18].
The minimum variance in the data that has to be explained

by the PCs is a user choice, since obviously the higher
the number of the PCs included, the smaller the loss of
information. In our setup, this threshold is fixed at 95%, see
Fig.6, leading to the employment of 12 PCs. The goodness
of this compromise is illustrated in Fig.7. Overall, the PCA
approach can be easily interpreted, from a practical point of
view, as a method that allows to describe (loosing just 5%
of data variability) each single step with at most 12 out of
210 integer numbers.

A final remark concerning the combined signal introduced
in Section III should be made. Fig.8 gives a preview of the
performance in terms of classification error provided by one
of the two ML algorithms, will will in depth discussed in
Section IV-A and Section V. The aspect we want to em-
phasize here, is that the PCA validates how the information
carried by ac is actually the most performing one, compared
to the single accelerations ax or az .

A. k-Nearest-Neighbours (k-NN) and Linear Discriminant
Analysis (LDA) algorithms

The well-known k-Nearest-Neighbour algorithm, [16], is
a machine learning, non-parametric method used for classi-
fication and regression. It relies on the concept of distance

(a)

(b)

Fig. 7: The upper plot in (a) and (b) represents the super-
imposition of the real measured acceleration signal (blue)
and the PCA-reconstructed one (orange), the lower plot
represents the error between the two signals. In (a) only the
first PC is considered, while in (b) 12 PCs.

between data points. In this work, the Euclidean norm is
employed as the distance metric because it has exhibited the
best performance compared to other norms.
A data item is classified by a majority vote of its neighbours,
with the object being assigned to the class most common
among its k nearest neighbours. The value of the integer
k, usually kept small, is a critical point in the tuning of
the algorithm, since a weakness of the k-NN is indeed
that it is particularly sensitive to the local structure of the
data. Therefore, in our experiments, an accurate sensitivity
analysis was carried out and it resulted that the optimal
choice was k = 3.

The second proposed ML approach is the Discriminant
Analysis. This algorithm uses the training observations to
determine a boundary between the response classes, which



Fig. 8: The classification error trend as function of the num-
ber of PCs included. The dynamics are attained considering
the combined signal ac or the standard ones ax and az .

is determined by treating the observations of each class as
samples from a multi-dimensional normal distribution. Then,
observations on one side of the boundary would be classified
as belonging to one class and the others to the other class.
The geometrical type of the boundaries (linear, quadratic,
etc. . . ) implies different classification procedures: in this
work, we assume that all the distributions have the same
shape, i.e. described by the same covariance matrices, so that
the boundaries turn out to be linear. In particular, the Linear
Discriminant Analysis, [17], results quite easy to perform,
even with a small memory overhead. The performance of
both classifiers are discussed in Section V.

B. High-level techniques for an exact classification

The novelty of this paper is to introduce two advanced
methods which rely on the output of the algorithms just
described in Section IV-A, but allow to obtain better and
accurate classification results. The underlying idea is that
recognizing a person by analyzing only one single step
extracted from his gait is clearly an interesting task from a
theoretical point of view, but not strictly required in practice.
Instead, asking the user to make a short walk would be
a reasonable request and in turn, it would lead to a more
precise and correct identification.

In the first proposed approach, the classification is thus no
more performed on a single step, but on a mean step, which
is obtained by picking and averaging m consecutive steps.
Consequently, a sensitivity analysis on the optimal value
of the parameter m was accomplished and as m increases,
performance improved as well. The intuitive reason is that
the information carried by a mean step is able to characterize
in a better and precise way a person’s walking pattern.
The main drawback of this technique is that if one step
is clearly wrong, e.g. it corresponds to a stumble, also the
resulting mean step will be affected, leading to a potential
misclassification.

To cope with this problem and hence make the clas-
sification robust with respect to potential outliers, another

methodology has been investigated. The insight is to require
the user to perform again m consecutive steps, defining a
so called folder, but now without averaging them. For each
step belonging to the folder, the identification algorithm, i.e.
the k-NN or the LDA, will be run. An empirical threshold
T has to be fixed, in our setup T = 50%. If more than
T [%] steps in the folder are identified as belonging to
the same person, then the identification procedure can be
considered successful, otherwise another set of m steps
should be repeated until the recognition procedure turns out
to be successful (see the example in Fig.9).

Fig. 9: Example of the folder version high-level technique
for an exact classification with m = 10 and T = 50%

V. TEST CAMPAIGN AND DISCUSSION OF THE
EXPERIMENTAL RESULTS

As already highlighted in Section II, the experiments were
carried out by 5, 23 years old, male subjects in good health
and physical conditions. From the tests, we collected 12−15
minutes of walk for each tester, with an overall of around
3700 steps. All these data have been divided into a training
set and a validation set, in particular 1932 steps were used
to train the machine learning algorithm and the remaining
1802 were used for the validation. This partition was done
in order to obtain two balanced clusters of data.

So, running the k-NN algorithm with this setup we obtain
an accuracy in the identity identification equal to 97.8%
which means that 1763 steps are classified correctly while
39 steps are associated to the wrong subject. In addition,
running the LDA algorithm with the same setup we obtain
an accuracy equal to the 99%, Fig.10, which means that
1784 steps are classified correctly while only 18 steps are
associated to the wrong subject. These results prove that the
proposed identity recognition methodology based on quite
simple machine learning algorithms is not only feasible, but
also very accurate. A comparison of the proposed approach
with other different ones found in literature is reported in
Tab. I.

DEVICE & POSITIONING ALGORITHM ACCURACY REF.

Smartphone in pocket CNN 94% [12]
Accelerometer on ankle t-test 91% [15]
MMR on calf SVM 98% [19]
Accelerometer on belt DTW 94.3% [20]
Accelerometer under heel LDA 99% Our

TABLE I: The performance of sensor-based gait recognition
methods.



Fig. 10: The Confusion Matrix related to the LDA algorithm.

In order to further reduce the classification error, the
two high level techniques for an exact classification in-
troduced in Section IV-B can be applied. The first one,
guarantees a convergence to 100% accuracy using at least
m = 10 steps; the second one guarantees the convergence
to 100% accuracy using a folder made up of at least of
m = 6 steps, which in both cases is a not too tiresome
request for the tester. A summary of the achieved perfor-
mance with the different methods is illustrated in Tab. II.

Algorithm Accuracy [%]

k-NN 97.8%
LDA 99%

Mean-step version (m ≥ 10) 100%
Folder version (m ≥ 6) 100%

TABLE II: Classification performance results.

VI. CONCLUSION AND FUTURE WORK

In this paper, an innovative approach is proposed for
gait identity recognition based on inertial data collected
by an IMU glued in the shoe’s sole, then processed by
two different machine learning algorithms. The accurate
classification of the individual wearing the sensorized shoes
is accomplished by employing the informative content of the
3-axis accelerometer measurements, a remarkable novelty in
the state of the art of wearable-based human gait recognition.
The proposed algorithms were trained and validated on an
initial, starting dataset of five young adults’ walking patterns,
because, in order to demonstrate the feasibility of the idea,
the learning procedure relied on a fairly primitive experimen-
tal apparatus. It will shortly be made much more robust in
order to allow the repeatability of much more numerous ex-
perimental training, validation and testing steps. Within these
forthcoming experiments, also more heterogeneous subjects
will be taken into account, in order to globally authenticate
the effectiveness of the presented approaches. Moreover,
further planned phases of this research work will be:

• upgrading of the algorithms in order to entail also the
presence of curvilinear trajectories, thus giving to the
individual the chance to be identified not only through
a straight walking pattern;

• implementing an automatic detection and removal of
walking steps which are clearly faulty;

• investigating the possible added value of the gyro-
scope’s measurements.
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