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Abstract
This paper is about the study of Multi–Armed Bandit (MAB) approaches for pricing applications,
where a seller needs to identify the selling price for a particular kind of item that maximizes her/his
profit without knowing the buyer demand. We propose modifications to the popular Upper Confi-
dence Bound (UCB) bandit algorithm exploiting two peculiarities of pricing applications: 1) as the
selling price increases it is rational to assume that the probability for the item to be sold decreases;
2) since usually people compare prices from different sellers and track price changes over time
before buying (specially for online purchases), the number of times that a certain kind of item is
purchased is only a small fraction of the number of times that its price is visualized by potential
buyers. Leveraging on these assumptions, we consider refinements of the concentration inequality
used in the UCB1 algorithm, that result to be significantly tighter than the original one, specially in
the early learning stages when only a few samples are available. We provide empirical evidence on
the effectiveness of the proposed variations in speeding up the learning process of UCB1 in pricing
applications.
Keywords: Multi–Armed Bandit, Upper Confidence Bound Approach, Pricing.

1. Introduction

The problem of designing policies for pricing has been pursued by resorting to different perspec-
tives, for instance, approaches have been developed by considering techniques coming from the
economic field (Bertsimas and Perakis, 2006), operations research one (Gallego and Van Ryzin,
1994) and machine learning one (den Boer, 2015). The solutions proposed in the literature con-
sider different sets of assumptions holding on the nature of the considered product (e.g., of the same
nature or of different class, perishable or non–perishable, with finite or infinite availability), the buy-
ers’ behavior (e.g., fixed and known or generic, varying with time or stationary) and the optimality
condition they considered (e.g., social welfare or revenue).

Here we want to address the basic problem of a seller, with an unlimited amount of non–
perishable goods, who wants to assign a price to a good without knowing the value that buyers
assign to it. This is an interesting problem from the seller point of view, since the profit depends
by the pricing policy and the best pricing policy is determined by the buyers’ preferences, which
are usually unknown a priori. In this work, two realistic assumptions have been considered: the
conversion probability, i.e., the probability that a buyer purchases the good, is decreasing as the
revenue margin is increasing and it is lower than a certain value that is a priori known by the seller,
for positive item prices. The former assumption comes from the fact that buyers are more willing to
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buy a product at lower price, while the latter assumption is based on the fact that sellers usually have
a priori information, coming from past transactions (e.g., from different products), on the amount
of buyers which are not willing to buy any item, but are interested in checking the price anyway,
which leads to a low probability of purchasing a good. The described setting could apply to both
a local hardware store, as well as to a wider online selling website (e.g., Amazon or Kelkoo). For
instance, this setting could be directly applied to the pricing of flight tickets made by an Online
Travel Agency (OTA) in a day, where the cost of the ticket provided by the airline is fixed and the
availability of the tickets is larger w.r.t. the buyers’ demand.

In this scenario, we do not assume to have any further information on the distribution of the
buyers’ demand, thus we resort to the widely known framework of Multi–Armed Bandit (MAB),
where we are able to propose a single price to a buyer (pull a single arm) and we are able to observe
the outcome due to this choice (buy/refuse to buy). In this setting, the goal is to design a pricing
policy that minimizes the regret, i.e., the loss the seller incurs in the choice of a suboptimal arm,
and, at the same time, that is able to converge to the optimal price choice. While most of the
algorithms developed in the MAB setting do not consider correlations existing among arms, here
the knowledge of the outcome of an arm is able to provide information regarding other arms. For
instance, if a buyer accepts to buy a product at a specific price, it is reasonable to expect that she/he
would have bought it also at a lower price, while if she/he refuses the good at a specific price the
same would have been also if the seller had proposed a higher price.

MAB approaches have been already considered for dynamic pricing (den Boer, 2015) exploit-
ing both Bayesian (Leloup and Deveaux, 2001; Cope, 2007) and non–Bayesian (Kleinberg and
Leighton, 2003; Tehrani et al., 2012) formulations. As observed in several works, dynamic pricing
can be modeled as a partial monitoring game (Cesa-Bianchi et al., 2006; Bartók et al., 2014), for
which several studies on asymptotic regret bounds have been produced in the least decade both in
stochastic (Bartók et al., 2011, 2012) and adversarial (Piccolboni and Schindelhauer, 2001; Cesa-
Bianchi et al., 2006; Foster and Rakhlin, 2012) settings.

In this paper, we consider dynamic pricing in the stochastic settings and we propose two varia-
tions to the popular UCB1 algorithm (Auer et al., 2002) that, exploiting the correlation among the
outcomes of different arms (prices) as well as the a priori information on the maximum conversion
probability, produce tighter Upper Confidence Bounds (UCBs) over the expected utility of the arms.
We focused on UCB1 due to its strong regret bounds together with its computational efficiency as
needed for e–commerce applications where thousands of pricing operations per second may be re-
quested. Although the proposed variations do not improve the UCB1 regret bounds, they provide
significant advantages in many realistic pricing situations as will be shown by empirical results.

2. Problem Formulation

We consider a scenario where an unlimited non–perishable amount of goods is available to a mo-
nopolistic seller, who wants to propose at a chosen price the product she/he is selling to a buyer.
Each buyer is modeled as a deterministic agent which will buy the item only if the proposed price
is lower or equal than a threshold s ∈ R+. Since buyers have generally different thresholds s, we
considered s as drawn from a random variable S with probability density function (pdf) S over
Ω ⊆ R+. Here we consider a stationary setting where the threshold distribution S does not change
over time.

Given an arm ai ∈ R+, that corresponds to a specific price, we define a variable Xi ∼ Be(µi)
which represents the outcome (buy/refuse to buy) of the transaction. The expected conversion prob-

2



MULTI–ARMED BANDIT FOR PRICING

ability µi corresponding to price ai is defined as the probability that a user will purchase the product:

µi = Pr(s ≥ ai) = 1−
∫ ai

0
S(x)dx. (1)

It is clear that for the non–negativity of the distribution function S and for the property of the
integral we have that ai < aj ⇒ µi > µj , i.e., the expected conversion probability is decreasing
w.r.t. the price. We would like to point out that by adopting this model of the user we automatically
obtain the first assumption that will be exploited in the following section.

The second assumption is that the seller knows that only a certain proportion of the buyers
µmax ∈ [0, 1] will really consider the possibility of purchasing the good, while the remaining pro-
portion 1−µmax will not buy at any price. This can be introduced in the user model by considering
S with pdf equal to S(a) = (1−µmax) · δ(0) +µmax · C(a), a ∈ Ω, where δ(0) is a Dirac delta dis-
tribution centered in 0 and C is a pdf defined over Ω. In this context, the seller faces a problem that
can be modeled by considering a MAB setting. In fact, at each time t (or equivalently as soon as the
t–th client appears), we are allowed to collect the reward (either 0 or ai) from a previously selected
arm ai, since we are able to propose a single price to a buyer. We consider a finite set of ordered
arms (prices) A = {a1, . . . , aK}, where |A| = K <∞ and ai ≥ aj iff i ≤ j.1 Thus, the reward of
arm ai at time t can be modeled as a random variable Vi = aiXi, ∀i ∈ {1, . . . ,K}. By considering
the definition of outcome Xi, we have that νi := E[Vi] = aiE[Xi] = aiµi, ∀i ∈ {1, . . . ,K}.

A (pricing) policy over a MAB setting is an algorithm U(ht) that chooses the next arm to play aī
at time t according to history ht, defined as the sequence of past plays and obtained rewards. Remind
that at each time twe observe a single realization of the reward vī,t coming from the arm U(ht) = aī.
After t time points, we are provided with a set of realizations Dit = {xit′ |U(ht′) = ai, t

′ < t} for
each arm ai ∈ A, where xit′ is the realization of the outcomeXi at time t′. The objective of a policy
is to maximize the expected cumulative reward or equivalently to minimize the loss w.r.t. the optimal
decision (in terms of revenue). This loss is usually addressed as total regret, whose definition over
a finite time horizon N is as follows:

RN = ν∗N −
K∑
i=1

νiE[Ti(N)] (2)

where E[·] is the expectation w.r.t. the stochastic components of the algorithm, ν∗ := maxi∈{1,...,K} νi
and Ti(t) := |Dit| is the number of times the algorithm selects the i–th arm in the first t time points.

3. Proposed Methodology

In what follows we propose a framework, composed of two different parts, which is able to incorpo-
rate into UCB–like algorithms information about the correlation existing among arms and a priori
knowledge about the maximum conversion probability of the arms. The main idea for exploiting
correlation is to use the decreasing structure of the expected conversion probabilities {µi}Ki=1 to
tighten their UCBs. Moreover, to incorporate in our framework the a priori information about the
maximum conversion probability we consider a form of the Chernoff bound which is tighter than the
one proposed by Hoeffding when the conversion probability is particularly low (µi < µmax � 1).
In the methodological section, we consider the two aspects as separated entities, but their joint
use, which fully exploits the characteristics of the studied pricing problem, will be shown in the
experimental section.

1. We denote with |A| the cardinality of a set A.
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3.1 Arms Correlation

Due to the specific structure of the considered problem, we include the information about the or-
dering of the expected values {µi}Ki=1 along the arms. If we consider arm ai, we have that the
realizations of all the arms aj < ai provide information for the computation of the UCB on the
expected value µi. In fact, since µi ≤ µj we can use the samples in Djt as optimistic estimates of
what would have happened to realizations coming from arm ai at time instant t.

Let us define the estimator for the average value of Xij , that is a random variable resulting from
a convex combination of the random variables {Xj , . . . , Xi}:

X̂ji,t =

∑
x∈Dji,t x

Tji(t)
, (3)

where Dji,t :=
⋃i
k=j Dkt is the union of the sets {Djt, . . . , Dit} and Tji(t) :=

∑i
k=j Tk(t) is the

cardinality of the set Dji,t. The following theorem holds:

Theorem 1 Given a set of sequence of realizations {D1t, . . . , DKt} drawn from Xi ∼ P (Θ) with
i ∈ {1, . . . ,K} having µi := E[Xi] and µi ≤ µj iff j ≤ i, where P is a probability distribution
over a finite set Θ = [a, b], the following holds for any j ∈ {1, . . . , i}:

P(µi ≥ X̂it + εi) ≤ e
−

2Tji(t)(X̂it−X̂ji,t+εi)
2

(b−a)2 , (4)

where X̂it =

∑
x∈Dit

x

Ti(t)
.

Proof By considering a generic variable Xi, we have that the following holds ∀j ∈ {1, . . . , i}:

P(µi ≥ X̂it + εi) ≤︸︷︷︸
µji≥µi

P(µji ≥ X̂it + εi) = P(µji ≥ X̂ji,t− X̂ji,t + X̂it + εi) ≤ e
−

2Tji(t)(X̂it−X̂ji,t+εi)
2

(b−a)2 ,

where the last inequality follows from the Hoeffding bound and µji is the mean of a random variable
Xji with values over Θ, i.e., E[Xji] =: µji ≥ µi.

In the setting considered in this work, Xi ∼ Be(µi), thus we have P = Be(µi) and Θ = {0, 1},
thus the inequality provided in Theorem 1 reduces to:

P(µi ≥ X̂it + εi) ≤ e−2Tji(t)(X̂it−X̂ji,t+εi)
2

. (5)
If we need an UCB over µi holding with confidence of at least 1− p with p ∈ [0, 1] we have:

P(µi ≥ X̂it + εi) ≤ e−2Tji(t)(X̂it−X̂ji,t+εi)
2

= p, εi = X̂ji,t − X̂it +

√
− log(p)

2Tji(t)
.

By considering j̄ = arg minj∈{1,...,i} e
−2Tji(t)(X̂it−X̂ji,t+εi)

2

, we will have the tighter bound
among those provided by Theorem 1. This constitutes a potential improvement over the traditional
bound obtained by considering realizations coming from a single arm. In fact, this novel UCB
considers Tji(t) ≥ Ti(t) samples and it is tighter or, in the worst case, equal to the Hoeffding’s
one. For instance, when the empirical means for the arms are monotonically decreasing (i.e., X̂it <
X̂jt, ∀i > j) the use of realizations coming from other arms provides little contribution to tighten
the bound, but in the case of an inversion (∃i > j|X̂it > X̂jt) we have that the bound in Theorem 1
can significantly improve over the original one. Such a situation is exemplified in Figure 1, where,
in contrast with the assumption about the monotonicity of the conversion probabilities, the empirical
conversion X̂1t of arm a1 = 1 is lower than the one X̂2t of arm a2 = 2. This happens because arm
a2 has been selected much less than arm a1 and so its empirical mean is more uncertain. In this
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Algorithm 1 UCB1-O
Initialization
Play each arm ai ∈ A once.
Loop
At time instant t
for i = 1, . . . ,K do

Compute:

ui = min
1≤j≤i

{
X̂ji,t +

√
2 log(t)

|Tij(t)|

}

end for
Play ī-th arm s.t.: ī = arg maxi aiui

Ω
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Figure 1: Example of inversion of estimates for decreasing
expected values and corresponding UCBs.

case, the samples of arm a1 decrease the UCB for arm a2 from the value denoted by the blue circle
to the value denoted by the red square (top). This reduction of the UCB for arm a2 does not imply
a reduction in the confidence level, since the two values have been obtained from different bounds,
but with the same confidence level (1− t−4), as shown in Figure 1 (bottom).

The proposed algorithm (UCB1-O) is presented in Algorithm 1. At first, the algorithm selects
in turns each arm at least once, to have at least an outcome realization coming from each arm. Once
the initial round is completed, it considers, for each arm ai:

ui = εi + X̂it = X̂j̄i,t +

√
2 log(t)

Tj̄i(t)
, (6)

where j̄ is selected in order to minimize the bound in Theorem 1 and the confidence level is selected,
as done for the UCB1 algorithm (Auer et al. (2002)), by setting p = t−4. At last, the algorithm
selects for the next round the arm aī providing the maximum upper bound over the expected reward.

3.2 A Priori Information

To include the information about the prior over the conversion probability, i.e., that µi ≤ µmax, ∀i ∈
{1, . . . ,K}, we considered the fact that the Hoeffding bound (Hoeffding (1963)) does not constitute
a tight bound in the case we are considering random variables with bounded expected value. More
specifically, one of the approximations considered in the bound for the generic outcome Xi is:

e−Ti(t)D(µi+ε||µi) ≤ e−2Ti(t)ε
2
, (7)

where D(µi + ε||µi) is the Kullback-Leibler (KL) divergence between two Bernoulli variables with
mean µi + ε and µi, respectively. As shown in Figure 2, the bound based on the KL divergence
(solid lines) and the one on Hoeffding’s inequality (dash–dotted line) diverge as µ decreases. To
reduce the gap, we consider the following results known in literature as one of the formulation of
the Chernoff bound (Chernoff (1981)):

Theorem 2 Given a set of realizations Dit extracted from Xi ∼ Be(µi), we have:

P(µi ≥ X̂it + εi) ≤ e
−Ti(t)ε

2

µi . (8)
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Algorithm 2 UCB1-P
Initialization
Input: µmax

Play each arm i ∈ K once.
Loop
At time instant t
for i = 1, . . . ,K do

Compute:

ui = X̂it +

√
4µmax log(t)

Ti(t)

end for
Play ī-th arm s.t.: ī = arg maxi aiui

ε
0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1
HB(ε)
KL(ε), µmax = 0.01
CB(ε), µmax = 0.01
KL(ε), µmax = 0.001
CB(ε), µmax = 0.001

Figure 2: Example of bounds y = e−x(ε) obtained with differ-
ent x(ε): Hoeffding Bound (HB(ε)), Kullback Leiber
divergence (KL(ε)) and Chernoff Bound (CB(ε)).

In the application scenario we are considering, it is interesting to derive UCBs from it, since
it provides a better approximation of the KL divergence in the case µi ≤ µmax � 1, as shown in
Figure 2 it provides tighter estimates (dashed lines) of the one derived from KL divergence. If we
want an UCB with confidence 1− p with p ∈ [0, 1] we have from Theorem 2:

P(X̂it ≥ µi + ε) ≤ e−
Ti(t)ε

2

µi ≤ e−
Ti(t)ε

2

µmax = p, ε =

√
4µmax log p

Ti(t)
,

where the last inequality derives from the trivial fact that µmax ≥ µi,∀i ∈ {1, . . . ,K} and ε
is computed by considering the positive root of the second order equality associated to the first
inequality. It is possible to compute, by comparing the two bounds provided by Hoeffding and
Chernoff, a sufficient condition that identifies when the former is more convenient than the latter. In
fact, it is easy to infer that when µmax >

1
2 the bound in Equation (8) is wider than the one in the

RHS of Equation (7), thus, if we cannot guarantee low conversion probabilities, it is better to resort
to the traditional Hoeffding bound. Further insights will be given in the experimental section. The
proposed algorithm (UCB1-P) is presented in Algorithm 2. In UCB1-P we set, similarly to what
has been considered in the UCB1 algorithm, p = t−4 and we choose the next arm to be pulled by
selecting the one having the maximum expected revenue.

4. Experimental Section

To evaluate the performance of the proposed framework, we run several simulations on a variety
of different pricing settings by changing the distribution associated to the buyers’ demand and the
number of arms (prices) over which the optimization is performed. For sake of synthesis, due
to space limitation, here we report only the most relevant results that has been obtained in three
case studies, provided that experiments on other configurations do not change the final conclu-
sions. In the first two experiments, we compared the proposed algorithms UBC1-O and UCB1-P
with the UCB1 policy in terms of their total regret relatively to the total regret suffered by UCB1
(RN (UCB1)), i.e., R% = RN

RN (UCB1) . Furthermore, we considered the performance of UCB1-OP,
which is a straightforward combination of the other two proposed algorithms considering as upper
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Figure 3: Regret results for S1 with different
number of arms K
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Figure 4: Regret results for S2 with different
number of arms K

bound ui = min1≤j≤i

{
X̂ji,t +

√
4µmax log(t)

Tji(t)

}
, on a third case study where the performance are

measured in terms of average regret R̄t = Rt
t . All the algorithms are implemented in MatLab.

4.1 Application D1: Correlation Information

Experimental setting We considered 8 different configurations for the distribution S in order to
evaluate the integration of the correlation structure information in the algorithms. We considered
configurations with different numbers of arms K ∈ {3, 5, 9, 17} (evenly spaced over the interval
[1, 17]) and with different conversion probabilities, in the specific, S1 ∼ N (14, 1), representing a
situation where the optimal price is high and S2 ∼ N (5, 1), where the optimal price is the one cor-
responding to one of the lower arms. Here we do not consider any information about the maximum
conversion probability, i.e., we set µmax = 1. We generate 20 independent sequence ofN = 50, 000
thresholds s from S1 and S2 and run the UCB1 and UCB1-O policies on them.

Results In Figures 3 and 4 we have the results for R% for UCB1 (which is always 1 by definition
of R%) and for UCB1-O. When the optimal arm is among the higher ones, we have only a little
improvement of the performance of UCB1-O w.r.t. UCB1. This is mainly due to the fact that the
problem itself favors the arms with high values since the strategy is based on the product of prices
and conversion probabilities. Thus, intrinsically even a problem of this kind with a large number of
arms would reduce to a selection among a small subset of arms. In the situation where the optimal
arm is among the lower ones, we have that the information provided by the ordering is able to induce
a significant reduction in the regret, with the regret of UCB1-O that ranges between 30% and 80%
of the regret of UCB1. As expected, the advantage increases with the number of arms.

4.2 Application D2: A Priori Information

Experimental setting In this second set of experiments, we considered 4 arms A = {1, 2, 3, 4},
µmax ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.001} and customer thresholds coming from a Gaussian Mix-
ture Model, so that the optimal arm is γ3 = 3 and the second best one is γ1 = 1 (i.e., having
C = 0.8 · N (0.85, 0.38) + 0.2 · N (3.4, 0.05)). As in the previous case, results are averaged over 20
repetitions, but the time horizon has been extended to N = 2, 000, 000.
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Figure 5: Regret for cases where a priori knowl-
edge over µmax is available.
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Figure 6: Results for average regret in the real-
istic pricing problem.

Results The results of the simulations are presented in Figure 5. It is possible to see that, as stated
in Section 3, using UCB1-P in settings where arms have high conversion probabilities (µmax >
0.25) is worse than using UCB1, since the Chernoff bound gets looser than the Hoeffding’s one. On
the other hand, when we consider cases where µmax � 0.25, the total regret of UCB1-P is between
the 30% and the 60% w.r.t. the UCB1 one.

4.3 Application D3: Correlation and a Priori Information

Experimental setting At last we considered a realistic scenario of pricing, where both the as-
sumptions hold. Here we, considered K = 17 arms (evenly spaced over [1, 17]), µmax = 0.01 and
C = N (5, 1). We run 20 independent simulations over a time horizon of N = 2, 000, 000.

Results The results of the simulations are presented in Figure 6. All the proposed algorithms
provide better results than UCB1, that even after two millions steps exhibits no learning trend.
UCB1-O is able to exploit the information about the ordering and provides better performance than
UCB1-P in the early stages of the simulations. On the other hand, UCB1-P is able to exploit the a
priori information over the whole simulation, thus being able to reach a lower R̄t at the end of the
simulation. The combination of the two methodologies in UCB1-OP is here really effective, since it
is able to outperform all the other algorithms in terms of average regret during the whole simulation.

5. Conclusion and Future Works

In this paper, we cast the pricing pricing as a multi-armed problem with dependent arms. We pre-
sented solutions to incorporate common assumptions in pricing applications, such as the correlation
among different arms and a priori information about their maximum conversion probabilities, into
the design of a UCB-like arm selection policy. We provided a theoretical background to justify the
use of these methodologies and presented experimental evidence that their joint use is effective in
a realistic scenario. Future developments of this work may explore both the application of such
techniques to either other frequentist or Bayesian MAB policies and the inclusion of a strategic
component in the problem, for instance by considering also other competing sellers.
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Gábor Bartók, Dávid Pál, and Csaba Szepesvári. Minimax regret of finite partial-monitoring games
in stochastic environments. In COLT, volume 2011, pages 133–154, 2011.
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