
Cardiovascular patient-specific modeling: Where
are we now and what does the future look like?

Cite as: APL Bioeng. 4, 040401 (2020); doi: 10.1063/5.0031452
Submitted: 30 September 2020 . Accepted: 23 October 2020 .
Published Online: 9 November 2020

Alberto Redaelli1,a) and Emiliano Votta1,2

AFFILIATIONS
1Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
23D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese (MI), Italy

a)Author to whom correspondence should be addressed: alberto.redaelli@polimi.it

THE RISE OF PATIENT-SPECIFIC COMPUTATIONAL
MODELS: FROM 3D RECONSTRUCTIONS TO DIGITAL
TWINS

The clinical and bioengineering arenas are experiencing tremen-
dous technological progress. Imaging technologies yield images with
continuously improved time- and space-resolution; image processing
is being boosted by the introduction of artificial intelligence (AI) tech-
niques allowing for time-efficient, automated, and reliable segmenta-
tion of tissues or organs; and the performance of computational
infrastructures is increasing exponentially. In this scenario, it is
becoming easier and faster to exploit the anatomical and functional
information generated by medical imaging to feed computer models
meant to gain insights into clinically relevant scenarios.

In their most basic version (Fig. 1), such models are detailed
reconstructions that allow for the 3D quantification of the anatomy
and of its motion, as well as for the quantification of clinically relevant
functional metrics, e.g., 3D strain distributions as computed from
ultrasound imaging (Rego et al., 2018) and fluid dynamic footprints of
blood velocity fields as derived from 4D flow magnetic resonance
imaging (Piatti et al., 2017). In clinics, these models provide physicians
with exhaustive and non-misleading information to plan interven-
tions: relevant examples are the choice of the best access and path to
reach a target without harming noble structures, as in neurosurgery
(Ferroli et al., 2013). The advent of augmented reality and virtual real-
ity is empowering this type of model by providing the end-user with
fully 3D and immersive renderings that allow for the better under-
standing of particularly complex anatomies, as in the case of patients
whose anatomy is deranged by major congenital diseases (Butera
et al., 2019).

In their most sophisticated version (Fig. 1), patient-specific mod-
els simulate the physics of the analyzed organ or tissue (see, e.g.,
Krishnan et al., 2015; Collia et al., 2019). To this aim, the information
on anatomy and motion of organs is complemented by the quantita-
tive description of tissue micro-architecture (Lee et al., 2014)—e.g.,
myocardial fiber organization derived from diffusion tensor imaging

(Whittaker et al., 2019)—and physical properties—e.g., mechanical
properties, porosity, and electrical conductivity (Avazmohammadi
et al., 2017). These models are expected to be high-fidelity replicas, or
digital twins, of the tissues of organs affected by the disease. As such,
they are used to simulate potential treatments and quantify the associ-
ated response of the relevant tissue or organ in terms of, e.g., tissue
stresses (Rausch et al., 2017) or tissue remodeling (He et al., 2019;
Boland et al., 2019). The computed variables are considered relevant,
and sometimes pivotal, to predict potential acute intra- or peri-
operative adverse events and longer-term effects of surgery. The
potential of these models as tools to support decision making is in the
possibility to define a set of parameters characterizing the envisioned
treatment (e.g., type of technique; type, size, and location of the devices
to be implanted and changes in patient conditions driven by drug ther-
apy) and to systematically quantify the effects of the corresponding
changes.

Owing to their potential, these patient-specific image-based com-
putational models are becoming ubiquitous in (i) industrial R&D,
where they are used to virtually test the effects of prototypal devices
and, consistently with the 3R principles, they are coupled with in vitro
testing to reduce the need for animal models; (ii) regulatory processes,
where not only the results of computational modeling of medical devi-
ces are considered crucial to their approval by agencies but also com-
putational modeling can embody the actual medical device (Software
as Medical Device—SAMD); and (iii) clinical practice, where compu-
tational models are used as SAMDs for the analysis of pathological
conditions, prognosis, and decision making.

PATIENT-SPECIFIC DIGITAL TWINS IN THE CLINICAL
ARENA

To be adopted in the clinical routine, patient-specific digital twins
must provide evidence of additional values as compared to standard
approaches.

On the one hand, they can provide objective forecast capabilities
and quantitative information, allowing for choosing among different
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surgical approaches, devices, or sizes. Possibly, they should be capable
of reducing the need for invasive planning procedures by identifying
those cases where the surgical approach is actually beneficial. This is
the case, for instance, of software to support the planning of transcath-
eter valve implantation by assessing the device post-implant deforma-
tion, as well as the risk for device migration, paravalvular leakage and,
in the case of the aortic valve, conduction abnormalities (Rocatello
et al., 2019).

On the other hand, they can provide information in a cheaper or
most effective way or a combination of the two. This is the case, for
instance, of computational fluid-dynamics models for the estimation
of the coronary Fractional Flow Reserve (FFR) in stenosed coronary
vessels. This approach has proved a valid alternative to coronary angi-
ography, showing a comparable sensitivity, i.e., capability to correctly
identify patients with coronary obstruction, and specificity, i.e., capa-
bility to correctly identify those without coronary obstruction but at a
significantly lower cost and without the risks associated with catheter-
ism (Min et al., 2015).

At the same time, to be effectively exploited in real clinical set-
tings, a patient-specific digital twin must be (i) easy to use, i.e., it must
not require end-users to master simulations; this may require the crea-
tion of an automated black-box system, where pre-operative medical

imaging is uploaded and the computational results are then presented,
through a completely automated processing system or by using an out-
sourcing service completing the model setup upon clinical data input;
(ii) fast, i.e., the time-expense to obtain results must be compatible
with clinical agendas; this can be obtained through state-of-the-art and
robust supercomputing platforms available on the supervised comput-
ing system in the cloud; and (iii) reliable, i.e., the simplifications in the
model must not lead the end-user to misjudge the simulated scenario.
At this purpose, since computational results can be driven by many
model parameters, these should be systematically changed within rea-
sonable ranges to exhaustively explore the parameter space and assess
the corresponding changes in model outputs, thus yielding results to
the end user with confidence intervals.

THE ISSUE OF ACCURACY AND UNCERTAINTIES

Patient specific modeling is still far from being standardized. The
most delicate issue related to patient specific models is their verifiability
and validation. Verification consists in evaluating whether the model
meets the requirements and specifications; it typically consists of the
careful check of the hypotheses underlying the model and of the equa-
tions and parameters chosen for the description of the phenomenon.

FIG. 1. Different types of patient-specific models and corresponding applications. Left panel: examples of medical imaging that can yield information on geometry and motion
of tissues and organs. From top to bottom: CMRI ¼ cardiac magnetic resonance imaging, CT-scan ¼ computed tomography, and 3D ultrasound ¼ three-dimensional echocar-
diography. Central panel: models based on the direct processing of clinical images to yield quantitative information. From top to bottom: space-resolved 3D blood velocity field
in the aorta and associated wall shear stress (WSS) as derived from 4D flow CMRI sequences; automated AI-based classification of landing zones for the endovascular stent-
ing of the thoracic aorta; and 3D strain field, complemented by the information on minimum principal strain directions, over the endocardial surface of a healthy and a post-
ischemic left ventricle. Right panel: models that simulate the physics of organs and tissues through numerical modeling, based on the information from medical imaging com-
plemented by extra measurements or hypotheses on the relevant aspects of the simulated system. From top to bottom: predictive simulation of the effects of endovascular
stenting in a coarcted descending aorta; multiscale simulation of the structural mechanics of the aortic valve, relating the mechanics observed at the organ length scale to the
mechanics observed at the tissue and cell length scales; and flow field within the left ventricle as computed through fluid–structure interaction modeling.
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Validation consists of the assessment of the capacity of the model to ful-
fill its intended purpose and to replicate the behavior of the real system.

The problem of accuracy is related mainly to the validation pro-
cess and to the model robustness to “perturbations,” i.e., the possibility
that model inputs are, to some extent, uncertain.

Each aspect of the modeling process is a potential source of
uncertainty. Even the initial, and apparently most basic, step, i.e., the
3D reconstruction of the relevant anatomies, is no exception. Despite
the use of cutting-edge imaging technology, some anatomical struc-
tures may be not clearly visible or not visible at all because of insuffi-
cient space-resolution or contrast of the images. For example, with
reference to cardiac biomechanics, valve leaflets are too thin for their
thickness distribution to be captured from CMR or CT images;
zoomed-in 3D ultrasound images can be used to this aim, but mea-
surements are very operator-dependent. The chordal apparatus of
atrioventricular valves cannot be reconstructed from in vivo clinical
imaging. In small vessels, the space-resolution of clinical images is
comparable to the lumen of the vessel and greater than the wall
thickness.

The patient-specificmechanical properties of solid tissues are typ-
ically unknown. Their displacement can be estimated from imaging, as
for the compliance of blood vessels. However, mechanical properties
also depend on further parameters that may not be measurable, as, for
vessel, wall thickness. The modeling of mechanical properties becomes
particularly prone to uncertainty when dealing with soft tissues, whose
stress–strain response is non-linear and in some cases anisotropic and
viscoelastic. In the absence of patient-specific data, this complex
response may be modeled based on data obtained from ex vivo
mechanical testing. However, these are often obtained from animal
models and, even when obtained from human tissue, are rarely specific
to, e.g., the age, gender, ethnicity, and pathophysiological condition of
the patient. The reliable modeling of tissue mechanical properties
becomes even more complicated when dealing with contractile tissue,
as for myocardium. Muscle contraction is dictated by the arrangement
of myofibers, which can be appreciated with diffusion tensor magnetic
resonance imaging (MRI) (Avazmohammadi et al., 2019), but only in
ex vivo studies or on animals, by the inotropic state of the heart as a
whole, and by regional contractility, which can be dramatically hetero-
geneous especially in the case of post-ischemic and dilated pathological
hearts. Similarly, the rheological properties of fluids (density and vis-
cosity) in fluid dynamics simulations are, in almost every work in the
literature, assumed regardless of the real situation of the patient.
Although in this case it is possible to take a blood sample and carry
out characterization tests and derive viscosity from the hematocrit
measurement, this is never done. It has been estimated that the error
made using data distributed within the physiological range can be of
the order of 10% (Morbiducci et al., 2011). Concerning blood, the
comprehension of the mechanisms underlying its susceptibility to
abnormal flow conditions is also crucial since abnormal flows deter-
mined by pathologic vessel morphologies or implanted devices can
trigger thromboembolic events, which are ultimately responsible for a
wide class of cardiovascular diseases (Kim et al., 2019; Slepian et al.,
2017). Finally, there is a problem related to the simulation of the adap-
tive response of tissues and organs to surgical or pharmacological
treatments: on the short and medium-terms, these may induce tissue
growth and changes in solid tissue mechanical properties or in fluid
tissue rheology. Such responses may be modeled mathematically, but

predicting their time-evolution, even for the average patient, requires
feeding the adaptation models with data gathered from longitudinal
studies on wide cohorts of patients.

The boundary conditions and the associated uncertainty are also
crucial. It is the case of patient-specific fluid dynamics simulations,
where the 3D inflow velocity profile can significantly impact the
domain flow field. However, clinical imaging has strong limitations in
this perspective. Echo-Doppler can measure peak velocities, but it is
strongly operator dependent and cannot provide information about
the 3D velocity profile. Phase contrast magnetic resonance imaging
(PC-MRI) in through-plane mode allows for the indirect measure-
ment of blood through-plane velocity component distribution, and in
3D mode, the in-plane components can also be assessed (Pirola et al.,
2018). However, the use of to impose boundary conditions to patient
specific models is not yet widespread, and PC-MRI data are hampered
by relatively poor space- and time-resolution as compared to compu-
tational settings and by noise. As a result, PC-MRI does not yield accu-
rate data on the small vessels; this limitation can affect also the
simulation of blood fluid dynamics in medium- and large-size vessels
with bifurcations (as in carotid arteries) or lateral branches (as for the
supra-aortic vessels stemming from the aortic arch). Correctly impos-
ing the flow rate repartition among outflow vessels is also pivotal, and
even small errors can determine unrealistic velocity flow fields, e.g.,
with artificially created vorticosity and pressure gradients immediately
upstream from the outlet sections (Morbiducci et al., 2010; Pirola
et al., 2017). The setting of percentage distribution between the various
outflow vessels, an option typically present in simulation codes, gener-
ates macroscopic errors. The use of one-dimensional lumped or 1D
models connected to the 3D domain is a valid alternative that pre-
serves the physics of the system but is sometimes complex to
implement.

FROM DIGITAL TWINS TO IN SILICO TRIALS

Uncertainty in the definition of the various aspects of patient-
specific models takes a different spin in the context of industrial R&D
and regulatory science, where models are used to understand the safety
and the effectiveness of a treatment/device not on a specific patient but
rather in a specific clinical scenario, i.e., on an entire class of patients
affected by a pathology of interest, whose intra- and inter-subject vari-
abilities have to be accounted for. As a result, the concept of “virtual
patient” has been introduced to indicate not only the anatomical and
physical modeling of organs but also a broader approach that can
combine patient-specific modeling as discussed earlier with statistical
techniques. In this way, key factors such as age, gender, and activity
level of the considered type of patients or tolerances in the design of
the device whose implant is being simulated are accounted for
(Morrison et al., 2018). This approach leads to predicting endpoints
relevant to safety and effectiveness, along with confidence intervals of
the results.

FUTURE PERSPECTIVE: CHALLENGES AND
OPPORTUNITIES

There are several challenges that must be tackled to move for-
ward to the next-generation patient-specific models. First, concerning
imaging, it is necessary to develop new algorithms for the estimation
of deformations starting from 4D images. This information can be
useful either for the model setting or for the model validation. There
are interesting techniques under investigation such as nearest neighbor
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search, optical flow, and spackle-tracking methods that can, once vali-
dated, directly produce information on the effective regional stiffness.
This information can be used to assign patient-specific mechanical
properties to tissues and to identify regions prone to rupture or with
altered mechanical properties. In this context, an interesting approach
recently proposed is elastography, a technique that allows us to know
the properties of materials starting from the application of a known
stimulus by observing its response through ultrasound or magnetic
resonance (Elgeti et al., 2014; Hollender et al., 2012).

PC-MRI and 4D flow can be used to properly set fluid dynamics
boundary conditions; velocity vectors can be acquired on specific
planes defined by the radiologist during PC-MRI acquisitions. 4D flow
could theoretically allow us to capture the entire fluid dynamics
domain (Markl et al., 2011; Piatti et al., 2017) and replace computa-
tional fluid dynamic simulations. As a matter of fact, however, its spa-
tiotemporal resolution is still inadequate, and it does not allow us to
evaluate the effect of any therapeutic action since it does not possess
any predictive capabilities. Also, 4D flow is affected by artifact due to
the presence of metal objects in the patient. Novel approaches combin-
ing simulations and 4D flow acquisitions need to be set up for valida-
tion purposes, for the fine tuning of the model, or to improve the
resolution of 4D flow.

There is a need for multiscale models to predict how changes at
the organ and tissue length-scale can affect the cell response and iden-
tify mechanotransduction pathways (Ayoub et al., 2020; Thomas et al.,
2019; Latorre and Humphrey, 2018). This approach can pave the way
to the understanding of tissue and organ remodeling mechanisms for
improved prognosis practice.

Artificial intelligence (AI) can play a key role in all these chal-
lenges. The use of convolutional neural network (CNN) for image seg-
mentation is gaining interest since it allows us to obtain rapid, precise,
and operator independent 3D imaging reconstruction. These
approaches are based on training of an artificial intelligence system
that learns to autonomously segment a specific anatomical domain
from a large number of pre-segmented images. In this field, U-Net,
first proposed in 2015 (Ronneberger et al., 2015) specifically for bio-
medical image segmentation, is rapidly establishing itself as the gold
standard thanks to its end-to-end settings and the need of relatively
small image training datasets. Fully automatic image segmentation can
pave the way for building deep learning-based frameworks for auto-
mating geometric and functional analysis, including ventricular func-
tion assessment (Ruijsink et al., 2020) and myocardial tissue
characterization (Puyol-Ant�on et al., 2020).

Prospectively, machine learning algorithms could be fed with
computational models to perform surrogate and real time simulations,
providing fast alternatives to structural finite element methods for
stress distribution assessment (Liang et al., 2018) and to hemodynamic
analysis (Liang et al., 2020). However, despite the promising potential
shown so far by AI-based algorithms and, in particular, by deep neural
networks, the great variability of geometry and boundary conditions
typical of biological systems, as well as the interplay between them,
leads to the “curse of dimensionality,” making data-driven models dif-
ficult, if not impossible, to train in high-dimensional feature spaces.

Eventually, another class of machine learning models that can
actually change the rules of the game are physics informed neural net-
works (PINNs). PINNs are supervised learning algorithms that embed
physics constraints into data-driven modeling, minimizing the

discrepancy between measurements and partial differential equation
solutions to perform data super-resolution or to infer the underlying
physics equations from data (Raissi et al., 2019). These models can be
trained on noisy and sparse clinical data of blood flow and arterial wall
displacement to obtain intravascular pressure and pulse wave velocity
from noninvasive 4D flowMRI measurements (Kissas et al., 2020).

In conclusion, after 20þ years from their conception, patient spe-
cific models can now really drive the pace in the biomedical arena,
providing evidence of efficacy of novel medical devices, making avail-
able huge in silico patient populations for medical trials, allowing for
real time simulation of different therapeutic scenarios thanks to a strict
symbiosis of sophisticated in vivo data and advanced in silico
technologies.
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