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Laser cutting of metals has become the reference manufacturing technology in sheet metal working thanks to the flex-
ibility and the increased productivity it offers when compared with other competitive technologies. Considering in
particular the fusion cutting mode, i.e., when nitrogen is used as assisting gas, different aspects contribute to the pro-
cess quality, among which dross attachment plays the most important role. To cope with the related time-dependent
deterioration of the process quality and to obtain an online adaptation of the process parameters for different working
conditions, a closed-loop dross regulation system is needed. To realize it, a reliable, continuous and accurate estimation
of the dross is mandatory. This work focuses on this challenging problem, presenting and comparing different ap-
proaches to estimate the dross attachment based on the process emission collected by a coaxial camera. Specifically, a
method which relies on the accurate analysis of the process emissions for determining an effective classification method
is compared with a deep-leaning approach based on Convolutional Neural Networks (CNNs). The obtained results, val-
idated in real experimental conditions, confirm the possibility to accurately estimate the presence of significant dross
attachment in real-time and opens the way to the design of a closed-loop control algorithm for the real-time regulation
of the dross attachment formation and consequently of the process quality.

Keywords: Laser Cutting, Process Monitoring, Camera
Monitoring, Dross Attachment, Real-Time Estimation, Real-
Time

I. INTRODUCTION AND BACKGROUND

For many applications and particularly for cutting metal
sheets and thin tubes, laser cutting has become the reference
technology thanks to its flexibility and the gain of productivity
it permits compared to other competitive technologies, such
as abrasive water jet cutting and electrical discharge machin-
ing. Furthermore, considering the laser-based manufacturing
processes, laser cutting has indeed a prevalent position, with
revenues that amount to approximately 41 % of the total laser
sources market1. Considering laser cutting of metals, two cut-
ting modes exist, depending on the assisting gas used: oxida-
tion cutting, i.e., when oxygen is used, and fusion cutting, i.e.,
when nitrogen is used2–4. Both oxidation and fusion cutting
modes are widely adopted in industrial applications5,6; how-
ever, fusion cutting is currently replacing oxidation cutting in
many cases thanks to the increasing laser power availability
and its advantages. Indeed, fusion cutting offers a high pro-
ductivity gain for low-thick materials, and it permits to cut
a wider range of metallic alloys, even if it yields increased
roughness, dross attachment and requires a higher laser power.
As a consequence, it is of utmost importarce to be able of as-
sessing the process quality of the fusion cutting mode. This

a)Electronic mail: matteo.pacher@blmgroup.it

work aims at doing it with an automatic, online process that al-
lows quantifying the dross attachment level starting from the
analysis of the process images, obtained with a high-quality
camera.
The quality of the laser cutting process is traditionally deter-
mined considering different quantities, namely, dross attach-
ment, kerf width, surface roughness, heat affected zone and
presence of burns on the cut edge2. However, these features
do not have equal relevance, and it has been found that dross
attachment is indeed the most influential output parameter,7,8.
Accordingly, this study focuses on dross attachment only and
proposes to estimate a continuous and quantitative measure-
ment of such quantity that is to be estimated online from pro-
cess observation.
Nowadays, the optimal process parameters are usually found
via empirical modeling. Thus, the optimal process parame-
ters are mostly constant and they are usually achieved in well
controlled and standard conditions. To cope with numerous
uncontrollable factors that affect real industrial environments,
e.g., different material properties, worn lenses and/or machine
parts, process parameter values are usually set in a precau-
tionary way. As a consequence, a trade-off between quality
and productivity arise, as conservative parameter choices are
safer but decrease productivity. Thus, a margin either in pro-
ductivity or in achievable quality exist, that could be exploited
for specific production needs. In this framework, the develop-
ment of an adaptive control logic that adapts the process pa-
rameters according to a specific quality requirement would in-
crease both reliability and productivity of the process by over-
coming the limitations of precautionary constraints. To this
end, the development of a real-time, continuous and accurate
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quality estimation system becomes the enabling and funda-
mental prerequisite.
In the literature, several contributions address the monitor-
ing of the laser cutting process with different techniques and
sensors, see e.g.9–18. Considering the fusion cutting mode,
a group from the University of the Applied Science of As-
chaffenburg guided by Adelmann presented some contribu-
tions to detect loss-of-cut conditions19–22 and to detect dross
attachment23 based on photodiode sensors. In the latter
contribution23, the authors show how dross attachment is cor-
related with the variation of the photodiode signal. However,
the level of dross produced in the experiments is unrealisti-
cally high.
The use of cameras has become, in the last two decades,
a viable alternative to photodiodes-based monitoring. Ini-
tially, the shape of the spark cone has been studied and cor-
related to different processing conditions24–27. This technique
proved effective for quality estimation; however, the required
setup is direction-dependent and does not permit industrial-
ization. To overcome this issue, coaxial setups were proposed.
Hafterkamp28 and Poprawe29 depicted the potentials of coax-
ial monitoring of the laser irradiated zone. Hafterkamp28 fo-
cused on the analysis of practical issues such as detection of
the misalignment between the nozzle and the laser beam, mea-
sure of the kerf width and detection of irregular power distri-
bution. Poprawe29 compared the results of coaxial camera
monitoring with process simulations showing the relationship
between process emission and cutting quality. The state-of-
the-art of coaxial camera-based monitoring is represented by
the contributions of Duflouet al.30,31. In these studies, differ-
ent quality features of the oxidation cutting mode were de-
tected from process emission images and a closed-loop algo-
rithm was developed for the automatic optimization of process
parameters in the oxidation cutting mode. The same research
group developed also a plasma-prevention control algorithm
based on the same hardware32. Considering the two sources of
information, coaxial camera monitoring has been selected for
use in the present work thanks to the availability of spatially
resolved information. In fact, photodiode-based monitoring
could be in principle used to detect extreme dross attachment
conditions, as in23, but it hardly could be used to continuously
estimate the amount of dross that is produced.
This work addresses the problem of online estimation of dross
attachment by meas of indirect methods based on the process
emission collected by a coaxial camera. More specifically, the
main goal is to produce an online continuous signal to be used
for control purposes in the field of fusion laser cutting. Pro-
cess emission images have been collected using a high-speed
camera filtered in the near infrared region; images have been
processed using two different approaches: a machine-learning
algorithm were the features of interest are derived from user
experience and a Convolutional Neural Network (CNN) al-
gorithm that autonomously maps images onto the estimated
dross attachment. A final comparison between the two ap-
proaches is presented considering both accuracy and compu-
tational performance.
The paper is organized as follows. Section II describes the
experimental setup and shows the different types of dross

Dichroic Mirror

Focusing Lens Coll. lens

Laser beam

Process emission

Camera lens

Band pass filter

Camera

FIG. 1: Implementation of the monitoring architecture on the
laser cutting head.

that have been obtained throughout the experiments. In Sec-
tion III, the dross attachment measuring procedure is ex-
plained as well as the variables that have been used in the
estimation algorithms. Section IV details the various step of
the machine-learning algorithm whereas Section V outlines
the structure of the CNN algorithm and the step to train and
test its performance. The comparison and discussion of the
two algorithms is given in Section VI.

II. EXPERIMENTAL SETUP

A industrial laser cutting machine has been used in the ex-
periments. It is endowed with a fiber laser source that can
deliver up to 6 kW of power and has a fiber core diame-
ter of dcore = 100µm. The machine mounts a standard cut-
ting head that has been customized for monitoring purposes
(see Fig. 1). The parameters of the optical chain are re-
ported in Table I. The monitoring architecture is composed
of a camera, with appropriate filters and mounted coaxial
to the laser beam. The selected camera sensor is an indus-
trial CMOS camera based on Si photodetectors with a sen-
sitivity between 350÷1000 nm. Sensor size and pixel size
are 1280 px×1024 px and 4.8 µm×4.8 µm, respectively; the

TABLE I: Parameters of the laser optical chain.

Laser wavelength, λ 1070 nm
Max. laser power, Pmax 6 kW
Beam quality factor, M2 11.7
Fiber core diameter, dcore 100 µm
Collimation lens, fc 100 mm
Processing lens, fp 200 mm
Nominal waist diameter, d0 200 µm
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camera permits to adjust the region of interest that influences
both the field of view and temporal resolution. The camera
lens and the number of pixels were selected to have a field of
view of 2 mm×2 mm and a spatial resolution of 9.6 µm/px.
Considering the performance of the camera, monochrome
images of size 210 px×210 px were acquired at 1500 fps;
further, based on the existing scientific literature and other
studies30,33,34, a near infrared wavelength range was selected
and a band pass filter centered at 750 nm was introduced in the
optical chain. The selected wavelength is lower than the val-
ues reported in relevant literature16,17,30; this choice was made
considering the limitations introduced by the optical elements
of the cutting head and the sensitivity region of the sensor.
Eventually, the developed solution permitted to enhance the
temporal resolution of two orders of magnitude with respect to
other studies26,29,30 and provided adequate information for the
purpose of the presented paper. A microcontroller was used to
acquire the process parameters (e.g.cutting speed, laser power,
etc.) at a sample rate of 10 kHz and for producing a TTL sig-
nal to be used as trigger for the image acquisition; this even-
tually permitted to perfectly synchronize images and process
inputs. To measure the dross attachment a microscope having
resolution equal to 5 µm and field of view of 23 mm×17 mm
has been used. The specific products used to build the experi-
mental setup are reported in Section A.

A. Description of the experiments

To study and monitor the dross attachment formation, dif-
ferent experiments have been carried out where the goal was
to produce a large quality variation in order to collect both
dross-free (good-quality) and high-dross (low-quality) cuts.
As can be found in the literature2,35,36, different types of dross
attachment can be obtained for different combinations of the
process parameters. Indeed, considering that the laser power
is generally fixed at the maximum installed power and that
the standoff distance and the nozzle size are kept constant, the
dross attachment is formed by varying the cutting speed, the
focal position and the gas pressure values2. In this framework,
it is known that dross attachment forms at low and high speed,
respectively, and that there exists a speed value defined as op-
timal at which the dross is minimized and/or not present35.
During the experiments, a standard squared geometry with
side length of 45 mm was selected and two materials, namely,
stainless steel X5CrNi18-10 and mild steel S235JR were cut
for thicknesses ranging from 3 to 10 mm. The laser power
was kept constant at 6 kW whereas cutting speed, gas pres-
sure and focal position were varied to obtain different levels
of dross attachment. The experiments were not designed in
standard factorial plans due to the strong correlation between
process parameters (e.g., cutting speed and focal position);
during the experiments, the process parameters were varied in
an unstructured manner, testing different material and thick-
ness combinations following the known laser cutting trends
for producing variable levels of dross. For reproducibility, the
range of variation of the process parameters is reported in Ta-
ble II; the standoff distance was set to 0.5 mm; some meaning-

ful examples showing the achieved variability are discussed in
what follows.

TABLE II: Ranges of variation of the process parameters.

Tn
1 P 2 v 3 p 4 f 5 dnozzle

6

[mm] [kW] [mmin−1] [bar] [mm] [mm]

3 6 6.0÷9.7 8÷12 −1.0÷−2.8 1.8
5 6 4.0÷6.5 12÷20 −2.3÷−4.3 2.3
8 6 2.0÷3.5 12÷25 −6.0÷−7.5 2.5

10 6 0.8÷1.4 16÷25 −8.5÷−9.0 3.0

1 Nominal plate thickness; 2 Laser Power; 3 Cutting speed;
4 Gas pressure; 5 Focal position; 6 Nozzle outer diameter;

Considering different processing conditions, a set of differ-
ent dross types were obtained. Fig. 2 shows the dross attach-
ment due to a variation of the cutting speed. It is observed
that dross due to low speed appears as a re-melted and ho-
mogeneous layer strongly attached to the material; further-
more, the re-melted region extends in vertical direction and
it is relatively wide. Its removal is hard and requires proper
post-processing steps. High-speed dross, on the other hand, is
characterized by isolated droplets that discontinuously are at-
tached at the bottom surface. The phenomenon is almost com-
pletely localized at the very bottom surface and the droplets
are usually not hard to remove.

In addition to cutting speed, focal position plays a relevant
role in determining the type of dross that is produced. In
Fig. 3, an example of different types of dross due to different
focal positions is depicted. One may observe that decreasing

1mm
(a) Low-speed dross
(v =3.2 mmin−1).

1mm
(b) Best quality
(v =7.0 mmin−1).

1mm
(c) High-speed dross
(v =9.7 mmin−1).

FIG. 2: Cut edges for different process conditions.
Low-speed dross (a) and high-speed dross (c) are shown

together with best quality cuts (b); other parameters:
X5CrNi18-10, Tn =3 mm, f =−2.8 mm, P =6 kW,

p =12 bar.
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1mm
(a) f =−2.3 mm.

1mm
(b) f =−4.3 mm.

FIG. 3: Dross types for high (a) and low(b) focal positions;
other parameters: X5CrNi18-10, Tn =5 mm, P =6 kW,

v =6.4 mmin−1, p =12 bar.

the focal position helps in reducing dross attachment, and that
the two kind of dross are completely different, making them
classifiable as low-speed and high-speed dross, respectively.
Finally, if the focal position is too large (e.g., > Tn/2), dross
formation cannot be avoided and it results in a hard and con-
tinuous layer as occurring for the low-speed dross.
To conclude the analysis, typical dross types for different ma-
terials are depicted in Fig. 4. It is observed that for mild steel
dross attachment appears continuous and smooth. For stain-
less steel, instead, dross attachment is generally discontinuous
and sharp. This can be explained considering the thermal con-
ductivity and oxidation properties of the two materials: mild
steel has a higher thermal conductivity compared to stainless
steel; typical reference values for thermal conductivity are:
40÷45 Wm−1 K−1 for mild steel and 14÷16 Wm−1 K−1 for
stainless steel. Accordingly, the molten material cools down
more quickly and likely keeps attached to the bottom surface.
Furthermore, due to oxidation, the droplets of molten material
are smooth and rounded for mild steel.

III. DROSS ATTACHMENT MEASUREMENT
PROCEDURE

A quantitative measurement of dross attachment is funda-
mental for the design of an online estimation algorithm, as
it allows both to train the model and to validate its perfor-
mance in the testing phase. In fact, when developing the ob-
server, there is the need to quantitatively map features ob-
tained from the monitoring chain to a variable representing
the true amount of dross produced. To construct this mea-

1mm

(a) Stainless steel.

1mm

(b) Mild steel.

FIG. 4: Dross attachment types for stainless steel (a) and
mild steel (b); other parameters: Tn =5 mm, v =6.2 mmin−1,

f =−4.0 mm, P =6 kW, p =12 bar.

surement, the whole specimen’s profile is considered for dross
measurements, to allow post processing and eventually aver-
aging of the local dross profile. Due to the reduced field of
view of the microscope, three pictures with partial overlap-
ping of each side are collected. Each specimen’s side profile
is then reconstructed through image stitching.

Once the pictures have been collected, the implemented im-
age analysis tool performs the following steps:

1. full side reconstruction through image stitching37;

2. extraction of the top surface boundary for misalignment
compensation;

3. extraction of left and right boundaries;

4. extraction of the bottom profile.

Steps between 2 and 4 rely on the same algorithm for
boundary detection via gradient analysis,38. The algorithm
flow is displayed in Fig. 5. According to the measurement
procedure, the thickness profile T (s) in Fig. 5 is expressed as
a function of the horizontal abscissa s in the spatial domain.
Let us consider a discrete-time abscissa k = i∆t, i∈N where k
is the discrete time abscissa and ∆t is the sampling period. The
displacement as a function of time: thus, the variable s(k) is
computed by integrating the feed rate, and the resulting vari-
able is then used to express the thickness profile in the time
domain, as

T (s) = T (s(k)) = T (k) . (1)

The thickness T is made of both the nominal thickness of the
sheet, Tn, and the dross attachment. As the nominal thickness
is known, the dross attachment profile, h(k), can be computed
as

h(k) = T (k)−Tn . (2)

Finally, to emphasize the dross droplets with respect to the
thickness baseline, the dross profile has been squared, yielding

h2(k) = (T (k)−Tn)
2 . (3)

image stitching

edge detection

FIG. 5: Steps of the image analysis algorithm used for dross
attachment measurements. s is the horizontal coordinate for
each side and T represents the thickness of the specimens

including dross attachment.
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A. Definition of the system output

Starting from the dross measurement, a dimensionless
quantity for online estimation is defined, which may eventu-
ally become the system output employed for future control
purposes. This quantity has the advantage to describe the
dross attachment in a more general way with respect to the
traditional measurement of the dross height. In fact, dross
attachment is not only characterized by the droplets height;
their rate of appearance is also important for the attribution
of quality. On the one hand, it has been found that small
droplets are usually tolerated by technicians and customers.
On the other hand, when the droplets are almost continuous
(see e.g. Fig. 2c), the perceived level of dross is significant
even if the height of the droplets is small. To capture both
aspects in the system output two steps are carried out:

1. investigation of the relationship between the squared
dross height h2(k) and the judgment of technicians
to determine a significant height value for which the
droplets are considered unacceptable;

2. definition of a variable to be estimated which is repre-
sentative of the cut quality, and it is able to capture the
rate of appearance of significant droplets together with
their overall height.

To set the significant dross height according to the judgment
of skilled technicians, 100 specimens of different materials
and with different thickness were analyzed. For each speci-
men, a binary indicator of dross (dross presence or not) was
obtained, and considering these judgments a threshold value,
h2

0, for the quantity h2(k) was determined. In Fig. 6, two ex-
amples of dross-free and mid-dross cuts are shown together
with the resulting threshold value. Once the threshold value
has been set, the quantity h2(k) can be transformed to a binary
signal indicating the appearance of significant droplets, i.e.,

h2
th(k) =

{
1 h2(k)> h2

0, k ≥ 0
0 otherwise

, (4)

where h2
0 = 0.03 mm2. The quantity h2

th(k) is dimensionless
and can be useful to train and test classification algorithms as
it will be addressed in Section V. However, this quantity is
not continuous and therefore, it will not permit a continuous
regulation of the dross amount to a desired value. The system
output is finally defined as the moving average of h2

th(k) and
computed as

y(k) =
1

τ +1

τ

∑
j=0

h2
th(k− j) , (5)

where τ is the size of the look-back window. The signal y(k)
is the bounded within the interval [0, 1]. It indicates how
frequent is the appearance of significant dross droplets (i.e.,
above the threshold h2

0) within a time interval of τ∆t. As a re-
sult, this quantity puts together the dynamic behavior of dross
attachment with its significance in terms of magnitude. This
signal, y(k), constitutes the final quantitative measure of dross
attachment that is estimated by the two algorithms and used
to evaluate their performance.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.00
0.05
0.10
0.15
0.20

t [s]

h2
[m

m
2 ]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.00
0.05
0.10
0.15
0.20

t [s]

h2
[m

m
2 ]

FIG. 6: Comparison between a dross-free cut and a mid-dross
cut. The baseline for droplets significance is also shown.

IV. DROSS ATTACHMENT ESTIMATION BY MEANS OF
A MACHINE LEARNING ALGORITHM

The aim of this section is to design an online estimate, ŷ(k),
of the previously defined system output, y(k), based on the
process emission recorded by the coaxial camera. The esti-
mation procedure proposed in this section is based on several
steps. Before going into the details, a brief schematic descrip-
tion of the complete algorithm is given, and the processing
chain is depicted in Fig. 7.

The processing chain is composed of two main blocks,
namely the featuring and mapping blocks. The featuring
block takes the raw signal as input, i.e., images of process
emission, and aims at synthesizing its information in a lim-
ited number of descriptors, called features. In the proposed
procedure, three steps of featuring are accomplished: image
analysis, processing of geometrical features in the time do-
main and representation of their dispersion from a statistical
point of view.
The mapping block takes the features as input and tries to map
them onto the output variable. In other words, the mapping
block aims at fitting a model between features and output. In
the proposed algorithm, a neural network model is used.

A. Image analysis of process emission images

The estimation procedure starts with the extraction of syn-
thetic features of the laser irradiated zone from process im-
ages. An image is represented by a matrix Ξ ∈ NM×N , with
M, N ∈ N being the number of rows and columns, respec-
tively. The matrix values, usually called gray values or gray
levels, are bounded in the interval gm,n ∈ [0, 2nbit − 1] where
nbit is the number of bits of the analog to digital conversion
performed by the camera sensor and m ∈ [0,M], n ∈ [0,N] are
the matrix indexes. The algorithm is based on hard thresh-
olding: image Ξ is binarized according to a static threshold
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process emission images
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FIG. 7: Scheme of the Machine Learning estimation algorithm. The information contained in process emission images is
manipulated in multiple processing steps.

as

ǧm,n =

{
1 gm,n ≥C
0 otherwise

, (6)

where ǧm,n is a pixel value of the binary image resulting from
the operation and C is the value of the threshold. The resulting
binary image, Ξ̌, has the same size of Ξ and is characterized
by a set B ⊂ Ξ̌ | ǧm,n = 1 called blob of white points repre-
sentative of points in Ξ having values higher than C. This
thresholding operation has a physical meaning. Considering a
body emitting electromagnetic radiation, the value of C, i.e., a
selected emission intensity, is related to the temperature TC at
which the body is emitting. Thus, the selection of the value of
C and the thresholding operation permit to focus the attention
to the phenomena that occurs at a (indirectly) selected tem-
perature TC. This eventually leads to the partial exploitation
of the process emission images that can give further informa-
tion considering other values of emission. The value of C was
set iteratively to emphasize the phenomena that are close to
the melting temperature of steels. Since the two studied ma-
terials have a similar melting temperature, the value of C has
been maintained equal to 30 for both materials. According to
the cutting direction, the following geometrical information
are defined:

1. blob centroid, c, i.e., the center of mass of the blob;

2. blob width, w, i.e., the maximum dimension of the blob
perpendicular to the cutting direction;

3. blob length, l, i.e., the maximum dimension of the blob
parallel to the cutting direction extending from the cen-
troid to the blob tail.

These quantities are calculated together with the image inten-
sity, I, of Ξ and constitute the elementary features by which
a image is represented. These features were selected by visu-
ally inspecting the image shapes variations for different dross
attachment conditions. High-dross cuts are usually character-
ized by an elongated blob shape and by a greater variation in
its length. Conversely, dross-free cuts are characterized by a
stable and usually smaller blob shape. The details of the al-
gorithm are now briefly explained. At first, image intensity is
calculated as

I =
M

∑
m=1

N

∑
n=1

gm,n . (7)

The blob centroid is then computed as

c =

cx =
1

Nw
∑

M
m=1 mǧm,n

cy =
1

Nw
∑

N
n=1 nǧm,n

 , (8)

where Nw is the total number of white points in the blob, given
by

Nw =
M

∑
m=1

N

∑
n=1

ǧm,n . (9)

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.23

51
/7.

00
00

14
5



7

(a) Process emission
image.

(b) Binarized image.

w

l

c
v

(c) Extracted geo-
metrical features.

FIG. 8: Application of the image analysis algorithm for the
extraction of geometrical features from process emission
images (a); the steps of binarization (b) and the obtained

features (c) are shown. The cutting direction is rotated by 45◦

due to the relative orientation between the image and the axis
reference frames.

For the calculation of w and l, the lines passing through c per-
pendicular and parallel to the cutting direction are considered.
The cutting direction is derived from the cutting speed in x
and y direction and transferred to the image reference frame
through a rigid rotation (Usually, in the considered cutting
application, there is a fixed and constant angle of misalign-
ment between the machine reference frame and the camera
reference frame). As is well known, the distance of the point
p0 = (x0,y0) from a line r = {(x,y) | ax+by+c = 0} is equal
to

d =
|ax0 +by0 + c|√

a2 +b2
. (10)

If the absolute value is removed from the latter equation, the
distance becomes positive for points above the line and nega-
tive for points below. This modification is useful in our case
for calculating the width as the difference between the part
of the blob that lies above and below the line. Indicating as
(p− r) the line to point distance with sign, the blob width is
calculated as

w = max
p

(p− r‖)︸ ︷︷ ︸
w+

−min
p

(p− r‖)︸ ︷︷ ︸
w−

, (11)

where p = (m, n) is the generic coordinate of ǧm,n ∈ B and
r‖ indicates the line parallel to the cutting direction passing
through c.
The same applies for the calculation of the blob tails length,
i.e., the distance between the blob centroid and the maximum
blob tail extension. The positive and negative distances be-
tween the line perpendicular to v passing through c and each
point of the blob are considered and one of them is selected
according to the cutting direction, yielding

l =

{
l+ = maxp (p− r⊥) vy > 0 ,
l− =−minp (p− r⊥) otherwise .

, (12)

where vy is the y-component of the cutting speed v. Notice
that the condition in (12) depends by the experimental setup

and the fixed orientation between the camera and the x, y cut-
ting directions.
To improve accuracy, the centroid position is averaged with a
moving average among 20 frames. This is to avoid that espe-
cially variations in blob length are damped by a change in the
centroid position and therefore not captured. An example of
the application of the algorithm is given in Fig. 8. The com-
putational time for processing one image with compiled code
is approximately 0.2 ms. As a result, real-time image analy-
sis is feasible being the target image acquisition rate equal to
1500 fps corresponding to a sampling period of approximately
0.67 ms.

B. Signal processing in the time domain

The extraction of the geometrical information for a com-
plete cut yields time signals that can be analyzed and com-
bined to obtain other features. The image characteristic sig-
nals which reveal the form factor of the blob that are interest-
ing for dross attachment estimation are three, namely, w(k),
l(k) and I(k), respectively. To start, only quasi-steady-state
phenomena are considered, i.e., the portions of the cut geom-
etry having constant process parameters. The transients due
to the path corners are neglected as shown in Fig. 9. The final
target is therefore to link quasi-steady-state dross attachment
formation with features in the same quasi-steady-state loca-
tions.

From the three elementary features, the ratio between
length and width of the blob, l/w, being the shape factor of
the blob and its variation in the form of the moving standard
deviation, stdτ

( l
w

)
, are computed. Indeed, the dimensionless

shape factor, l/w, and its variation are considered more gen-
eral and invariant parameters for the description of the blob
shape with respect to the single dimensions. The moving stan-

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0

10

20

30

40

50

60

70

piercing quasi-steady-state sides

corners

t [s]

w
[p

x]

FIG. 9: Example of a time signal of width where different
process phases are highlighted. The steady-state part only is

considered for quality estimation.
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dard deviation, stdτ (x(k)), is calculated as

stdτ (x(k)) =

√
∑

k
n=k−τ+1(x(n)− x̄)2

τ−1
, (13)

where x(k) was substituted by l(k)/w(k) during the data pro-
cessing. Finally, the time derivatives of the three elementary
signals are also considered as possible features. The time
derivatives have been computed as

dx
dt

(k) =
x(k)− x(k−1)

∆t
k ≥ 1 , (14)

where x(k) was substituted by l(k), w(k), I(k) and l(k)/w(k)
during the data processing.

C. Statistical representation of time-based features

Instead of looking at point-to-point correlation between
features and dross attachment, a stochastic characterization of
the features themselves is proposed. Let us notice that in gen-
eral time signals considered over a time interval, τ , may be
described as a sample distribution. These distributions are not
easily described by conventional parametric ones; as a conse-
quence, they are more compactly represented by their mean
value and their second and third central moments. The def-
inition of the q-th central moment for a real valued random
variable X is as

µq = E [(X−E [X ])q] =
∫ +∞

−∞

(x−µ(x))q f (x)dx , (15)

where E indicates the expectation operator, f (x) is the prob-
ability density function of X and µ(x) is its the mean value.
The first two moments, i.e., for q = [0,1] are equal to 1 and
0, respectively. The second central moment is usually called
variance and denoted by σ2(x); finally the third central mo-
ment is used to define the skewness of a distribution, i.e., a
measure of its symmetry and denoted by sk(x).

As a result, the total number of features candidate to be
mapped onto process output is 27, i.e., 3× 9: 3 statistical in-
dicators times the 9 features composed by the image analysis
features, the two combinations and the four derivatives:

µ(x), σ2(x), sk(x),
x = {w, l, I, l/w,stdτ(l/w),dl,dw,dI,d(l/w)} , (16)

where dl,dw,dI,d(l/w) denotes the time derivatives
dl/dt,dw/dt,dI/dt,d(l/w)/dt.

D. Feature mapping

The goal of this section is the definition of a model between
a limited number of features (modeled with their sample dis-
tribution) and the system output, y. In this study, an Artifi-
cial Neural Network (ANN) is used as mapping tool and this
choice is made based on the following rationale. ANNs do

500 µm 500 µm

P v p f
6 kW 8.0 mmin−1 12 bar −2.8 mm

(a) Tn =3 mm.

P v p f
6 kW 5.5 mmin−1 16 bar −4.8 mm

(b) Tn =5 mm.

500 µm 500 µm

P v p f
6 kW 3.2 mmin−1 20 bar −7.2 mm

(c) Tn =8 mm.

P v p f
6 kW 1.6 mmin−1 22 bar −9.0 mm

(d) Tn =10 mm.

FIG. 10: Examples of process emission images of
X5CrNi18-10 for (a) 3 mm, (b) 5 mm, (c) 8 mm and (d)

10 mm material thicknesses. The monitoring parameters are
the same for all images and a transformation in pseudo colors

is applied to facilitate the visualization; the color scale
indicates the image intensity.

not require the formulation of a parametric model; complex-
ity can be controlled by limiting the number of neurons and
layers of the net to avoid over fitting. During the mapping
phase, a model for each material thickness was developed. In-
deed, relatively big differences are observed when comparing
process emission images of different material thickness as re-
ported in Fig. 10; this eventually leads to low accuracy and
makes the use of a “global" model not satisfactory. To pro-
duce different models according to the plate thicknesses, the
data acquired during the experiments were divided in subsets
of approximately 20 specimens per set. These subsets con-
tained a balanced number of different dross attachment condi-
tions to correctly train the ANN-based model. It is therefore
emphasized that the development of different models does not
increase the required number of experiments and does not add
significant complexity. This is due to the fact that the com-
plexity of each model is the same and what changes is the
value of the coefficients only. To express the prediction model
in real-time conditions, a time window of size τ is used to
evaluate the statistical representation of features over a sliding
window. Note that, in a real-time estimation, the window-size
has two main effects:

1. during the initial part of the cut the estimation needs to
reach its steady-state before being accurate;

2. after convergence, the estimation is performed evaluat-
ing the data over a backward sliding window. The low-
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2 3 4 5 6

0.75

0.80

0.85

0.90

number of neurons [-]
R

2
[-

] training data
test data

FIG. 11: R2 parameter as a function of the number of
neurons.

pass properties of the moving average filter introduce
some filtering effect on the system dynamics of the cut-
ting process.

As a consequence, the lower τ , the prompter the activation of
the control system, and the more reduced the filtering effects
introduced in the prediction dynamics. A shallow neural
network structure, having a single hidden layer was initially
selected. Starting from the 27 candidates, the number of in-
puts of the NN, the number of neurons of the hidden layer
and the window τ where selected iteratively by performing
sensitivity analyses. The results of the sensitivity analysis are
reported in Fig. 11 and Fig. 12, respectively. It is shown that
the model accuracy does not increase significantly for a num-
ber of neurons higher than 5 and for a time window larger
than 150 ms. The two parameters were thus set accordingly to
these two values, respectively. The number of input features
was reduced to only 3 evaluating iteratively the most informa-
tive features’ set and the final accuracy of the model that does
not significantly increase for a larger number of features. As
a results, the triplet composed of the mean values of blob tails
length, µ(l), blob width, µ(w), and image intensity, µ(I), was
selected as the most informative. During these analysis steps,
20 specimens of 3 mm and 20 specimens of 5 mm were used
separately. Thanks to the high time resolution of the cam-
era, the two models rely on approximately 25000 and 35000
data points for 3 mm and 5 mm, respectively. Finally, during

0 50 100 150 200 250 300
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

τ [ms]

M
od

el
er

ro
r[

-]

FIG. 12: Model error as a function of the window τ .

the training phase of the Machine Learning algorithm (ML) in
Section IV, the dataset was split in the three sets for training,
validation and test with percentages 80 %, 10 % and 10 %, re-
spectively.

V. DROSS ATTACHMENT ESTIMATION BY MEANS OF
CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks, CNNs, are usually em-
ployed in classification problems, i.e., problems where the tar-
get is to classify the data in some classes according to specific
features. In our context, we define the classes as yes− dross
and no−dross according to the binary quantity h2

th(k) defined
in (4). To compare the results obtained with CNN and ML
algorithms, the continuous system output ŷCNN is calculated
as

ŷCNN(k) =
1

τ +1

τ

∑
n=0

ĥ2
th(k−n) , (17)

where ĥ2
th is the estimate of h2

th(k) obtained as output of the
CNN model.

A. CNN Fundamentals

CNNs are a type of Artificial Neural Networks (ANN). The
CNN can automatically learn a hierarchy of features from the
input image matrices, which prove to be better than those
hand-crafted features extracted by carefully designed complex
algorithms39. CNNs automatically assign importance to var-
ious aspects and objects in the images. By discovering and
differentiating those aspects and objects, CNNs can learn fil-
ters to isolate a specific characteristic inside images. A typical
CNN architecture consists of several nested convolutional and
pooling layers followed by fully connected layers at the end.
A compact presentation of this kind of network [Input - Conv
- ReLU - Pool - FC] consists of the following five layers:

• Input: the inputs of the CNN are 210 × 210 pixel 1-
channel grayscale images, containing the intensity val-
ues of each pixel.

• Conv: the convolutional layers apply over the whole
input image a set of learned filters of small size (like 3
× 3 or 5 × 5), updated during training, each of which
is connected to only a small region of the output. The
convolution operation is applied over the whole input
image, performing a matrix multiplication between the
filter and the portion of the image over which the kernel
is hovering. Some numerical parameters such as the
number of filters, the size and the architecture of the
whole network need to be specified.

• ReLU: ReLU (Rectified Linear Units) is the activation
function used to adding non-linear transformations to
the output of the convolutional or fully connected lay-
ers. The function is f (x) = max(0,x) and it replaces
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FIG. 13: Schematic architecture of the custom CNN.

all negative pixel values with a zero. Convolution is a
linear operation since it applies an element-wise matrix
multiplication and additions. Introducing non-linearity
in the CNN accounts for most of the real-world data,
that contain non-linearity, otherwise unrecognizable by
the convolution operation itself.

• Pool: the pooling layer performs a form of non-linear
down-sampling along both spatial dimensions, leading
to reduced spatial size of the convolved features. It aims
to reduce the amount of the network parameters and the
computational cost, keeping the most important infor-
mation inside the convolved features. Extracting dom-
inant features results in convolved features which are
rotational and positional invariant. Simple ANN have
little invariance to shifting, scaling, and other forms
of distortion because they process images directly with
pixel values as inputs. Pooling layers allow CNN to be
almost completely invariant to forms of distortion.

• FC: All the neurons in the fully connected layers are
connected to all the units of the last layer. And the last
fully connected layer generates the output of the whole
network.

These layers are stacked together to form a CNN, the input
is fed forward into the network, and the hyperparameters are
updated by the back propagation algorithm.

B. Structure of the CNN for dross attachment estimation

As shown in Fig. 13, the custom CNN structure used
consists of 24 layers. To summarize, the architecture
can be described as: input layer, C(32,3,3), S(2,2,2),
C(32,3,3), C(64,3,3), S(2,2,2), C(128,3,3), C(128,3,3),
S(2,2,2), FC(1024), FC(1024), FC(2), softmax layer. C(n, 3,
3) represents a convolutional layer with n filters of kernel size
3×3, S(2, 2, 2) represents a pooling layer with a sub-sampling
factor of 2×2 by stride 2 in both dimensions, FC(n) represents
a fully-connected layer with n neurons. The pooling strategy
adopted in all the pooling layers is max-pooling, which is ro-
bust to distortions. After all the convolutional layers, a ReLU
layer is applied. The last fully-connected layer generates the
output, composed by 2 numbers, corresponding to the classes
adopted (dross present or not), meaning the estimation of each

image’s class membership probability. Softmax layer is used
to select the class with higher probability.

Images shows the real-time emission of the laser irradiated
zone, as described in Section II. Since images are captured
from a fusion-cutting process of stainless steel (X5CrNi18-
10) and mild steel with different thickness (3, 5, 8 and 10 mil-
limetres), we want to achieve a general purpose recognition
of dross: the CNN is trained to recognize defected images for
specimen of both materials and the different thicknesses. As
can be seen in Fig. 10, different cuts generate different blobs
in the images because different thickness produces different
cutting process. Our CNN is trained to recognize defect in
different kind of cutting processes, as our goal is to achieve a
general purpose dross recognition.

C. CNN Training and Testing

During training, the whole dataset is divided in three differ-
ent subsets:

• training set, used during training to update weights and
biases of CNN;

• validation set, used for validating updates during train-
ing;

• test set, used for testing accuracy results with CNN after
the whole training procedure is finished.

In our experiments, we randomly choose 70% of the data as
the training set, 20% of the data as the validation set and the
rest 10% as the test set. Due to the high complexity of the
model if compared to the one in Section IV D, the full dataset
comprehensive of all material thicknesses was used. In fact,
the number of numerical parameters to be set during the train-
ing phase is much higher and the model requires more data
to achieve a good accuracy. As mentioned, the output of the
trained CNN is the binary estimate ĥ2

th(k) of h2
th(k). First

training sessions showed that image and dross profile h2(k)
frequencies were decoupled; the final accuracy results were
always around the "random guess" percentage. This means
that CNN could not learn from original images as-is proba-
bly because of a too demanding requirement of point-to-point
correlation. Analyzing the spectrum of h2(k), we discovered
that the maximum informative frequency was equal to 150 Hz.
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For this reason, we introduced a pre-processing averaging op-
eration creating a second dataset where 10 subsequent images
are averaged pixel-by-pixel. This second averaged dataset has
a reduced frequency of approximately 150 Hz as the dross at-
tachment signal. As a result, a deep knowledge of the laser-
cutting process is required to correctly train the CNN.

D. Training Results and Misclassification Issues

Training results on the averaged dataset show a final accu-
racy of 93% over the validation set and a final accuracy of
92% over the test set. This means there is no observation of
over-fitting in the training process. A misclassification of 7-
8% is acceptable in this application field because our CNN is
trained to recognize defect in a relatively wide process win-
dow. Images of different materials and thicknesses are quite
different, so the CNN has to learn a wide set of features to
classify them correctly. On the other hand, we decided to un-
derstand and investigate why there is such misclassification.
In particular, we aimed to understand if there exists particular
conditions of material and/or thicknesses related to misclas-
sification. It turns out that there was an even distribution of
misclassifications over thickness and materials, meaning that
characteristics of specimen do not influence training results
and misclassification.

Overall, the performances are satisfying. More precisely,
dross attachment estimation is perfectly accurate in dross-free
cuts and in cuts with very high-dross cuts, that means the
error on defects estimation is approximately zero. An accu-
rate analysis of cuts with intermediate-dross values shows that
high-frequency changes in h2(k) lead to a wrong classification
with the CNN. In particular, when h2(k) is around the cho-
sen threshold and switches frequently above and below it, the
CNN-based classification contains a non negligible number of
false positives.

VI. ESTIMATION RESULTS AND ALGORITHMS
COMPARISONS

The results of the two estimation approaches are now shown
and compared. Two models ML models for 3 mm and 5 mm
that rely on approximately 25000 and 35000 data points, re-
spectively are compared to the results of the CNN model for
the same cuts. We selected these two thickness values among
others because they represents the most challenging exam-
ples that have been investigated. In fact, these reported ex-
amples are close to the industrial field reporting reasonable
and low dross attachment levels, thus making the estimation
more challenging. Fig. 14-16 show the estimation results for
3 mm specimens. The images shows the two estimates ŷML
and ŷCNN of the two algorithms explained in Section IV and
Section V, respectively. The estimation errors are computed
as

ei = |y− ŷi| i = {ML,CNN} . (18)
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FIG. 14: System output prediction for a dross-free cut of
stainless steel X5CrNi18-10 of 3 mm (P =6 kW,

f =−2.8 mm, v =7 mmin−1, p =12 bar).

One may note that for dross-free cuts the two algorithms
yields similar performance. For intermediate and high
dross attachment conditions, the estimation error of both
models slightly increases but still remains really low. Further-
more, the ML algorithm slightly outperforms the CNN model.

Fig. 17-19 show the estimation results for 5 mm specimens.
Both models yields good performance and the model error is
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FIG. 15: System output prediction for a intermediate-dross
cut of stainless steel X5CrNi18-10 of 3 mm (P =6 kW,

f =−2.8 mm, v =8.5 mmin−1, p =12 bar).
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FIG. 16: System output prediction for a high-dross cut of
stainless steel X5CrNi18-10 of 3 mm (P =6 kW,

f =−2.8 mm, v =9.7 mmin−1, p =12 bar).

almost always lower than 0.1. In this case, the CNN model
performs slightly better than the ML model especially for
dross-free and high-dross cuts. For both models, it is observed
that what generally is addressed as a stationary level of dross
is described by significant fluctuations in the y signal (e.g.,
Fig. 15, Fig. 18). In other words, the resolution of the pro-
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FIG. 17: System output prediction for a dross-free cut of
stainless steel X5CrNi18-10 of 5 mm (P =6 kW,

f =−4.3 mm, v =6.1 mmin−1, p =16 bar).
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FIG. 18: System output prediction for a low-dross cut of
stainless steel X5CrNi18-10 of 5 mm (P =6 kW,

f =−4.3 mm, v =6.5 mmin−1, p =12 bar).

posed approach is higher than the requested level of accuracy.
On the one side, this gives the possibility to finely adjust pro-
cess parameters to reach the desired quality. On the other side,
these fluctuations might be traced by a closed-loop controller
leading to an unnecessary fast parameters change. This be-
havior will need to be considered when tuning and defining
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FIG. 19: System output prediction for a high-dross cut of
stainless steel X5CrNi18-10 of 5 mm (P =6 kW,

f =−3.3 mm, v =6 mmin−1, p =8 bar).
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the controller structure.
Finally, the two algorithms are compared in terms of com-

putational cost in Table III. The big difference between the
two computational times is mainly due to the low computa-
tional cost of the image analysis algorithm in Section IV A
that requires a loop on all element of the image only. In the
CNN algorithm instead, the relatively high number of convo-
lutional layers increases significantly the required computa-
tional effort. Considering the high acquisition rate of 1500 fps,
the CNN algorithm would not permit a real-time application.
The ML algorithm is in this concern more promising even if
the margin of approximately 0.35 ms may not be sufficient for
a reliable image acquisition and transfer from the camera to
the PC. Future works will deeply address this issue.

TABLE III: Average computational times for the two
algorithms.

Algorithm Computational time

ML 0.31 ms
CNN 8.43 ms

VII. CONCLUDING REMARKS

In this study, two algorithms for the real-time, continuous
estimation of the dross attachment produced during the laser
fusion cutting process have been presented. Both algorithms
are based on the information collected by a coaxial camera,
and their performance are assessed based on a reference dross
signal measurement appropriately defined and computed. The
process emission images are analyzed differently in the two
algorithms: in the ML algorithm, geometrical features are ex-
tracted from images and processed to obtain their probabilistic
representation, finally mapped with a shallow neural network
onto the system output. In the CNN algorithm, instead, a di-
rect mapping from images to the system output is performed
and the featuring phase is delegated to the convolutional lay-
ers of the CNN. Experimental results prove that both algo-
rithms can be used to accurately estimate the system output
and therefore the amount of dross attachment of real cuts.
The ML algorithm is deemed more promising for real-time
applications thanks to its extremely low computational time.
Current work is being focused on the development of a closed-
loop control algorithm to adapt process parameters to obtain a
continuous regulation of the dross attachment according to a
desired value. Some aspects contained in the presented paper
are currently part of a pending patent application.
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Appendix A: Components of the experimental setup

The utilized laser cutting machine is a LC5 (Adige-SYS
S.p.A. BLMGROUP, Levico Terme, Italy) endowed with a
YLS-6000-CUT fiber laser source (IPG Photonics Coorp.,
Oxford, Massachussets) and a HPSSL cutting head (Precitec
GmbH & Co., Gaggenau, Germany). The selected camera
is a MQ013MG-ON (Ximea GmbH, Muenster, Germany) fil-
tered with a 750FS00-25 (Andover Corporation, Salem, New
Hampshire). The microcontroller is a STM32F746ZG (STMi-
croelectronics, Geneve, Swiss). Finally, the code for image
processing was implemented in MATLAB and run on a Dell
XPS 15" equipped with a Intel i7 (Gen 7) processor.
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(a) f =−2.3 mm.
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(b) f =−4.3 mm.
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