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Abstract.
In this work we provide a spectral formalization of non-interference in the presence
of glitches. Our goal is to present new theoretical and practical tools to reason about
robust-d-probing security. We show that the current understanding of extended
probes lends itself to probes that participate, during gadget composition, to the
creation of additional extended probes. In turn, this enables a natural extension of
non-interference definitions into robust ones to build a new reasoning framework that
can formally explain some semi-formal results already appeared in the past and be
used to synthesize new robust-d-SNI gadgets.
Keywords: Robust probing security and robust strong non-interference for hardware
gadgets - Boolean functions · Random variables · Correlation-immunity · Spectral
characterization · Walsh transform

1 Introduction
This paper deals with the problem of protecting a hardware and software implementation
against side channel attacks. Conventional countermeasures are widely based on masking
[ISW03] but creating a masked implementation is not trivial at all, especially considering
advanced adversary models such as probing adversaries or, more recently, glitch-extended
probing adversaries [MBR19]. The most studied case is the one of the multiplication in
Fn2 , which, over the years, has been proven extremely tricky to be protected against newer
attack models, let alone higher order ones. For this reason, the subject has never ceased
to stimulate research since its inception [ISW03].

One of the main problems addressed is composability, i.e., determining, given two
d-probing secure gadgets1, if their functional composition is still d-probing secure. It has
been proved that this depends on the amount of refreshing2 that is used [CPRR14] but
more is true; there are inner gadget properties, related to the concept of non-interference
[BBD+16], which can be used to determine whether their composition is d-probing secure.
One of them is strong non interference (d-SNI)[BBD+16] which requires that the number of
input shares derivable from a certain set of probes depends only on the number of internal

1These are secure in the sense that given d probes, it is impossible to derive information about the
secret values encoded in the masks/shares.

2The term refresh indicates a procedure that aims to bring back the secret’s shares into a uniformly
random state, after a series of operations that might have invalidated uniformity.
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positions present in that set (whenever that set’s size is less or equal to d). Demonstrating
that a gadget is in the first place d-SNI might require lengthy ratiocination or automatic
tools [BBD+16, BGI+18, BGR18], but once it has been done, composition can be studied
with much simpler reasoning. This is however easier said than done as, even recently, some
gadgets that were thought to be d-probing secure have been shown to be vulnerable to
higher orders [MMSS19].

Trying to protect the gadget also from circuit glitches puts the problem to a whole new
level. The main tool used to protect against glitches is the threshold implementation (TI)
[NRS11]. A threshold implementation aims at ensuring that the logic cones3 of a primitive
do not depend on all the shares. Besides the overall correctness constraints, TI essentially
boils down to ensuring that, i) if a gadget’s input is fed with shares (computed from the
secret) whose distribution is uniform, its outputs must be uniform as well and ii) each
output share must be computed with a subset of the input shares.

The current trend tries to define a conceptual groundwork above which d-probing
security and glitches are considered as a single challenge instead of different, seemingly
orthogonal problems. The major conceptual evolution with respect to the original d-probing
security model, is the robust probing model [FGP+17, MBR19]. In this attack model,
glitches are seen as extended probes that can be used by an attacker to observe the input
values of a given cone of logic. With this model, one can prove that some gadgets (e.g.,
multiplication) are not only d-probing secure in the conventional sense but can be made
robust-d-SNI by adding a register layer at the outputs (see for example [MBR19]). More
recently, stricter conditions on a gadget have been traced, to ensure composability in
presence of glitches (t-PINI condition) [CS20, CGLS20].

Chronologically, the original efforts considered a hybrid of the Ishai-Sahai-Wagner (ISW)
scheme [ISW03] with TI, culminating in the Consolidated Masking Scheme [RBN+15]
(CMS for short). While the results were important in terms of decrease of randomness
needed (in CMS with d+ 1 shares, one needs (d+ 1)2 refresh values) it was shown recently
that this cannot be extended past d > 2 (without even considering robust d-probing
security [MMSS19]). Later proposals for a d-probing secure multiplication addressed a
reduction in terms of refresh values [GMK17, GM18] (with a lower bound identified in
[BBP+16]) but, after the considerations made in [MMSS19], it is not clear how much past
d > 1 these can be made robust-d-probing secure, let alone robust-d-SNI without an output
register4.

1.1 Our contribution
This work revisits d-probing security fundamentals by providing a spectral formalization
of non-interference that encompasses recently introduced advancements such as robust
d-probing security [MBR19, MMSS19]. The overarching goal is to give an alternative yet
comprehensive view of the problem which might be more amenable to proof mechanization,
in the same vein as [BGI+18, MMSS19]. We thus take a detour from conventional
information theoretical considerations (see, for example, [MBR19]) for a more algebraic
approach which exploits the characterization of the spectrum of vector Boolean functions
and its connections with correlation immunity [XM88, ZMB18]. Our approach aims to be
more foundational than other approaches based on spectral characterization which are based
on approximations and do not encompass composability [BGI+18]. In this sense, we derive
formal conditions for d-probing security in the presence of glitches by further categorizing
probes (e.g., pure vs composed) to enable compositional reasoning of vulnerability profiles.
More importantly, we have found that, to conciliate with composability, the nature of an
extended probe must afford an additional distinction, i.e., output vs internal, where output

3A logic cone is the whole of operations and inputs needed to compute one output (or one output’s
share).

4We call output register a register in which the function’s outputs are recorded.
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probes participate, during composition, in the creation of additional extended probes while
internal do not. We thus discovered a new definition of robust non-interference which
complies with existing observations in literature but has, from our point of view, a more
intuitive meaning.

To corroborate the usefulness of our approach, we will show that the underlying tensor
calculus is useful to reason formally about both conventional and robust d-probing security
by giving new meaning to some results already appeared in the past [FGP+17]. On the
other side, we show that it can enable the exploration of the design space of known gadgets
by deriving an improved consolidated masking scheme [RBN+15] which is robust-3-probing
secure and robust-3-SNI without the need of an additional register at the output (compared
to [FGP+17]). While this is done only for d = 3, we are able to derive sufficient conditions
for making a generalized CMS scheme into a robust-d-SNI one. Finally, we conclude with
some deductions around the DOM multiplication scheme [GMK16] that can be made with
our framework.

Before starting this research endeavor we felt that there was a lack of mathematical
definitions of robust strong non-interference. This concern was raised before in the
community; recently, in a paper published on TCHES [MBR19], the authors recognized
that despite the existence of the concept of robust SNI, it remained unclear how to
automate the verification of composability of hardware gadgets, as it was unclear how
to define a single mathematical equation. They acknowledge that there is still room for
more automated ways to reason about robust non-interference. To understand how our
approach fills this gap, we would like to highlight how our work can benefit the community
from the both the research and development standpoints.

The research standpoint. As it is known, one of the main goals of any research
endeavor is to build inference rules to derive general solutions to common problem patterns.
This is distinguished from solving those problems with an instance-by-instance approach
or a tool. To show how our approach can be used for deriving such general rules, we refer
the reader to Appendix A, where we present some general conclusions about the robust
probing security of a common pattern found in cryptography, for any number of shares.

The development standpoint. Existing tools such as maskVerif [BBFG18] can be
helpful in verifying if a fixed configuration instance of a gadget is probing secure or strong
non-interferent; we call these instance-by-instance tools. Our approach can be used also
on an instance-by-instance basis. More importantly, notwithstanding the efficiency of
maskVerif, its developers argue that "more precise approaches remain important, when
verification with more efficient methods fail"[BBFG18]. Given that our approach is not
based on a syntactic model but on the exact theory of Boolean functions, it is probably
the first to fit this purpose as previous works have only provided approximations [BGI+18]
or partial solutions [MBR19]. We note that our approach provides the added benefit of
a linear algebra based approach which is supported by many mathematical toolboxes.
However, given the exponential size of correlation matrices, some analysis of computational
complexity is in order. We refer the reader to Appendix B for an estimate of the time
needed for computing the vulnerability profile for several known gadgets.

2 Probing security as a relation calculus
The methodology that we propose is heavily based on the Walsh transform of a vectorial
boolean function. Besides introducing conventional concepts around it, we introduce the
definition of the tensor product for the resulting matrices [Car10].

Definition 1 (Walsh transform of a vectorial function). Given a vectorial Boolean function
f : Fn2 → Fm2 , we define its Walsh transform as a 2m × 2n matrix f̂ whose elements are:
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f̂ω,α =
∑
x∈Fn2

(−1)ω
ᵀf(x)⊕αᵀx (1)

ω ∈ Fm2 , α ∈ Fn2 being the binary encoding of the row and column indices, called spectral
coordinates (or sometimes masks).

As it is known, the Walsh transform describes the correlation information between input
variables’ xor-combinations and the corresponding output ones. Thus, they appear in the
literature scaled by a coefficient 2−n, under the name of correlation matrices [DGV95]:

Wf = 2−nf̂

For correlation matrices, the following theorem is known to hold:

Theorem 1 (Correlation matrix as a map of probability distributions). Given a function
f : Fn2 → Fm2 and a probability distribution pX : Fn2 → R for its input variable, the following
holds:

WfFpX = FpY

where pY is the distribution of the output values while Fg is the Fourier transform of any
pseudo-boolean function g : Fn2 → R and defined as the following:

Fg(γ) =
∑
x∈Fn2

g(x)(−1)γ
ᵀx

(see [DGV95, DPGM16]).

Thus, the correlation matrix Wf of a function f : Fn2 → Fm2 is just a linear map
Pn → Pm (Px ⊂ Rx) that is endowed with composition:

Theorem 2 (Composition of correlation matrices). Given two functions f : Fn2 → Fm2
and g : Fm2 → Fq2, the following holds:

Wg•f = WgWf

Moreover, if f is a bijection, Wf−1 = W−1
f . For a proof see [Car10, PGM11].

Given two independent variables xf ∈ Fnf2 and xg ∈ Fng2 , we can form the probability
distribution of the vector [xf , xg] with the product of distributions for which the following
theorem can be proved:

Theorem 3 (Tensor product of correlation matrices). Given two functions f : Fnf2 → Fmf2
and g : Fng2 → Fmg2 , the correlation matrix of the function h([xf , xg]) = [f(xf ), g(xg)]
is Wh = Wg ⊗ Wf where the symbol ⊗ is the Kronecker product (or tensor product)
of matrices. We will say that Wh is a mapping from the space Pnf ⊗ Png to the space
Pmf ⊗ Pmg where ⊗ is understood to be the tensor product of finite dimensional vector
spaces over the reals FdVectR.

We use a graphical language known as string diagrams [Sel10] to reason intuitively
on the effect of composing correlation matrices. The underlying assumption is that any
equational statement derivable with the string diagram can be derived if and only if it is
symbolically derivable from the axioms of the theory. Among the features of this language,
we have that:

• each correlation matrix is drawn as a box (except for identities which are drawn as
simple wires),
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Wg ⊗ II ⊗Wf

Png

Pnf

Wg

Wf

Pmg

Pmf

Png

Pnf

Wg

Wf

Pmg

Pmf

Figure 1: Example of compositional equality derived through a string diagram.

Wc

If∼= R

equivalent to
Wc

IfWfOf

Figure 2: Compositional equality involving constant functions.

• composition is the horizontal juxtaposition,

• tensor product is the vertical one.

Figure 1 shows an example of compositional equality derived through a string diagram.
The diagram on the left corresponds to the product (Wg ⊗Wf ) while the one on the right
corresponds to (1⊗Wf )(Wg ⊗ 1)(each factor is highlighted with a dotted box). Note that
the underlying matrices have the property that simply moving boxes without crossing
wires does not change the underlying formulas, i.e., (Wg ⊗Wf ) = (1 ⊗Wf )(Wg ⊗ 1).
Moreover, there always exist two mappings Ba,b : Pa ⊗ Pb → Pb ⊗ Pa and Bb,a such that
Ba,bBb,a = I. Ba,b is exactly the Walsh transform of a function that permutes variables a
and b. A constant function c is such that its correlation matrix Wc is zero everywhere else
than in its first column; in this case the image of Wc is always isomorphic to the base field
R which is the unit of the tensor product of vector spaces in FdVectR. Diagrammatically,
we can show a constant function as a circuit breaker symbol that conveys figuratively some
of the equalities about the unit of FdVectR (see for example Figure 2).

As correlation matrices can become exponentially big, we propose a compact represen-
tation for Wf :

W̃f (i, j) := (Wf (i, j) 6= 0) (2)
which is shown in the following example.

Example 1. Consider a function f : F4
2 → F3

2

f(a0, a1, r0, r1) =

 f0
f1
f2

 =

 a0 + r0 + r1
a1 + r0 + r1
a1 + r0


From its correlation matrix, we can derive through Eq. 2 the following relation matrix

W̃f (φ, ψ) (φ = [γf2γf1γf0 ], ψ = [γr1γr0γa1γa0 ]):
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Wδ

f∆

If

Wfπ

Wf

Ofπ

Of

Figure 3: The vulnerability profile of a function corresponds to the tensor product of the
regular Walsh transform of a function and of its probes fπ, multiplied by Wδ.

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 γr1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 γr0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 γa1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 γa0

γf2 γf1 γf0
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(3)

The above representation labels the columns (rows) with the corresponding combination
of inputs (outputs) in binary form. As an example, the element W̃f ([011], [0011]) (which
is 1) represents an existing dependency between f0 ⊕ f1 and a0 ⊕ a1. Besides, note that
we could write the index ([011], [0011]) as (3, 3) by interpreting it in base 2. To derive a
compact representation for the above relation matrix, we note that shares of the same
variable can be grouped; for example, a0 and a1 could be two shares of a single sensitive
variable a, r0 and r1 two random values, f0 and f1 are two shares of a single output value
o and f2 is the output associated with a potential internal probe p within the circuit
realization of f .

These assumptions allow us to re-structure the original correlation matrix by compacting
the spectral coefficients to account only for the number of shares of each original variable;
we call this the compact representation of a correlation matrix:

0 0 0 1 1 1 2 2 2 ρ
0 1 2 0 1 2 0 1 2 α

π ω
0 0 1
0 1 1
0 2 1
1 0 1
1 1 1 1
1 2 1

(4)

where α, ρ, ω and π are called the compact spectral indexes of the input, randoms, output
and probe respectively.

2.1 The vulnerability profile of a function
Figure 3 shows a typical wiring diagram of the mapping betwen the Fourier transform of
its input and output distributions. In particular, it is related to the boolean function f
and its potential probes fπ. The tensor product
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f∆ = (Wfπ ⊗Wf )Wδ (5)
encodes all the vulnerability data associated to f ; in practice, each row of this matrix
corresponds to a convolution of a combination of rows in Wf and in Wfπ and we know
that, if there is some input variable combination for which this convolution is not zero, we
have a dependency between a combination of outputs (either outputs of f or its probes)
and a subset of input variables [ZMB18, XM88]. We call this data the vulnerability profile
of f . It is a special case of fan, a notion that will be useful to deal with glitches and
extended probes as well:

Definition 2 (fan of a family of matrices). The fan of a family of matricesM = {Mi}i=1...n
is a matrix:

∆M = (
⊗
i

Mi)Wn−1
δ

where Wδ is the correlation matrix associated with the duplication function.

2.2 Composition of vulnerability profiles
It is possible to derive the vulnerability profile of a composition of two functions by studying
the composition of two fans:

k∆ • h∆ = ∆{Whπ ,Wkπh,Wkh}

which is the fan of the composition of the original functions:

k∆ • h∆ = (k • h)∆

and it is possible to show that it is associative; figure 4 shows the string diagram associated
to it where we exploited tensor product equivalences to create a compact yet equivalent
representation.

I ⊗ k∆

k∆ h∆

Ih

Whπ

Wh

Wkπ

Wk

Ohπ

Okπh

Okh

Figure 4: The composition of two vulnerability profiles as a map in the probability space.

This way of modeling vulnerability allows to reason around d-probing security and
d-non-interference in a composable way. Recall that a function f is d-non interferent
(d-NI) if, when given a total of s outputs and internal probes, s ≤ d implies a dependency
with maximum s input shares. A function f is strongly d-non interferent (d-SNI) if s ≤ d
implies a dependency with maximum i input shares, where i is the number of internal
probes, among those placed [BBD+16].

Let us for example reconsider a case discovered in [CPRR14] that proves that, in
general, the composition of d-NI and d-SNI functions is not d-NI. Figure 5 shows the
structure of a function h which is a composition of two functions f and g; the assumptions
are that f is d-NI and g is d-SNI. In particular, f refreshes its input a with two random
bits rf :

of (a0, a1, a2, r0, r1) = [a0 ⊕ r0 ⊕ r1, a1 ⊕ r0, a2 ⊕ r1]
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g f aog

rf

pf

rg

pg

of

Figure 5: The composition pattern of f (d-NI) and g (d-SNI) derived from [CPRR14].

and it is assumed to have been probed at location pf = a0 ⊕ r0. On the other hand,
g(a, b, rg) is the ISW multiplication [ISW03] which consumes 3 random bits rg for the
secret computation. Also in this case, it is assumed a single probe pg = a2 ∧ b1.

The string diagram in Figure 4 can describe the vulnerability profile of the circuit
by considering h(a, rf , rg) = [f(a, rf ), (a, rg)] and k(a, rf , rg, of ) = g(a, of , rg) where the
space of the input distributions is Ih = A⊗Rf ⊗Rg while for output distributions we have
Okh = Og,Okπh = Pg,Ohπ = Pf .

Figure 6 shows the compact representation of the vulnerability profile. First of all, we
are interested only in the first 4 columns, as these are the ones that represent relationships
between the outputs and the shares of a not masked by any random value. We note that
there is a potential dependency in row [1, 1, 0], column [0, 0, 3], exactly the one found in
[CPRR14], which says that one needs only two probe values to get three shares; h is thus
not even 2-NI, showing that d-NI and d-SNI do not compose into a d-NI function. It is
possible to show through the compact representation of vulnerability profiles that, for this
composition pattern, if f is d-SNI and g is d-NI (d-SNI) then the composition is d-NI
(d-SNI).

2.3 Extended probes
Extended probes change the attack model in the sense that they allow the attacker to
observe all the inputs of a gadget by probing its output wires. We will show that the fan
linear algebra introduced above is still suitable for computing probing security profiles
with a little more sophistication. In part this is due to the fact that one has to model
in a composable way the information flow from inputs to outputs. Before going into the
details let us classify the probes used in this model (we will drop the term extended as it
is implicit in this discussion and we will introduce some symbol-coding to identify probes):

• a pure probe (notation symbol ◦) wπ over a wire computing the combinatorial
function w(x), modeled as a Boolean function that has a stable non-zero correlation
with all the inputs of w (and their combinations). A stable correlation means that
any transient effect is observable through that probe5. We will exploit the spectral
characteristics of the and operator (which has a non-zero correlation with all of its
operands and their combination) to model such probes:

wπ(x) =
∧

xi∈support(w)

xi

5This definition works only for combinatorial functions. For a register, instead, any pure probe on its
output will have zero correlation with its inputs.
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not d-NI

0 0 0 0 0 0 0 0 0 0 . . . ρg

0 0 0 0 1 1 1 1 2 2 . . . ρf

0 1 2 3 0 1 2 3 0 1 . . . α
πf πg ωg

0 0 0 1
0 0 1
0 0 2
0 0 3 1 1
0 1 0 1 1 1 1 1 1 1
0 1 1
0 1 2
0 1 3 1 1 1 1 1 1 1 1 1 1
1 0 0 1
1 0 1
1 0 2
1 0 3 1 1
1 1 0 1 1 1 1 1 1 1
1 1 1
1 1 2
1 1 3 1 1 1 1 1 1 1 1 1 1

(6)

Figure 6: Vulnerability profile of [CPRR14] (we use greek letters to indicate the spectral
coordinate associated with each function variable, i.e., α is the spectral coordinate associ-
ated with variable a and so on). Gray areas indicate where the composition g • f is allowed
to have non-zero values to meet d-NI hypotheses.

• a composed probe (notation symbol m) wκ over a wire computing w(x) = (wa •wb)(x)
is a probe that can be factored into a pure probe over the intermediate values of w:

wκ(x) = (waπ • wb)(x)

where wb(x) is different from the identity.

Probes might be orthogonally classified in output probes and internal ones; this
orthogonal characterization is relevant when talking about the composition of blocks:

• potential output probes (notation symbol ↑) are grouped in sets whose size corresponds
to the actual outputs of the function. Among them we will distinguish one set of
pure probes and zero or more sets of composed probes. We will use the symbol
ω to indicate the overall number of sets (ω ≥ 1). Output probes are important
during composition of functions because they will produce new probes (either pure
or composed).

• Internal probes might be pure or composed; compared to output ones, these will not
produce new probes when composing functions but will participate in the computation
of the probing profile of the result.

In this context, we define an extended fan that encompasses the probes of the function

f∇ = ∆{
↑◦
Wfπ ,

↑m
Wf1

κ
, . . . ,

↑m
Wfω−1

κ︸ ︷︷ ︸
output

,
◦|m
Wf1

i
, . . . ,

◦|m
Wfν

i︸ ︷︷ ︸
internal

,
↑
Wf}

Provided that one has all the matrices involved, f∇ describes the overall security profile of
the function. An important observation (which will be useful later) is that if one considers
a register r there is a single set of pure output probes that one can build, i.e., constant
ones.
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Table 1: Algebraic composition rules for probes.
g f g • f
↑ ↑ ↑
↑m ↑ ↑m
↑◦ ↑ ↑m
↑◦ ↑m ↑m
↑◦ ↑◦ ↑◦
◦ ↑ m
◦ ↑m m
◦ ↑◦ ◦
- ◦, m ◦, m

r∇ = ∆{
↑◦
Wc,

↑
I} (7)

r∆

Ir

∼= R

Or

Figure 7: The vulnerability profile of a register in terms of maps over the Fourier transform
of input and output distributions.

This will have an important implication because, when computing the composition
of blocks, the zero matrix will become a circuit breaker, essentially forcing all successive
functions to map to it as well. Let us consider the composition of two fans:

g∇ • f∇ = h∇

For it to be associative, the new fan h∇ will be such that:

• its internal probes (◦ or m) will be all those internal to f plus those produced by
composing:

– internal probes in g (◦ or m) with f ’s outputs and
– internal pure probes in g (◦) with output probes in f (↑m or ↑◦).

• its output probes (↑m or ↑◦) will be generated by combining

– pure output probes in g (↑◦) with f ’s outputs and its output probes (↑m or ↑◦).
– composed output probes in g (↑m) with f ’s outputs.

Table (1) shows all the composition rules.

Example 2. Assume that both f and g have only a set of pure (output) probes:

f∇ = ∆{
↑◦
Wfπ ,

↑
Wf}
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f∇

If

Wfπ

Wf

Wgπ

Wgπ

Wg

Ofπ

↑ Ogπfπ

↑ Ogπf

↑ Ogf

Figure 8: The vulnerability profile of a composition of functions when considering extended
probes.

g∇ = ∆{
↑◦
Wgπ ,

↑
Wg}

then, g∇ • f∇ will be

g∇ • f∇ = ∆{
↑m

Wgπf ,
↑◦

Wgπfπ ,
◦

Wfπ ,
↑

Wgf}

Diagrammatically, one could picture the above vulnerability profile as in Figure 8. If
we compare this with the non-extended case (Figure 4), we see an additional pure output
probe whose correlation matrix is

↑◦
Wgπfπ

This probe practically connects the outputs of the resulting vulnerability profile to the
inputs of f (with maximum correlation).

Example 3. Let us now consider the case where, between g and f , we put a register r.
The pure composition of these three blocks is shown in Figure 9. However, if we consider
the vulnerability profile of the register (Figure 7), we get a more explicative diagram in
Figure 10 which faithfully translates into correlation matrices and corresponding Fourier
transform of the probability distributions. In practice, the probes are isomorphic to the
one that would be produced by

g∇ • r∇ • f∇ = ∆{
↑m

Wgπf ,
◦

Wfπ ,
↑

Wgf}

i.e, to the composition of vulnerability with probes acting as regular probes, not extended
ones.

Wfπ

Wf

Wrπ

Wrπ

Wr

Wgπ

Wgπ

Wgπ

Wg

↑

↑

↑

Figure 9: The vulnerability profile of a composition of three functions when considering
extended probes.
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Wfπ

Wf

Wgπ

Wgπ

Wgπ

Wg

↑

(a)

Wfπ

Wf

Wgπ

Wg

↑

(b)

Figure 10: (a) shows the vulnerability profile of a composition of two functions when a
register is considered in the middle. Probes that come after the "circuit breaker" map to
the unit of VectR and thus do not add any information so they have been drawn with a
white circle. The Fourier transform of the output distribution is isomorphic to the one
produced by the diagram in (b).

2.4 Definition of robustness
Given a vulnerability profile f∇, we propose the following robustness definitions.

Definition 3 (robust-d-probing-secure vulnerability profile). A vulnerability profile f∇ is
d-probing secure when given a total of d outputs (either conventional or output probes)
and internal probes (either composed or pure), there is no dependency with all the shares
of a secret.

Definition 4 (robust-d-NI vulnerability profile). A vulnerability profile f∇ is robust-d-NI
when given a total of s outputs (either conventional or output probes) and internal probes
(either composed or pure), s ≤ d implies a dependency with maximum s input shares.

Definition 5 (robust-d-SNI vulnerability profile). A vulnerability profile f∇ is robust-d-
SNI when given a total of s outputs (either conventional or output probes) and internal
probes (either composed or pure), s ≤ d implies a dependency with maximum i input
shares, where i is the number of internal probes.

Example 4. To show how the above definition of robust-d-probing security matches with
the existing understanding, let us rederive the considerations exposed in [FGP+17, MBR19]
concerning the compositionality of a second-order secure multiplier when considering
glitches. The example considers inputs (x0, x1, x2) and (y0, y1, y2) and consists of two
stages separated by a register r; the first stage (let us call it f) contains 9 products xiyj
some of them (cross-domain products) are remasked:

f0,0 = x0y0 f0,1 = x0y1 ⊕ r1 f0,2 = x0y2 ⊕ r2
f1,0 = x1y0 ⊕ r1 f1,1 = x1y1 f1,2 = x1y2 ⊕ r3
f2,0 = x2y0 ⊕ r2 f2,1 = x2y1 ⊕ r3 f2,2 = x2y2

(8)

The second stage (let us call it g) compresses the triplets:

g0 = f0,0 ⊕ f0,1 ⊕ f0,2
g1 = f1,0 ⊕ f1,1 ⊕ f1,2
g2 = f2,0 ⊕ f2,1 ⊕ f2,2

(9)

The question is whether outputs g0 . . . g2 should be saved into a register s to pre-
serve composability in the sense of robust-d-probing security. We thus compute the two
vulnerability profiles:
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s∆ • g∆ • r∆ • f∆ = ∆{
◦

Wfπ ,
m

Wgπf ,
↑

Wgf} (10)

and

g∆ • r∆ • f∆ = ∆{
◦

Wfπ ,
↑m

Wgπf ,
↑

Wgf} (11)

We note that, when the register s is not present, probe gπf is an output probe (↑m)
and will participate in creating new probes in the following compositions. Instead, when
the register s is present (Eq. 10), the outputs are only the conventional outputs of g • f
while gπf is just an internal composed probe (m).

Considering again Eq. 11, if we take just one output in gπ • f (e.g., the wire z0) and no
internal probes (i = 0), one would get a dependency with t0,0 which in turn depends6 on
one share of x and y. This shows that the case without output register is not robust-d-SNI
because, for i = 0, there should not be any dependency over input shares. Note that this
observation has already been done in the past [FGP+17]; however, we argue that ours is
one the first attempts to formalize this point mathematically.

Before closing we note that, in a general case such as Eq. 11, one has alwaysWgf �Wgπf

because extended probes over g are always more powerful of g itself; in this case, robust-d-
probing security is thus determined by Wfπ and Wgπf alone:

g∆ • r∆ • f∆ = ∆{
◦

Wfπ ,
m↑

Wgπf} (12)

we will exploit this consideration in the following sections.

3 Revisiting the probing security of CMS
The acronym CMS stems from the title of the proposing article [RBN+15] and identifies
an evolution of the ISW scheme [ISW03] meant to provide, at the same time, d-probing
security and protection against glitches by borrowing ideas from the TI scheme [NRS11].

A CMS scheme with s = 4 shares is organised as in Figure 11. Every output share ci is
computed in a logic cone which involves s pairs (ai, bh), h ∈ {0 . . . s− 1}; adjacent cones
share only a random bit while internal bits within a cone preserve uniformity, as is usual
in a TI scheme. The computation is typically decomposed in three layers: non-linear (N ),
refresh (R) and compression (C), the latter two separated by a register to mitigate the
propagation of glitches to the outputs.

While the original proposal identified a scheme that was d-probing secure up to d = 2,
a simple generalization of the scheme to d = 3 has shown that, as it is, it cannot be made
probing secure anymore [MMSS19]. Figure 11 shows the scheme for d = 3, s = 4 and a
triplet of probes that reveals the four shares of b; note that this vulnerability exists even if
one does not consider extended probes.

Considering robust probing security, we can say something more. First of all, note that
we are in the case covered by Eq. 12 where:

f = R •N , g = C

We thus know that the only probes that determine robust-d-probing security are:

• the pure probes at the output of the refresh layer, i.e., fπ;

• the composed probes at the output of the compression layer gπ • f .
6Recall that a ∧ b is correlated with both a, b and a⊕ b, as it correlation matrix shows.
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Figure 11: The four-share CMS scheme considered in [MMSS19]. The scheme is decom-
posed in three layers, non-linear (N ), refresh (R) and compression (C). To preserve output
shares from the propagation of glitches, a register (thick line) layer is inserted between
compression and refresh. Orange circles correspond to regular probes that break the
d-probing security.

Composed probes are just four and the number of shares that they cover is important
to determine probing security; to show this, let us assign them a label:

Sc = {c0, c1, c2, c3}

and show, in a table, which pairs (ai, bh) are covered by which extended probe:

b0 b1 b2 b3
a0 c0 c0 c0 c0
a1 c1 c1 c1 c1
a2 c2 c2 c2 c2
a3 c3 c3 c3 c3

Note that, given one of these output probes, e.g., c0, one needs to recover only the two
random bits that separate it from adjacent cones c1and c3. These two bits can be derived
only by using just two pure probes of fπ.

It has been observed that non-completeness might be useful in this case to reach robust-
d-probing security for d = 3 (see [MMSS19]). To find it, we note that a combination7

of output probes Π ∈ P(Sc) is such that it needs RΠ additional randoms depending on
adjacency. For example, Π = {c0} would need RΠ = 2 pure probes in fπ, while Π = {c0, c2}
would need RΠ = 4 because they form two partitions in terms of adjacency; in fact, given
TΠ as the number of such partitions we have RΠ = 2TΠ.

The organization of the input shares can be seen as a surjective mapping from the set
of pairs of input shares to the set of output cones:

λ : Sa × Sb → Sc

7With the symbol P(Sc) we denote the power set of Sc
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Figure 12: The robust-3-probing secure CMS scheme found with our formalization.
Highlighted in orange the probes which make the above scheme not robust-3-SNI.

Define δλa (Π) as the maximum number of shares of a that a specific probe configuration
Π covers (δλb (Π) is analogously defined). To find a configuration that is robust-3-probing
secure we can state the following problem:

Find a mapping λ such that, if the total number of probes is less or equal to
three, the number of shares that one can get is always less or equal to three,
i.e.:

∀Π ∈ P(Sc). |Π|+RΠ ≤ 3 =⇒ δλa (Π) ≤ 3 ∧
|Π|+RΠ ≤ 3 =⇒ δλb (Π) ≤ 3

We formalized the problem as an satisfiability modulo theory one and solved it through
Microsoft’s z3 SMT solver. The solver provided the following solution λ (also depicted in
Figure 12):

b0 b1 b2 b3
a0 c2 c2 c3 c3
a1 c0 c1 c0 c1
a2 c2 c2 c3 c3
a3 c0 c1 c0 c1

We verified this solution by computing the vulnerability profile as in Eq. 12. We com-
puted the underlying correlation matrices Wfπ and Wgπf by using a sparse representation
while the complete fan is computed by convolving the rows of the above two matrices. The
used sparse representation of the correlation matrix is a modified version of a List of Lists
representation (LIL): each stored list refers to a specific row of the correlation matrix,
and the elements of every list are the column coordinates of the nonzero element in the
correlation matrix row. We do not need to store the value of nonzero elements, because
the presence of this nonzero elements is the only thing that matters. To give an idea of the
space required for correlation matrices for d = 3, Wfπ is a 216×228 correlation matrix with
less than 224 elements different from 0. However, one needs to store data associated with
only 16 rows because the remaining part can be computed with convolution (if needed) by
definition of vector Walsh transform. In this use case, the overall operations involved in
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Figure 13: The vulnerability profile of the robust-3-probing secure CMS scheme found with
our formalization. This has been computed only for a sum of the hamming weight of the output
spectral coordinates (i.e., the sum of probes) equal to 3. Red circles indicate where the vulnerability
profile fails to be robust-3-SNI because for ωfπ = 2 there can be a dependency with up to α = 2
or β = 2.

computing the convolutions for determining strong-non interference for d = 3 are about
1.35× 106, for d = 4 about 4.92× 107 and for d = 5 about 2.63× 109.

The compact representation of the resulting vulnerability profile can be seen in Figure
13; In this matrix, ωfπ , ωgπf are the compact spectral index of pure internal probes fπ and
output composed probes gπf respectively. Similarly, α, β, ρ are the compact spectral index
of the shares of a, b and the refresh random bits r. Note that, for the spectral indexes
α = 4 or β = 4 and ρ = 0 the correlation between the extended probes fπ and gπf is 0;
this solution is thus robust-3-probing secure.

One could check whether for s > 4 there can be suitable solutions to the above problem.
However, we have found that for s ≥ 6 the underlying formulas are not satisfiable anymore,
leaving us conjecture that the above scheme hits an upper bound for s = 5.

3.1 Achieving Robust Strong non-Interference for CMS
Figure 13 shows that the solution is not robust-3-SNI (we have marked in red the correlation
matrix positions that violate d-SNI properties). This is because, for two internal probes
fπ one can get up to three shares of either a, b or both8.

Indeed, as shown in Figure 12, if an output probe is placed on c0, and two internal probes
are placed in the refresh layer of adjacent cones, e.g., after the operation r15⊕ (a2 · b3)⊕ r0
and r4 ⊕ (a1 · b3) ⊕ r5, one can recover information about three shares of a (a1, a2, a3)
and three shares of b (b0,b2,b3) with only two internal pure probes. The rationale is that,
whenever we try to attack the input shares of a cone, we need to remove the two protecting
randoms through two internal probes in adjacent cones. Since any adjacent cone will work
with different shares, these will be attacked as well.

One countermeasure would be to increase the number of randoms that protect adjacent
cones; for example, by adding one random for each pair of adjacent cones we would have
that if an output probe is placed on one output ci, no matter how the two internal probes
are placed in the scheme, the output is always protected by two random and one would
need obviously two other internal probes. Note that, even by adding output probes from
adjacent cones, these will still be protected by four random so one is forced to use internal
probes. In Figure 14, we show a proposal for such a scheme for s = 4 where additional
random qj are applied pair-wise to cones. Computing the vulnerability profile for such
scheme yields Figure 15. As can be seen, two internal probes now do not imply a correlation
with any share. This construction can be generalized into a sufficient condition:

8Note that we have shown columns up to all combinations of a and b not covered by random values.
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Figure 14: The robust-3-SNI CMS scheme proposed in this paper. Additional random are
identified with the label qj . Other randoms have been grayed out to avoid crowding the
image.

Proposition 1. Let s be the number of shares (s ≥ 4); any generalized CMS scheme can
become robust-(s− 1)-SNI by adding s · (b s2c − 1) randoms to the refresh layer such that
each pair of adjacent cones shares b s2c − 1 of them.

Proof. In this scheme, each internal probe reveals one share of a, one share of b, and at
most one of those randoms that are shared with the two adjacent cones. Moreover, each
output probe is masked by z = 2 + 2 · (b s2c − 1) randoms (for example, in Figure 14, c1 is
covered by 2 + 2 randoms, i.e., r4, r8, q1, q2).

Let us assume that we have |Π| ≥ 1 output probes and i internal probes (Π is the
configuration of the output probes and TΠ is the number of their partitions, see section 3).
Assume that |Π|+ i ≤ s− 1. If this scheme was not robust-(s− 1)-SNI, it would mean that
i internal probes would provide information on more than s− |Π| shares. This additional
information could be obtained only when removing all of the TΠ · z randoms that cover
Π. However, under the above assumptions, this is impossible because i internal probes
provide less than s− |Π| (i.e., less than s− 1) randoms while the needed ones (TΠ · z) are
always greater or equal to s− 1 as the following derivation shows:

TΠ(2 + 2 · (b s2c − 1) ≥
2 + 2 · (b s2c − 1) ≥
2 + 2 · ( s−1

2 − 1) =
s− 1

(14)

In the case where |Π| = 0, every set of i provides just i input shares.

4 Analysis of the robust probing security of DOM-indep
As another example of application of our framework, we analyze the robust-d-probing
security of another multiplication gadget referred to Domain Oriented Masking with
independent shares (DOM-indep). Domain Oriented Masking is an alternative shared
multiplication scheme which aims to be d-probing secure by using d(d + 1)/2 random
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Figure 15: Vulnerability profile of CMS scheme with s = 4 when using additional randoms
qj .

bits [GMK16]. It is the basis above more sophisticated schemes have been built (such as
DOM-dep or DOM with dependent shares [GM18]). The generic structure of DOM-indep
is as follows:

c0 = a0b0 + (a0b1 + r0) + (a0b2 + r1) + (a0b3 + r3) . . .
c1 = (a1b0 + r0) + a1b1 + (a1b2 + r2) + (a1b3 + r4) . . .
c2 = (a2b0 + r1) + (a2b1 + r2) + a2b2 + (a2b3 + r5) . . .
c3 = (a3b0 + r3) + (a3b1 + r4) + (a3b2 + r5) + a3b3 . . .
. . .

Bold multiplication terms are called inner-domain terms and do not require to be
masked with randoms while, for the remaining cross-domain terms, the same random is
reused to mask terms with mirrored indices. Parentheses indicate that terms are saved
into registers before being compressed into the output share.

The current understanding of the DOM scheme is that, at least in the implementation
that considers dependent shares (DOM-dep), it is not robust-d-SNI [MMSS19]. We will
show here that also DOM-indep is not robust-d-SNI. To do so, we will study how inner
pure probes fπ and output composed probes gπf behave.
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Figure 16: The DOM scheme for d = 1, s = 2
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The reasoning is simple; consider Figure 16. For it to be robust-1-SNI, taking an output
composed probe and no internal pure probes should not provide any information on input
shares. However, an extended output probe on c1, for example, allows to observe one of
its inputs, i.e., a0b0 which is not covered by any random. Given that a0b0 correlates with
either share a0 or b0 we would have one input share observable with zero internal probes,
which goes against robust-1-SNI premises.

The vulnerability profile is shown in Figure 17 (left) where inner probes are accounted
with ωi while outputs and output probes are accounted with ωo. We can see that it is not
robust-1-SNI, as for (ωi = 0, ωo = 1) there is a dependency with at least one share of α
and β; however the gadget is still robust-1-probing secure.
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Figure 17: Vulnerability profiles of DOM without (left) and with (right) output register
for d = 1 (s = 2).

Adding an output register we obtain Figure 17 (right) where we can see that it is
actually robust-1-SNI. Note that the one with the register has more inner probes because
the original non-registered outputs have become internal. Figure 18 shows (part of) the
vulnerability profiles for d = 2 which confirm that adding a register at the outputs makes
the gadget robust-2-SNI.

We verified that the same happens for d = 3. We note that, in this case, the gadget
DOM-indep uses 6 randoms, while the robust-3-SNI variant we propose for CMS uses
20 (without output register); this suggests that there exist a trade-off between registers
and randomness when dealing with robust non interference. The ratio of random usage
between DOM and our CMS construction is:

2
(
s2

2 +
(
s
2 + 1

)
s
)

(s− 1) s
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Figure 18: Part of the vulnerability profiles of DOM without (left) and with (right) output
register for d = 2 (s = 3).

which, asymptotically, provides a 2× size factor. We conjecture that this is the cost one
has to pay for sparing registers when building a robust-d-SNI gadget.

5 Conclusions
This work provided an alternative yet comprehensive view of robust probing security which,
we argue, addresses more clearly the issues associated with composability of robust-probing
secure gadgets. To achieve our goal, we introduced further distinctions for dealing with
extended probes; in particular, these must be admitted to participate in a unique way
during composition much like conventional outputs. We believe we have provided sufficient
evidence that this new mathematical framework could work for analysis and synthesis of
such gadgets.

Further work is needed to make the underlying computations more efficient as they
are based on computation of the Walsh spectrum which incurs exponential cost. We
believe that sparse matrix representation might be a tool worth investigating to improve
correlation matrix computation. Another possible further extension of this work could be
modeling t-PINI as well as inquiring about the minimum number of randoms required to
achieve robust-d-strong-non-interference and/or investigating whether the ring structure
of multiplication gadgets can be replaced by potentially more efficient refresh layers.
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A On enabling general reasoning about non-interference
The aim of this appendix is to show how the proposed formalization can enable the analysis
and derivation of new inference rules around (robust) non-interference. For this purpose,
consider the circuit represented in Figure 5. This circuit is one of building blocks used for
computing the inverse in GF (28) [CPRR14]. It is known that this type of circuit is d-SNI
when both g and f are d-SNI [BBD+16]. Figure 19 shows the corresponding correlation
matrices diagram when not considering robustness against glitches (namely probes are
non extended probes).
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Figure 19: Map between Fourier transforms of probability distributions implied by the
considered example composition pattern.
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Figure 20: The considered example composition pattern, gray boxes are registers.

Consider now the same circuit with a register between f and g (Figure 20). This can
be seen as the composition of two blocks g and h, where h is the block that duplicates
the input and propagates one of the paths through f . We already know that, for robust
non-interference, this composition has the vulnerability profile shown in Eq. (10) and
rewritten here to consider h:

s∆ • g∆ • r∆ • h∆ = ∆{
◦

Whπ ,
m

Wgπh,
↑

Wgh}
where

Wh = (I ⊗Wf ⊗ I)(I ⊗ I ⊗Wδ) (16)
Whπ = (I ⊗Wfπ ⊗ I)(I ⊗ I ⊗Wδ) (17)



Maria Chiara Molteni and Vittorio Zaccaria 47

Wf

Wf

Wfπ

Wg

Wgπ

A

Rf

Rg

↑ Ogf

Ogπf

Ofπ

A

Rg

q0

q1

(a) Initial

Wf

Wfπ

Wg∆

A

Rf

Rg

Ogf

Ogπf

Ofπ

(b) Intermediate

Wf∆Wg∆

A

Rf

Rg

Ogf

Ogπf

Ofπ

(c) Final

Figure 21: Pruning of the a vulnerability profile considering equivalences and dominance
relations of the correlation matrix calculus.

while I is the identity, and Wδ is the correlation matrix of the duplication function
δ = x 7→ (x, x).

Graphically, the above equations correspond to Figure 21a. From there, one can reason
by pruning redundant paths. For example, the distribution of A reaches the output through
the extended probe gπf , so path q0 can be pruned off without loss of generality (same
thing for path q1) obtaining 21b. Considering the commutativity across duplication points
we can move fπ and then substitute the definition of fan (Eq. 5) for both f and g, one
can obtain 21c, which is exactly the vulnerability profile of the non-robust case shown in
Figure 19 where probes now are extended probes. This means that the reasoning about
the non robust case can be directly applied also to this case, i.e., if f∆ is d-SNI and g∆
is d-SNI (d-NI) then the composition in Figure 20 is robust-d-SNI (robust-d-NI). Note
that the derivation of the same general conclusions through a classic approach would have
possibly required a much more involved demonstration.

B Computational complexity and scalability of the pro-
posed approach

The vulnerability profile of a function f is computed starting from its correlation matrices
Wf andWfπ (i.e. Wf∆). The complete computation of these matrices could become quickly
impracticable due to the large number of their elements, which, in turn, is exponentially
related to the number of inputs, outputs and probes analysed.

To reduce the time and space computational complexity of this operation, we store only
the rows that refer to single outputs and probes, and compute on-demand the remaining
rows by using convolution. Besides, we exploit the fact that correlation matrices are sparse
(as explained in Section 3), to speed up the convolution itself. In the following, we show
some estimates of computation time when such sparsity is taken into account.

Let us consider the non linear function χ of Keccak, implemented using the DOM
multiplication gadget to make it probing secure at the d-th order [GSM17]. We recall that
the internal state of Keccak is divided into groups of five bits, called rows, and function χ
is applied row by row. Given x0, x1, x2, x3, x4 (the row bits), χ is defined as:

yi = χ(xi, xi+1, xi+2) = xi + (xi+1xi+2)
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(a) Scalability computed for χ of Keccak with DOM,
and comparison with time needed to apply maskVerif
tool [BBFG18] to the same algorithm.
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Figure 22: Estimated time needed to compute the vulnerability profile for well known
algorithms.

where indices are computed modulus 5. To make it probing secure at the d-th order,
each element xi is split into d+ 1 shares x0

i , x
1
i , . . . x

d
i , and a share yji of the output yi is

computed as follows [GSM17]:

yji =
(
xji +

(
xji+1x

j
i+2 +

∑
h>j

(xji+1x
h
i+2 + r

j+h(h−1)
2

) +
∑
h<j

(xji+1x
h
i+2 + r

h+ j(j−1)
2

)
))

Note that parentheses indicate that terms are saved into registers; thus there is a register
before the compression layer in DOM (reg1), one that stores multiplication results (reg2)
and one that stores the final output’s share yji (reg3).

Define as χd the function that computes all the shares of yi. In the corresponding
circuit, we assume an extended probe on each wire that ends into a register: we thus have
n1 = (d + 1)d probes placed before reg1, n2 = d + 1 before reg2 and n3 = d + 1 before
reg3.

In the correlation matrix of χd∆ each row referring to a probe before reg1 has only
a1 = 8 nonzero elements, while for a probe before reg2 or reg3 the nonzero elements are
respectively a2 = 2d+1 and a3 = 2d+2. Each remaining row is computed by convolution of
p single-probe rows, and it has, in average, av(p) elements different from 0:

av(p) =

p∑
h=0

(
p−h∑
k=0

nk1a
k
1 · n

p−k−h
2 ap−k−h2 )nh3ah3

(n1 + n2 + n3)p

where 2 ≤ p ≤ n1 + n2 + n3. Figure 22(a) reports the estimated time needed to compute
the correlation matrix of χd∆ (solid line), in comparison with the time needed to execute
maskVerif [BBFG18] to show that χ with DOM algorithm is robust-d-NI (dotted line).
Figure 22(b) reports the estimated time for other known gadgets to compute their correla-
tion matrices. In both cases, the value of d is varying between 1 and 5 and we assume
to work with a 8 processors, 4GHz machine with a 1 integer operation per clock cycle
throughput9.

9Luckily, the computation of multiple rows of the correlation matrix can be done in parallel.


	Introduction
	Our contribution

	Probing security as a relation calculus
	The vulnerability profile of a function
	Composition of vulnerability profiles
	Extended probes
	Definition of robustness

	Revisiting the probing security of CMS
	Achieving Robust Strong non-Interference for CMS

	Analysis of the robust probing security of DOM-indep
	Conclusions
	On enabling general reasoning about non-interference
	Computational complexity and scalability of the proposed approach

