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Abstract. A two–patches metapopulation mathematical model, describing

the dynamics of Susceptibles and Infected in wildlife diseases, is presented.

The two patches are identical in absence of control, and culling activities are
performed in only one of them. Firstly, the dynamics of the system in ab-

sence of control is investigated. Then, two types of localized culling strategies

(proactive end reactive) are considered. The proactive control is modeled by
a constant culling effort, and for the ensuing model the disease free equilib-

rium is characterized and existence of the endemic equilibrium is discussed

in terms of a suitable control reproduction number. The localized reactive
control is modeled by a piecewise constant culling effort function, that intro-

duces an extra–mortality when the number of infected individuals in the patch
overcomes a given threshold. The reactive control is then analytically and

numerically investigated in the frame of Filippov systems.

We find that localized culling may be ineffective in controlling diseases
in wild populations when the infection affects host fecundity in addition to

host mortality, even leading to unexpected increases in the number of infected

individuals in the nearby areas.

1. Introduction. In the last decades, emerging and re–emerging infectious dis-
eases (ERIDs) have been responsible for significant economic and social impacts in
both developed [25] and developing countries [34]. Jones et al. [33] showed that
zoonotic infections originated in wildlife have accounted for the majority of ERID
events since the 1940s and are representing a growing threat to global health. As a
consequence, actions aiming at controlling diseases in wild populations can provide
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benefits on wildlife protection and conservation as well as on the sustainability of
agriculture and public health.

However, disease control through vaccination and drug treatments, which repre-
sent common intervention measures in human and livestock infections, is often not
feasible, or practical, in wildlife because of the lack of resources or the unavailability
of suitable diagnostic tools [18]. In these circumstances, non–selective culling, which
consists in the slaughtering of both infected and healthy individuals, represents the
only available disease control strategy.

The effectiveness of culling relies on the assumption that, under a given threshold
of host density, the population becomes too sparse, then, the number of potentially
infectious contacts between infected and susceptible individuals become too low to
allow the disease to spread and persist in the population [2]. Yet there are empirical
evidences suggesting that culling has been ineffective in reducing disease burden in
wildlife populations for different infections, such as rabies in canids [37, 46], facial
tumor disease in Tasmanian devil [36], and bovine tuberculosis in European badger
[27].

The main causes for the failure of culling in the eradication of diseases in wild
populations have been ascribed to compensatory mechanisms, such as the density–
dependent positive feedbacks on recruitment and dispersal triggered by the excess
of mortality due to culling [12, 43]. Specifically, by reducing the host population
abundance, culling can reduce the density–dependent constrains on host birth rate,
thereby producing a flush in new susceptible individuals in the population [29, 46].
These new susceptibles represent a reservoir for new infections, which nullifies the
expected benefits of disease control campaigns or, in some cases, even increases the
disease burden in the population [5, 7, 15] or the duration of the epidemic [9, 10].

On the other hand, different studies showed that culling may disrupt the host
social structure increasing the animal home range and prompting long–distance
movement and dispersal (perturbation hypothesis), thus increasing the probability
of potentially infectious contacts between neighboring groups [13, 39, 42]. In par-
ticular, studies carried in the British Isles on the effectiveness of localized proactive
and reactive culling as measures for bovine tuberculosis (Mycobacterium bovis) con-
trol in European badger showed that culling led to a decrease in disease burden in
the controlled lands, while caused an increase in the infections in the nearby areas
[3, 4, 26, 45]. As expected from the perturbation hypothesis, the increase of M. bovis
prevalence was associated with expanded home ranges and more frequent migration
events in badger [4].

In this work, we will consider a metapopulation epidemic mathematical model,
described by a system of ODEs for Susceptibles and Infected, with two patches which
are identical in absence of control and localized culling control which is performed
in only one of them. We will show by means of qualitative analysis and numerical
simulations that, also in the absence of the density–dependent compensatory effects
on recruitment and dispersal, localized culling may be ineffective in controlling
diseases in wild populations and it may even lead to unexpected increases in the
number of infected individuals in the nearby areas.

Here, we investigate the effectiveness of localized culling using a metapopulation
Susceptibles–Infected (SI) model with density–dependent mortality of the host and
disease–induced host sterilization. Disease–induced fecundity reduction (or ster-
ilization) of the host has been frequently observed in host–pathogen interactions.
Such kind of disease–induced fecundity reduction of the host has been frequently
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observed in host–pathogen interactions. Mathematical models describing the dy-
namics of fecundity–reducing infections have been developed for rabies – where the
fecundity reduction is generated by the severely debilitating nature of the infection
and the frenzied behavior induced – in different mammal species [6], cowpox in wild
rodents [40], and several infections of invertebrate hosts, such as crustaceans and
mollusks [11]. Moreover, we will show that the counter–intuitive effects of culling
hold also relaxing the hypotheses of disease–induced host sterility and density–
dependent host mortality in the infection model.

2. The metapopulation mathematical model. We expand a traditional SI epi-
demic framework developed for host–sterilizing infections in wild animals to describe
the effect of localized proactive and reactive culling on the control of wildlife diseases
in a two–patches metapopulation model (see e.g. [2, 5, 19]). From an epidemiolog-
ical point of view, hosts can be subdivided into compartments with respect to the
infection: the susceptible compartments Sj(t) – i.e., healthy individuals that can
be infected by the pathogen – and the infected compartments Ij(t) – i.e., diseased
individuals that can infect other individuals; subscript j(= 1, 2) defines the patch
in the metapopulation to which the epidemiological compartment belongs.

In order to describe localized culling control in the model we assume that culling
activities can be performed in one of the two patches only (specifically patch 1),
while the other one (patch 2) is uncontrolled. We also assume the two patches are
identical in the absence of control, namely the demographic and epidemiological
parameters are the same.

Then, the metapopulation model can be represented by the following set of four
ordinary differential equations

Ṡ1 = rS1 − γS1N1 − βS1I1 − cS1 −DS1 +DS2 (1a)

İ1 = βS1I1 − (µ+ α+ c+ γN1)I1 −DI1 +DI2 (1b)

Ṡ2 = rS2 − γS2N2 − βS2I2 −DS2 +DS1 (1c)

İ2 = βS2I2 − (µ+ α+ γN2)I2 −DI2 +DI1, (1d)

where the upper dot is used to denote the time derivative. Nj = Sj + Ij represents
the total host population in patch j. All the parameters are positive constants:
r = ν − µ represents the intrinsic growth rate, being ν the fertility rate and µ
the natural mortality rate; γ and α represent the density–dependent mortality rate
of a disease–free host population and the additional mortality rate caused by the
infection, respectively; and β represents the transmission rate between infected and
susceptible individuals. Moreover, we define D to be the per–capita dispersal rate
from a patch to the other; and c to be the culling effort.

In order to analyze the effects of both localized proactive and reactive culling
strategies in model (1), we implement two different control functions. Thus, the
localized proactive culling strategy in model (1) is obtained by imposing culling
effort c to be a constant function

c = c̄ = const, (2)

and the localized reactive culling strategy by imposing culling effort c to be a piece-
wise constant function as in [20]

c =
c̄

2
[1 + sgn(I1 − θ)], (3)
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where c̄ represents the maximum effort enforceable, and θ represents the threshold
for the detection of the infection. Expression (3) implies that population N1 in
patch 1 undergoes an extra–mortality c̄ due to culling when the number of infected
individuals in the patch is higher than threshold θ, while no culling activities are
performed when the infection is under the threshold of detection. Therefore, thresh-
old θ introduces a discontinuity, so that model (1) with (3) becomes a discontinuous
piecewise–smooth system (also called Filippov system) in which sliding motions are
possible on the manifold separating the region (in state space) where control is al-
lowed from that where it is not [28].
More precisely, by introducing the so–called switching manifold

Σ = {(S1, I1, S2, I2) ∈ R4 : I1 − θ = 0},
and denoting with f (1) (resp. f (2)) the RHS of model (1) with c = 0 (resp. c = c̄),
then sliding occurs on the sliding set

Σs = {(S1, I1, S2, I2) ∈ Σ : f
(2)
2 ≤ 0 ≤ f (1)

2 }, (4)

namely, where the components of two vector fields f (i), i = 1, 2, transversal to Σ
are ‘pushing’ in opposite directions, forcing the state of the system to remain on
the switching manifold and slide on it. Σs terminates in Σ when a tangency occurs,

i.e. when f
(1)
2 or f

(2)
2 vanish, implying that f (1) or f (2) are tangent to the switching

manifold. Tangencies are strategically important for bifurcation analysis.
As first pointed out by Filippov, sliding motions obey the ODE system having as
RHS the unique convex combination of f (1) and f (2) parallel to Σs [28], i.e.,

[Ṡ1, İ1, Ṡ2, İ2]T
∣∣∣
Σs

= λf (1) + (1− λ)f (2) (5)

with

λ =
(∇(I1 − θ))T · f (2)

(∇(I1 − θ))T ·
(
f (2) − f (1)

) .
Equilibrium points of system (5) are called pseudo–equilibria for model (1)–(3) and
correspond to a stationary sliding solution.
The analysis of planar piecewise–smooth autonomous systems has been widely de-
veloped in recent years, see e.g. [31, 35]. However, there is still no obvious clas-
sification of the dynamics of higher dimensional piecewise–smooth systems [30].
Then, the behaviors exhibited by model (1) with localized reactive culling (3),
which represents a four–dimension piecewise–smooth system, are too complex to be
fully investigated analytically. As a consequence, we numerically investigate system
(1)–(3) through simulations performed with the event–driven method developed by
Piiroinen and Kuznetsov [38] for sliding systems to find model attractors. A bifurca-
tion analysis in the parameter space identified by the reactive control parameters, c̄
and θ, has been also performed with SLIDECONT [21], which is a software based on
the package AUTO [24] to continue solutions to nonlinear boundary–value problems
via orthogonal collocation.

3. Results. It can be shown that model (1) is consistent, namely its state variables
remain positive for any trajectory starting from positive conditions, as stated by
the following theorem:

Theorem 3.1. If we consider positive initial conditions S1(0), I1(0), S2(0) and
I2(0), then the solutions of the differential system (1) are positive at each time
t > 0.
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Proof. We shall prove the statement by contradiction.
Let us start by considering the state variables S1(t) and S2(t) and let t1 > 0 be

the first time instant when S1(t)S2(t) = 0. Since the initial conditions are positive,
the variables S1 and S2 (and hence their product) are positive in [0, t1).

If we assume that S1(t1) = 0 and S2(t1) ≥ 0, then, by denoting with

m = min
[0,t1]
{r − c−D − βI1(t)− γS1(t)},

one yields Ṡ1(t) ≥ mS1(t) for t ∈ [0, t1]. Therefore, S1(t1) ≥ S1(0)emt1 > 0, that
contradicts our assumption. Then, it must be S1(t1) > 0 and S2(t1) = 0, which,

however, implies that Ṡ2(t1) > 0, namely S2(t) must be negative just before t1.
Thus, the existence of t1 is definitely excluded.

With the same arguments one can prove the positivity of the infected state
variables I1(t) and I2(t).

3.1. Metapopulation model without control. Before exploring the effects of
localized proactive and reactive culling on the infection dynamics, we analyze the
main features of model (1), deriving the equilibria in the absence of control (c = 0)
and the expression for the basic reproduction number, R0 (which corresponds to
the average number of secondary infections caused by a single primary infection in
a totally susceptible population at the disease–free equilibrium).
In the absence of control (c = 0), model (1) assumes a symmetric form, which allows
us to prove that:

Theorem 3.2. If c = 0 in model (1), then at any equilibrium point the size of
the susceptible (resp. infected) compartment in patch 1 is equal to the size of the
susceptible (resp. infected) compartment in patch 2.

Proof. Let us consider the algebraic system obtained by setting the RHS of model
(1), with c = 0, equal to zero, namely:

rS1 − γS1N1 − βS1I1 −DS1 +DS2 = 0 (6a)

βS1I1 − (µ+ α+ γN1)I1 −DI1 +DI2 = 0 (6b)

rS2 − γS2N2 − βS2I2 −DS2 +DS1 = 0 (6c)

βS2I2 − (µ+ α+ γN2)I2 −DI2 +DI1 = 0. (6d)

By contradiction, we assume that there exists a positive solution to system (6), say
[S̄1, Ī1, S̄2, Ī2], such that S̄1 6= S̄2 or Ī1 6= Ī2, possibly being both valid. Denote with
N̄i = S̄i + Īi, i = 1, 2. Then, two cases must be considered:

• Ī1 = Ī2 If S̄1 > S̄2, then from (6a) and (6c) it follows that

r − γN̄1 − βĪ1 > 0 > r − γN̄2 − βĪ2, (7)

which reduce to N̄1 < N̄2 and a contradiction arises.
A similar argument applies if S̄2 > S̄1.

• Ī1 6= Ī2 In order to fix the ideas, let us assume Ī1 > Ī2 (the opposite case
follows in analogous way).

If S̄1 > S̄2, then, analogously to what happens if Ī1 = Ī2, the inequalities
(7) reduce to γN̄1+βĪ1 < γN̄2+βĪ2, which is in contrast with the assumptions
S̄1 > S̄2, Ī1 > Ī2.

Otherwise, if 0 < S̄1 ≤ S̄2, then, the inequalities (7) must be reversed,
namely

r − γN̄2 − βĪ2 ≥ 0 ≥ r − γN̄1 − βĪ1, (8)
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yielding:

γN̄2 + βĪ2 ≤ γN̄1 + βĪ1. (9)

On the other hand, by handling the (6b) and (6d), one obtains

(βS̄1 − (µ+ α+ γN̄1))Ī1 > 0 > (βS̄2 − (µ+ α+ γN̄2))Ī2, (10)

which, for the positivity of the Īi, i = 1, 2, reduce to

γ(N̄1 − N̄2) < β(S̄1 − S̄2). (11)

Being S̄1 ≤ S̄2, the last inequality implies that N̄1 < N̄2. However, adding
the (9) and (11) leads to a contradiction: N̄1 > N̄2.

In conclusion, if S̄1 = S̄2 = 0, then the (10) are still valid and reduce to
Ī1 < Ī2, which is again in contrast with the initial assumption.

In other words, in searching model equilibria, it is not restrictive to assume the
two patches are identical. In particular, model (1) with c = 0 has always a trivial
equilibrium, E0 = [0, 0, 0, 0], and a disease–free equilibrium, E1 = [K, 0,K, 0], where

K =
r

γ
(12)

represents the carrying capacity for a disease–free host population. It is easy to
prove that E0 is always unstable if r > 0, while E1 is asymptotically stable if and
only if the basic reproduction number of model (1), R0, is lower than 1 [1].

The basic reproduction number can be calculated as the spectral radius of the
next generation matrix, R0 = ρ(FV −1), where F and V are defined as Jacobian
matrices of the new infections appearance and the other rates of transfer, respec-
tively, calculated for infected compartments at model (1) disease–free equilibrium
[22, 44]. Then, model (1) basic reproduction number can be defined as

R0 =
βK

µ+ α+ r
, (13)

with K given in (12) and coincides with that for the corresponding homogeneous
mixing model. When R0 > 1 in equation (13), the disease–free equilibrium is un-
stable and there exists a unique asymptotically stable positive endemic equilibrium,
called E2 = [S̄, Ī, S̄, Ī], where

S̄ =
µ+ α+ γN̄

β
(14a)

Ī =
r − γN̄
β

(14b)

with

N̄ =
r + µ+ α

β
. (15)

We notice that expressions (14), defining the endemic equilibrium in (1) for c =
0, correspond to the endemic equilibrium for the associated homogeneous mixing
model (see [2], under the assumption of negligible incubation period) and stability
properties follow straightforwardly.
Note also that necessary condition for being Ī positive is that

β > γ,

hence we assume it always fulfilled in the following.
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3.2. The effect of localized proactive culling. Analyzing metapopulation model
(1)–(2) – i.e., with localized proactive culling strategy –, we find that there always
exists a trivial equilibrium, E c̄0 = [0, 0, 0, 0]. Conversely than the case with c = 0,
the trivial equilibrium E c̄0 is not always unstable when r > 0. Indeed, linearization
of system (1)–(2) around E c̄0 leads to E c̄0 locally asymptotically stable if and only if

D > r and c̄ > ĉ =
r(2D − r)
D − r

, (16)

as can be proved by Sylvester criterion [32], being the Jacobian matrix of system
(1)–(2) evaluated at E c̄0 a symmetric matrix.

Expression (16) suggests that, for frequent dispersers (i.e., species with D > r,
as defined in [14]), sufficiently high levels of constant culling efforts (c̄ > ĉ) in one
of the patches can lead to the extinction of the entire population.

When expression (16) is not satisfied, the trivial equilibrium is unstable and there
exists a positive disease–free equilibrium, E c̄1, as stated by the following theorem:

Theorem 3.3. If condition (16) is not verified, then model (1)–(2) admits an

unique positive disease–free equilibrium E c̄1 = [K̂1, 0, K̂2, 0] and 0 < K̂1 ≤ K̂2.

Proof. Denote the generic disease–free equilibrium equilibrium of model (1)–(2) by

E c̄1 = [K̂1, 0, K̂2, 0], where K̂1, K̂2 > 0. The components K̂1, K̂2 are the solutions
of the algebraic system obtained by setting the RHS of equations (1a) and (1c),
with c = c̄, equal to zero, namely:

(r − c̄−D)K̂1 − γK̂2
1 +DK̂2 = 0 (17)

(r −D)K̂2 − γK̂2
2 +DK̂1 = 0,

yielding the admissibility condition:

K̂1 =
D − r + γK̂2

D
K̂2 > 0 ⇐⇒ K̂2 >

r −D
γ

. (18)

Substituting the expression of K̂1 into (17), one obtains K̂2 6= 0 as solution of

f(K̂2) = 0, (19)

with

f(K̂2) = a0 + a1K̂2 + a2K̂
2
2 + a3K̂

3
2 ,

and

a0 = D(c̄(D − r)− r(2D − r))
a1 = γ(c̄D + (D − r)(2D − r))
a2 = 2γ2(D − r)
a3 = γ3 > 0.

Let us differentiate the equation (19), yielding:

f
′
(K̂2) = a1 + 2a2K̂2 + 3a3K̂

2
2 = 0,

whose discriminant is ∆ = a2
2 − 3a1a3 = −3c̄D − 2D2 +Dr + r2. If ∆ ≤ 0, then f

is an increasing function. Otherwise, if ∆ > 0, then (3.3) admits two real solutions:

K̂2± =
2(r −D)±

√
∆

3γ
,
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that are relative minimum/maximum points for f and it is straightforward to check
that

K̂2− <
r −D
γ

.

In any case, we have

f

(
r −D
γ

)
= −D3 ≤ 0.

Thus, exactly one root of (19) satisfies the admissibility condition (18). If D > r,
it is not obvious that such a root is positive: one can easily check that a0 = f(0)
is (resp. is not) positive if expression (16) is (resp. is not) fulfilled. Hence, in
summary, system (1)–(2) admits an unique disease–free equilibrium E c̄1 if condition
(16) is not satisfied; there are none if (16) is verified.

To conclude the proof, we have to prove that, when the disease–free equilibrium
E c̄1 exists, K̂1 ≤ K̂2 or, equivalently, K̂2 ≤ r/γ (from (18)). Being f(r/γ) = cD2 ≥
0, the last inequality always holds.

Thus, in the presence of localized proactive culling the disease–free equilibrium
becomes E c̄1 = [K̂1, 0, K̂2, 0], where K̂1 and K̂2 can not be easily written explicitly,
since they come from solutions of the third–order equation (19).

When proactive culling as in (2) is implemented in model (1), we can compute
through the next generation matrix method the control reproduction number, RC ,
similarly to R0. The control reproduction number is defined as the average number
of secondary infections produced by a single infected individual in a susceptible
population at its disease–free equilibrium experiencing culling effort c̄. Its expression
is

RC =
1

2
β
K̂1 (µ+ α+D) + K̂2(µ+ α+ c̄+D) + 2γK̂1K̂2 +

√
∆C(

µ+ α+ c̄+ γK̂1 +D
)(

µ+ α+ γK̂2 +D
)
−D2

, (20)

with

∆C =K̂2
1 (µ+ α+D)2 + K̂2

2 (µ+ α+ c̄+D)2+ (21)

+ 2K̂1K̂2

[
2D2 − (µ+ α+ c̄+D)(µ+ α+D)

]
(for details see Appendix A). When it exists, disease–free equilibrium E c̄1 is asymp-
totically stable if and only if the control reproduction number RC in (20) is lower
than 1; on the other hand, ifRC > 1 the disease–free equilibrium is unstable [22, 44].

As far as the existence and the number of model endemic equilibria, an analytical
investigation is very hard to perform. Therefore, numerical analyses are carried
out to understand the effect of localized proactive culling on the disease dynamics.
Extensive numerical tests suggest that there are no endemic equilibria whenRC < 1;
otherwise, when RC > 1, there exists an unique asymptotically stable endemic
equilibrium, say E c̄2 = [Ŝ1, Î1, Ŝ2, Î2].

In Fig. 1 we show the effect of the host dispersal rate (D) and the localized
proactive culling effort (c̄) on the existence and stability of model (1)–(2) equilibria
through bifurcation analysis [41]. The curve TC0 defines a transcritical bifurcation
representing the threshold for host extinction (in (16)) that separates the region in
which the total host population goes extinct from the region in which model (1)–(2)
converges toward a disease–free equilibrium. The curve TC1 defines a transcriti-
cal bifurcation representing the threshold for infection establishment (RC = 1) that
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separates the region in which the pathogen fails to establish itself (disease–free equi-
librium) from the region in which the pathogen is able to invade the host population
and model (1)–(2) converges toward an endemic equilibrium.
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Figure 1. The effects of variation in host dispersal rate (D) and
localized proactive culling effort (c̄) on model (1)–(2) behaviors.
The curves TC0 (i.e., c̄ = ĉ in (16)) and TC1 (i.e., RC = 1),
which represent transcritical bifurcations, delimit three different
regions in the parameter space [D, c̄] where system (1), in the pres-
ence of localized proactive culling (2), converges to host extinction,
disease–free equilibrium, or endemic equilibrium. Parameter values
for model (1)–(2) have been fixed to: r = 0.9; µ = 0.2; K = 600;
α = 0; R0 = 10 (or rather β = 0.01833, see (13)).

We investigate the effectiveness of localized proactive culling (2) in successfully
control infectious diseases in wildlife by analysing the variation of susceptible and
infected individuals as a function of c̄ at endemic equilibrium E c̄2 in model (1)–
(2). Most of all, we are interested in understanding whether localized proactive
culling, c̄, can reduce the number of infected individuals both in the culling area
(Î1 in patch 1) and in the neighbouring areas (Î2 in patch 2). Firstly, we provide

analytical results on the variation of Ŝj and Îj (with j = 1, 2) with respect to c̄.

In particular, we show that dÎ2/dc̄|c̄=0 can be positive for suitable ecological and
epidemiological conditions (see Theorem 3.4). Secondly, since endemic equilibrium
E c̄2 is too complex to be computed analytically for strictly positive values of c̄, we
simulate numerically the number of infected individuals at endemic equilibrium E c̄2
for different values of localized proactive culling, c̄.

Theorem 3.4. The number of infected individuals in patch 1 (I1) at endemic
equilibrium of model (1)–(2), as function of c̄, is maximum in c̄ = 0; namely,

Î1(c̄) < Î1(0) = Ī, ∀c̄ > 0.
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Proof. By considering equations (1) evaluated at equilibrium E c̄2 = [Ŝ1, Î1, Ŝ2, Î2]
and at equilibrium E2 = [S̄, Ī, S̄, Ī], as given in (14), and subtracting side by side,
one obtains:

(β + γ)
(
Î1(c̄)− Ī

)
+ c̄ =− γ

(
Ŝ1(c̄)− S̄

)
+D

[
Ŝ2(c̄)

Ŝ1(c̄)
− 1

]
(22a)

(β − γ)
(
Ŝ1(c̄)− S̄

)
=c̄+ γ

(
Î1(c̄)− Ī

)
−D

[
Î2(c̄)

Î1(c̄)
− 1

]
(22b)

(β + γ)
(
Î2(c̄)− Ī

)
=− γ

(
Ŝ2(c̄)− S̄

)
+D

[
Ŝ1(c̄)

Ŝ2(c̄)
− 1

]
(22c)

(β − γ)
(
Ŝ2(c̄)− S̄

)
=γ
(
Î2(c̄)− Ī

)
−D

[
Î1(c̄)

Î2(c̄)
− 1

]
. (22d)

By contradiction, we assume that there exists a c̄0 > 0 such that Î1(c̄0) ≥ Ī. Then,
signs in (22b) impose that at least one of the following inequalities holds:

• Î2(c̄0) > Î1(c̄0). Then, Î2(c̄0) > Ī and addenda signs in (22c) and (22d)

impose that Ŝ1(c̄0) > Ŝ2(c̄0) > S̄. However, a contradiction in (22a) arises.

• Ŝ1(c̄0) > S̄. From sign of equations (22a) and (22c) one yields Ŝ2(c̄0) >

Ŝ1(c̄0) > S̄ and Î1(c̄0) ≥ Ī > Î2(c̄0), respectively. This leads to a contradiction
in (22d).

Thus, it must be Î1(c̄) < Ī, ∀c̄ > 0.

Theorem 3.5. ∀c̄ > 0, the number of infected individuals in patch 1 at endemic
equilibrium E c̄2 of model (1)–(2) is smaller than the corresponding number of infected

individuals in patch 2 (I2); namely, Î1(c̄) < Î2(c̄), ∀c̄ > 0.

Proof. By contradiction, we assume that there exists a c̄0 > 0 such that Î1(c̄0) ≥
Î2(c̄0). Then, from (22c) and (22d) and in virtue of Theorem 3.4, one yields

Ŝ1(c̄0) < Ŝ2(c̄0) < S̄. On the other hand, by handling equations (1b)–(1d) at
endemic equilibrium E c̄02 and subtracting side by side, we obtain

(β − γ)(Ŝ1 − Ŝ2)− c̄0 − γ(Î1 − Î2) +D

(
Î2

Î1
− Î1

Î2

)
= 0,

which is in contradiction with addenda signs. Hence, it must be Î1(c̄) < Î2(c̄),
∀c̄ > 0.

Theorem 3.6. The derivative of the number of susceptible individuals in patch 2
(S2) with respect to c̄, at endemic equilibrium of model (1)–(2), is always positive
when c̄ = 0. Instead, the derivative of the number of infected individuals in patch 2
is positive when c̄ = 0 if and only if the following condition holds:

dÎ2
dc̄

∣∣∣∣∣
c̄=0

> 0 ⇐⇒ 2D

r
<
R0 − 2

R0
, (23)

with R0 defined in (13).
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Proof. By differentiating with respect to c̄ the RHS side of equations (1) at endemic
equilibrium E c̄2, we obtain

βÎ
′

1(c̄) =− 1− γŜ
′

1(c̄)− γÎ
′

1(c̄) (24a)

+
D

Ŝ2
1(c̄)

[Ŝ
′

2(c̄)Ŝ1(c̄)− Ŝ
′

1(c̄)Ŝ2(c̄)]

βŜ
′

1(c̄) =1 + γŜ
′

1(c̄) + γÎ
′

1(c̄)− D

Î2
1 (c̄)

[Î
′

2(c̄)Î1(c̄)− Î
′

1(c̄)Î2(c̄)] (24b)

βÎ
′

2(c̄) =− γŜ
′

2(c̄)− γÎ
′

2(c̄) +
D

Ŝ2
2(c̄)

[Ŝ
′

1(c̄)Ŝ2(c̄)− Ŝ
′

2(c̄)Ŝ1(c̄)] (24c)

βŜ
′

2(c̄) =γŜ
′

2(c̄) + γÎ
′

2(c̄)− D

Î2
2 (c̄)

[Î
′

1(c̄)Î2(c̄)− Î
′

2(c̄)Î1(c̄)]. (24d)

When c̄ = 0, Ŝj(0) = S̄ and Îj(0) = Ī, with S̄ and Ī defined as in (14). Then

– by substituting the expressions for Î
′

1(0) and Î
′

2(0) (derived in (24a) and (24c),

respectively) as functions of Ŝ
′

1(0) and Ŝ
′

2(0) –, we can re–write (24b) and (24d) as
follows:

A(S̄, Ī)Ŝ
′

1(0) = β − D

Ī
+B(S̄, Ī)Ŝ

′

2(0) (25a)

A(S̄, Ī)Ŝ
′

2(0) =
D

Ī
+B(S̄, Ī)Ŝ

′

1(0), (25b)

where
A(S̄, Ī) = β2 +B(S̄, Ī), (26)

and

B(S̄, Ī) = γ
D

Ī
+ γ

D

S̄
+ 2

D2

S̄Ī
. (27)

By substituting (25a) in (25b) and rearranging, we find the equation

A2 −B2

A
Ŝ

′

2(0) = β
B

A
+

(
1− B

A

)
D

Ī
.

Being A(S̄, Ī) > B(S̄, Ī), condition Ŝ
′

2(0) > 0 is always satisfied.
In a similar way, we prove the second part of the statement. By substituting the ex-
pressions for Ŝ

′

1(0) and Ŝ
′

2(0) (derived in (24b) and (24d), respectively) as functions

of Î
′

1(0) and Î
′

2(0), we can re–write (24a) and (24c) as follows:

A(S̄, Ī)Î
′

1(0) = −β − D

S̄
+B(S̄, Ī)Î

′

2(0) (28a)

A(S̄, Ī)Î
′

2(0) =
D

S̄
+B(S̄, Ī)Î

′

1(0), (28b)

where functions A and B are given in (26) and (27), respectively. By substituting
(28a) in (28b) and rearranging, we find the equation

A2 −B2

A
Î

′

2(0) = −βB
A

+

(
1− B

A

)
D

S̄
. (29)

Hence, condition Î
′

2(0) > 0 is fulfilled if and only if the RHS of (29) is positive (i.e.,
if βD − B(S̄, Ī)S̄ > 0). With simple algebraic manipulations – and remembering
equalities (13) and (14) – then yields to

2D

r
<
R0 − 2

R0
.
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Proposition 1. In the limit case D → 0, the derivative of the number of susceptible
individuals in patch 1 (S1) with respect to c̄, at endemic equilibrium E c̄2 of model
(1)–(2), converges to 1/β.

Proof. It is an immediate consequence of equations (24a) and (24b).

From expression (23), we notice that necessary conditions for localized proactive
culling to increase (instead of decrease) the number of infected individuals in patch
2 are: 2D < r (i.e., hosts are very infrequent dispersers) and R0 > 2 (i.e., in
the corresponding uncontrolled model the first infected individual can, on average,
infect more than two individuals).

Remark 1. In the case the total host population at endemic equilibrium for c = 0
(15) is much lower than the carrying capacity K, the effect of the density–dependent
mortality rate at the endemic equilibrium is negligible, which corresponds to assume
γ → 0. In this scenario, it is straightforward to check that condition (23) for being

Î
′

2(0) > 0 reduces to: 2D < r. Instead, if, in addition to setting γ → 0, we also relax
the hypothesis of disease–induced sterility (see Appendix B), then such a condition
becomes slightly more complex:

(α− r)
(

1− 2D

r

)
− (µ+ r)− µ+ r

µ+ α

(
r
µ+ r

α− r
+ 2D

)
> 0, (30)

where α > r (which represents the necessary condition for the existence of the
endemic equilibrium in the absence of control, see Appendix B). However, once
again, formula (30) indicates that having 2D < r is necessary for proactive culling
to increase the endemic value of infected in the uncontrolled patch.

To investigate more deeply the counter–intuitive result obtained in Theorem 3.6,
we numerically compute the parameter conditions for which the number of infected
individuals in patch 2 at the endemic equilibrium is higher in the presence of local-
ized proactive control than with the do–nothing alternative (i.e., Î2(c̄) > Ī). The
numerical analyses presented here are performed by exploring the effects of different
values of host dispersal (D), proactive culling effort (c̄), and disease basic reproduc-
tion number of model (1) with c = 0 (R0, given by (13)) on control effectiveness and
by keeping the host demographic parameters constant in the simulations. Specifi-
cally, we set the host demographic parameters as in [5].

In Fig. 2 we show the parametric regions where condition Î2(c̄) > Ī is satisfied
for different values of basic reproduction number of the corresponding uncontrolled
model (R0) in the parameter space [D, c̄]. Fig. 2 highlights that for low values
of host dispersal rates (D), localized culling is ineffective in reducing the infection

outside the control zone (i.e., Î2(c̄) > Ī) for a wide range of culling rate values, also
when the basic reproduction number is relatively low.

The dynamics of infected individuals in patch 2 corresponding to the parameter
space along the thin dotted line in Fig. 2 is illustrated in Fig. 3. In particular, in
Fig. 3 we show the relative variation of the number of infected individuals in patch
2 at endemic equilibrium E c̄2 with respect to the number of infected in the absence

of control (i.e., δÎ2 = (Î2− Ī)/Ī) as a function of the localized proactive culling rate
(c̄) for an infrequent disperser host (D/r = 0.1) and for different values of R0.
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Figure 2. Curves in the parameter space [D, c̄] separating the

regions in which condition Î2(c̄) > Ī or condition Î2(c̄) < Ī are
satisfied for different values of the basic reproduction number of
model (1) with c = 0 (R0, given by (13)). Solid thick curve: R0 =
10; dashed thick curve: R0 = 5; dot–dashed thick curve: R0 = 2.5.
The dynamics of infected individuals in patch 2 (Î2) corresponding
to the parameter space along the thin dotted line (D = 0.1r) is
illustrated in Fig. 3. Unspecified parameters as in Fig. 1.

3.3. The effect of localized reactive culling. Let us consider model (1) with
the piecewise constant function (3) representing the culling effort in the localized
reactive control strategy. We are interested in investigating the long term dynamics
of model solutions and, in particular, of sliding motions, occurring on the sliding
set (4). To this aim, the following results concerning the existence and stability of
stationary sliding solutions (also called pseudo–equilibria) can be proved:

Theorem 3.7. Necessary condition for the existence of pseudo–equilibria for model
(1)–(3) is that

Î1 ≤ θ ≤ Ī , (31)

where Î1 (resp. Ī) is the number of infected individuals in patch 1 at endemic
equilibrium E c̄2 (resp. E2) of model (1) with c = c̄ (resp. c = 0).

Proof. Firstly note that Theorem 3.4 ensures that Î1 ≤ Ī.
By definition, a pseudo–equilibrium of model (1)–(3) is an equilibrium for system
(5) belonging to the sliding set Σs (given in (4)), i.e. such that I1 = θ, and S1, S2,
I2 satisfy

(r + µ+ α)S1 − βS2
1 − βθS1 −D

I2
θ
S1 +DS2 = 0 (32a)

rS2 − γS2N2 − βS2I2 −DS2 +DS1 = 0 (32b)

βS2I2 − (µ+ α+ γN2)I2 −DI2 +Dθ = 0, (32c)
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Figure 3. Relative variation of the number of infected indi-
viduals in patch 2 at endemic equilibrium E c̄2 with respect to the

number of infected in the absence of control (i.e., δÎ2 = (Î2− Ī)/Ī)
as a function of the localized proactive culling rate (c̄) for a very
infrequent disperser host species (D/r = 0.1). Solid thick curve:
R0 = 10; dashed thick curve: R0 = 5; dot–dashed thick curve:
R0 = 2.5. The thin dotted line represents the condition Î2 = Ī.
Unspecified parameters as in Fig. 1.

with

(β − γ)S1 ≥ µ+ α+ γθ +D −DI2
θ

(33a)

(β − γ)S1 ≤ µ+ α+ γθ + c̄+D −DI2
θ
. (33b)

By contradiction, we assume that one of the following inequalities holds:

• θ < Î1. Then – by handling the inequality (33b) and equation (1b) at equi-
librium E c̄2 –, one yields

(β − γ)(S1 − Ŝ1)− γ(θ − Î1) +D

(
I2
θ
− Î2

Î1

)
≤ 0,

implying that two mutually–exclusive conditions must be considered:
– S1 < Ŝ1. Then, N1 = S1 + θ < Ŝ1 + Î1 = N̂1 and by substituting the

expression for µ+α−DI2/θ derived from (32a) in (33b) and rearranging,
we obtain

r − βθ − γN1 − c̄−D
(

1− S2

S1

)
≤ 0.
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Subtracting the latter inequality and equation (1a) at equilibrium E c̄2 side
by side yields

β(θ − Î1) + γ(N1 − N̂1) +D

(
Ŝ2

Ŝ1

− S2

S1

)
≥ 0,

implying Ŝ2/Ŝ1 > S2/S1 and, in particular, Ŝ2 > S2.
Let us consider now equations (32b)–(32c) and (1c)–(1d) at equilibrium
E c̄2 and subtract side by side, yielding:

(β + γ)
(
I2 − Î2

)
=− γ

(
S2 − Ŝ2

)
+D

(
S1

S2
− Ŝ1

Ŝ2

)
(34a)

(β − γ)
(
S2 − Ŝ2

)
=γ
(
I2 − Î2

)
−D

(
θ

I2
− Î1

Î2

)
. (34b)

Sign of (34a) RHS imposes that I2 > Î2, which, however, is in contrast
with (34b).

– S1 ≥ Ŝ1, I2/θ < Î2/Î1. Then, I2 < Î2 and sign of (34b) RHS implies

that S2 > Ŝ2, which is in contradiction with (34a).
• θ > Ī. Then – by remembering inequality (33a) and equation (1b) at equi-

librium E2 –, one yields

(β − γ)(S1 − S̄)− γ(θ − Ī) +D

(
I2
θ
− 1

)
≥ 0,

hence at least one between the first and the last addendum must be positive;
namely, we consider two alternative cases:

– S1 > S̄. Then, N1 > S̄ + Ī = N̄ and by substituting the expression for
µ+ α−DI2/θ derived from (32a) in (33a) and rearranging, one obtains

r − γN1 −D
(

1− S2

S1

)
≥ βθ.

Being θ > Ī, with Ī given in (14b), then S2 > S1 > S̄.
Accounting now for equations (32b)–(32c) and (1c)–(1d) at equilibrium
E2 and subtracting side by side, yields:

(β + γ)
(
I2 − Ī

)
=− γ

(
S2 − S̄

)
+D

(
S1

S2
− 1

)
(35a)

(β − γ)
(
S2 − S̄

)
=γ
(
I2 − Ī

)
−D

(
θ

I2
− 1

)
. (35b)

Addenda signs in (35a)–(35b) impose that Ī > I2 > θ, which contradicts
the initial assumption.

– S1 ≤ S̄, I2 > θ. Then, sign of (35b) RHS implies that S2 > S̄ ≥ S1,
which, however, is in contrast with (35a).

Since in any case we find a contradiction, θ must belong to the interval (31).

Remark 2. Note that when θ belongs to the interval (31), pseudo–equilibria are
the unique possible attractors of model (1)–(3). Indeed, from (3), neither E2 nor
E c̄2 can exist.



16 L. BOLZONI, R. DELLA MARCA, M. GROPPI AND A. GRAGNANI

Theorem 3.8. A pseudo–equilibrium of model (1)–(3) is locally asymptotically sta-
ble if, and only if,

(d1 + d2)

[
d3(d1 + d2 + d3) + γD

S2
2

S1
+ βS1d2

]
+ (36)

+ (β2 − γ2)S2I2(d2 + d3)− D2

θ
(β − γ)S1I2 > 0,

with

d1 = βS1 +D
S2

S1
, d2 = γS2 +D

S1

S2
, d3 = γI2 +D

θ

I2
. (37)

Proof. From (32), the Jacobian matrix of system (5) at a pseudo–equilibrium reads

J =

 −d1 D −D
θ
S1

D −d2 −(β + γ)S2

0 (β − γ)I2 −d3

 ,
with d1, d2 and d3 given in (37). With simple algebraic calculations, we derive the
characteristic polynomial of J (say, P (λ)):

P (λ) = l0 + l1λ+ l2λ
2 + λ3,

where

l0 =(β2 − γ2)S2I2d1 +

(
γD

S2
2

S1
+ βS1d2

)
d3 +

D2

θ
(β − γ)S1I2

l1 =(d1 + d2)d3 + (β2 − γ2)S2I2 + γD
S2

2

S1
+ βS1d2

l2 =d1 + d2 + d3.

Being li > 0, ∀i = 0, . . . , 2, the presence of positive real roots for P (λ) is excluded
in virtue of Descartes’ rule of sign. According to Routh–Hurwitz theorem, also
complex roots with positive real part are not admissible if, and only if, l1l2− l0 > 0,
which corresponds to (36).

The analytical condition (36) provided in Theorem 3.8 depends in a complicated
manner on unknown pseudo–equilibrium values as well as on crucial parameters, like
β, γ, D, θ; hence, it is difficult to give easier sufficient conditions for its positivity.
However, in the specific case the hosts are very infrequent dispersers (i.e. D → 0),
which corresponds to the scenario where culling leads to an increase of infected
individuals in the uncontrolled patch, expression (36) is always verified. In this
case, a pseudo–equilibrium of model (1)–(3) is locally asymptotically stable.

Since the analytical results provided in Theorems 3.7 and 3.8 are not exhaustive,
we perform different sets of numerical simulations on a wide range of parameters
combinations for θ and c̄ (as in Fig. 4) and for different initial conditions of model
(1) variables. For each pair of parameters θ and c̄, we find a unique attractor
regardless of the initial conditions chosen for the simulations. Specifically, we find
that the only suitable attractors for model (1)–(3) are either stable equilibria or
pseudo–equilibria (which represent points of the sliding set (4).

The bifurcation analysis of epidemic model (1)–(3) in the parameter space [θ, c̄],
derived from the continuation of stable equilibria and pseudo–equilibria found in
the numerical simulations, is illustrated in Fig. 4. Fig. 4 shows that, for large
values of culling threshold (θ), model (1)–(3) equilibrium is unique, namely a stable
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Figure 4. Bifurcation diagram of epidemic model (1)–(3) in
the parameter space [θ, c̄]. The curves BN1 and BN2 represent
boundary–node bifurcations. A stable equilibrium is the only at-
tractor in regions 1 and 3. A pseudo–equilibrium is the only at-
tractor in region 2. The shaded area represents the parameter com-

binations for which model (1)–(3) displays Iθ,c̄2 > I0,0
2 = Ī. The

relative variations of the number of infected individuals at model
(1)–(3) steady–state with respect to the number of infected in the

absence of control (δIθ,c̄j ) as a function of parameter c̄, correspond-
ing to the dotted lines a and b, are illustrated in Figs. 5 and 6.
Other parameters are: r = 0.9; µ = 0.2; K = 600; R0 = 10; α = 0,
D = 0.1r.

equilibrium (independent from the values assumed by c̄) corresponding to endemic
equilibrium (14) as defined in continuous model (1) in the absence of control, namely
E2 (see region 1 in Fig. 4). By decreasing threshold θ, equilibrium E2 found in

region 1 undergoes a boundary–node bifurcation for θ = I0,0
1 = I0,0

2 = Ī (line

BN1 in Fig. 4), where Iθ,c̄j denotes the steady–state value of infected individuals

in patches j for localized reactive control (3) with parameters θ, c̄. By crossing
BN1 and entering region 2 the original E2 equilibrium disappears and a pseudo–

equilibrium characterized by Iθ,c̄1 = θ appears (see region 2 in Fig. 4). Curve BN2
represents a boundary–node bifurcation: by crossing it and entering region 3, the

pseudo–equilibrium characterized by Iθ,c̄1 = θ disappears and a stable equilibrium

characterized by Iθ,c̄1 > θ appears. Boundary–node bifurcations BN1 and BN2

correspond to the vanishing of the vector fields f
(2)
1 and f

(2)
2 , respectively, as defined

in (4). The grey area in Fig. 4 represents the conditions in the parameter space

[θ, c̄] where Iθ,c̄2 > I0,0
2 = Ī, i.e., where localized reactive culling is ineffective in

reducing the infection burden in both areas. Specifically, Fig. 4 shows that, in the
case of low levels of culling threshold θ, sufficiently high efforts of culling, c̄, are able
to reduce the infection burden in both areas, as in the case of localized proactive
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culling (see solid line in Fig. 3). On the other hand, in the case of intermediate
values of θ, localized reactive culling is ineffective in reducing the infection burden in
both areas regardless of the culling effort applied in disease control. These findings
are highlighted in Figs. 5 and 6, where the effects of localized reactive control on the
relative variation of the number of infected individuals in patches 1 (panels A) and
2 (panels B) at model (1)–(3) steady–state with respect to the number of infected

in the absence of control (δIθ,c̄j = (Iθ,c̄j − Ī)/Ī, with j = 1, 2) are shown for two

different levels of culling threshold (θ = 2.5 in Fig. 5, θ = 15 in Fig. 6).
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Figure 5. Relative variation of the number of infected indi-
viduals in patches 1 (panel A) and 2 (panel B) at model (1)–(3)
steady–state with respect to the number of infected in the absence

of control (δIθ,c̄j , with j = 1, 2) as a function of parameter c̄. BN2
represents a boundary–node bifurcation point as in Fig. 4. The

dashed line represents the condition Iθ,c̄j = Ī. Parameter θ = 2.5,
unspecified parameters as in Fig. 4.

4. Discussion. In this paper, we analyze the effect of localized proactive and re-
active culling on the disease dynamics in a metapopulation model with two patches
(one with control and the other one without control). Proactive culling is described
through a classical ODE continuous system, while reactive culling is described
through a discontinuous piecewise–smooth system where the control activities are
implemented when the number of infected individuals exceeds a given threshold.
Models implementing sliding control have been already developed in recent years
for different infections, such as West Nile Virus [48], avian influenza [17, 16], and
SARS [47]. Here, we find that, localized culling implemented in one of the patches
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Figure 6. Relative variation of the number of infected indi-
viduals in patches 1 (panel A) and 2 (panel B) at model (1)–(3)
steady–state with respect to the number of infected in the absence

of control (δIθ,c̄j , with j = 1, 2) as a function of parameter c̄. BN2
represents a boundary–node bifurcation point as in Fig. 4. The

dashed line represents the condition Iθ,c̄j = Ī. Parameter θ = 15,
unspecified parameters as in Fig. 4.

may lead to an unexpected increase in the number of infected individuals in the
other patch. In the case of continuous model (1)–(2), we provide the necessary con-
ditions for this counter–intuitive outcome to occur (see Theorem 3.6). In details,

the equilibrium value of infected individuals Î2 in presence of proactive culling can
increase only if 2D < r (hosts are very infrequent dispersers) and R0 > 2, namely if
the basic reproduction number of the corresponding uncontrolled model is at least
twice the endemicity threshold. In addition, we numerically find that the number
of infected individuals in the uncontrolled patch eventually peaks for intermediate
values of culling and then decreases only for high level of culling effort (see Fig. 3).
On the other hand, in sliding model (1)–(3), we numerically find that, for inter-
mediate levels of disease detection, localized reactive culling increases the infection
burden in the uncontrolled patch regardless of the culling effort applied in the dis-
ease control (see Figs. 4 and 6B).
The biological explanation for this unexpected effect relies on the remark that, when
the dispersal rate (D) is low, the introduction of culling induces an increase in the
number of susceptible individuals in both the controlled and uncontrolled patches
(see Theorem 3.6 and Proposition 1). This leads to a flush of new susceptibles enter-
ing the uncontrolled patch, then providing a bust to the infection transmission. We
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have proved the generality of this result by showing that it does not depend on the
specific assumptions made in model (1), but it holds also relaxing the hypotheses
of disease–induced host sterility and density–dependent mortality in the infection
model (see Remark 1).
The epidemiological and economic conditions leading to the ineffectiveness of disease
control through culling have also been investigated in optimal control frameworks.
Bolzoni et al. [8] showed that reactive culling implemented around the peak of
infection represents an optimal control strategy only when the basic reproduction
number of the infection is low and the costs of control are high.
In conclusion, this paper shows that also in the absence of the density–dependent
compensatory effects – which were previously associated to disease control failure –,
localized culling may represent an ineffective strategy in limiting infectious diseases
in wildlife.

Appendix A. The control reproduction number RC . Following the proce-
dure and the notations in [22, 44], we prove that the control reproduction number
of model (1)–(2), RC , is given by (20).

Let us consider the RHS of equations (1b) and (1d), with c = c̄, and distinguish
the new infections appearance from the other rates of transfer, by defining the
vectors

F =

[
βS1I1
βS2I2

]
and V =

[
(µ+ α+ c̄+ γN1)I1 +DI1 −DI2

(µ+ α+ γN2)I2 +DI2 −DI1

]
.

The Jacobian matrices of F and V evaluated at model (1)–(2) disease–free equilib-

rium E c̄1 = [K̂1, 0, K̂2, 0] read, respectively,

F =

[
βK̂1 0

0 βK̂2

]
and V =

[
µ+ α+ c̄+ γK̂1 +D −D

−D µ+ α+ γK̂2 +D

]
.

As proved in [22, 44], the control reproduction number is given by the spectral
radius of the next generation matrix FV −1. Simple algebra yields

(FV −1)11 =
βK̂1

(
µ+ α+ γK̂2 +D

)
(
µ+ α+ c̄+ γK̂1 +D

)(
µ+ α+ γK̂2 +D

)
−D2

(FV −1)12 =
βK̂1D(

µ+ α+ c̄+ γK̂1 +D
)(

µ+ α+ γK̂2 +D
)
−D2

(FV −1)21 =
βK̂2D(

µ+ α+ c̄+ γK̂1 +D
)(

µ+ α+ γK̂2 +D
)
−D2

(FV −1)22 =
βK̂2

(
µ+ α+ c̄+ γK̂1 +D

)
(
µ+ α+ c̄+ γK̂1 +D

)(
µ+ α+ γK̂2 +D

)
−D2

,

and, being the eigenvalues λ± of FV −1 given by

λ± =
1

2
β
K̂1 (µ+ α+D) + K̂2(µ+ α+ c̄+D) + 2γK̂1K̂2 ±

√
∆C(

µ+ α+ c̄+ γK̂1 +D
)(

µ+ α+ γK̂2 +D
)
−D2

,

with ∆C as in (21), we get (20).
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Appendix B. Ineffectiveness of proactive culling by relaxing some hy-
potheses. Let us consider the following metapopulation epidemic model

Ṡ1 = νN1 − βS1I1 − (µ+ c)S1 −DS1 +DS2 (38a)

İ1 = βS1I1 − (µ+ α+ c)I1 −DI1 +DI2 (38b)

Ṡ2 = νN2 − βS2I2 − µS2 −DS2 +DS1 (38c)

İ2 = βS2I2 − (µ+ α)I2 −DI2 +DI1, (38d)

that differs from model (1) in the absence of both pathogen–induced sterility (also
infected individuals reproduce) and density–dependent mortality for susceptibles
(γ = 0). Remember that we called r = ν − µ the intrinsic growth rate.
Firstly, one can easily check that, in the absence of control (c = 0), an endemic
equilibrium (say, E2) exists only if α > r and has components equal in pairs [23]:
E2 = [S̄, Ī, S̄, Ī], where

S̄ =
µ+ α

β
(39a)

Ī =
r(µ+ α)

β(α− r)
. (39b)

For E2 stability properties, see [23].

Then, let us denote with E c̄2 = [Ŝ1(c̄), Î1(c̄), Ŝ2(c̄), Î2(c̄)] the generic endemic equi-
librium of model (38) with c = c̄. By differentiating with respect to c̄ the RHS side
of equations (38) at E c̄2, we obtain

βÎ
′

1(c̄) =− 1 +
ν

Ŝ2
1(c̄)

[Î
′

1(c̄)Ŝ1(c̄)− Ŝ
′

1(c̄)Î1(c̄)] (40a)

+
D

Ŝ2
1(c̄)

[Ŝ
′

2(c̄)Ŝ1(c̄)− Ŝ
′

1(c̄)Ŝ2(c̄)]

βŜ
′

1(c̄) =1− D

Î2
1 (c̄)

[Î
′

2(c̄)Î1(c̄)− Î
′

1(c̄)Î2(c̄)] (40b)

βÎ
′

2(c̄) =
ν

Ŝ2
2(c̄)

[Î
′

2(c̄)Ŝ2(c̄)− Ŝ
′

2(c̄)Î2(c̄)] (40c)

+
D

Ŝ2
2(c̄)

[Ŝ
′

1(c̄)Ŝ2(c̄)− Ŝ
′

2(c̄)Ŝ1(c̄)]

βŜ
′

2(c̄) =− D

Î2
2 (c̄)

[Î
′

1(c̄)Î2(c̄)− Î
′

2(c̄)Î1(c̄)]. (40d)

Of course, when c̄ = 0, Ŝj(0) = S̄ and Îj(0) = Ī, as given in (39). Then –

by substituting the expressions for Ŝ
′

1(0) and Ŝ
′

2(0) (derived in (40b) and (40d),

respectively) as functions of Î
′

1(0) and Î
′

2(0) –, we can re–write (40a) and (40c) as
follows:

A(S̄, Ī)Î
′

1(0) = −β − D

S̄
− νĪ

S̄2
+B(S̄, Ī)Î

′

2(0) (41a)

A(S̄, Ī)Î
′

2(0) =
D

S̄
+B(S̄, Ī)Î

′

1(0), (41b)

where

A(S̄, Ī) = β
(
β − ν

S̄

)
+B(S̄, Ī),
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and

B(S̄, Ī) =
Dν

S̄2
+ 2

D2

S̄Ī
.

By substituting (41a) in (41b) and rearranging, we find the equation

A2 −B2

A
Î

′

2(0) = −
(
β +

νĪ

S̄2

)
B

A
+

(
1− B

A

)
D

S̄
. (42)

Since A(S̄, Ī) > B(S̄, Ī), condition Î
′

2(0) > 0 is fulfilled if and only if the RHS of
(42) is positive. With simple algebraic manipulations – and remembering equalities
(39) – then yields to

(α− r)
(

1− 2D

r

)
− ν − ν

µ+ α

(
rν

α− r
+ 2D

)
> 0.
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