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Abstract

A novel Mars orbit insertion strategy that combines ballistic capture and aerobrak-
ing is presented. Mars ballistic capture orbits that neglect aerodynamics are first
generated, which are distilled from properly computed stable and unstable sets by
using an already-established method. A small periapsis maneuver is implemented
at first close encounter to better submit the post-capture orbit to the aerobraking
process. An ad-hoc patching point marks the transition from ballistic capture to
aerobraking, from which an exponential model simulating Mars atmosphere and a
box-wing satellite configuration is considered. A series of apoapsis trim maneuvers
are then computed by targeting a prescribed pericenter dynamic pressure. The aer-
obraking duration is estimated by using a simplified two-body model. A yaw angle
tuning cancels inclination deflections due to out-of-plane perturbation from the Sun.
A philosophy combining in-plane and out-of-plane dynamics is proposed to achieve
the required semi-major axis and inclination simultaneously. Numerical simulations
indicate that the developed method is more efficient in terms of fuel consumption,
insertion safety, and flexibility than state-of-the-art insertion strategies.

Keywords: Ballistic capture, Aerobraking, Mars orbit insertion

1. Introduction

Patched conics approximation is widely used in astrodynamics as it decomposes an
involute route into a succession of simpler Keplerian orbit pieces. Common Earth–
Mars transfers are constructed by application of the patched conics method; the
goal is to minimize the launch mass, or equivalently, to maximize the mass of the
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payload delivered. In these cases, a chemical burn is used to inject the spacecraft
into a low-altitude, near-circular orbit around Mars. This process, or Mars orbit
insertion (MOI), involves maneuvering at the periapsis of the incoming hyperbola
[1, 2]. Overall, this approach facilitates the preliminary trajectory designs, yet it has
drawbacks: 1) A considerable amount of propellant is used to cancel the hyperbolic
excess velocity upon arrival; 2) The periapsis insertion maneuver exposes the mission
to a high risk of failure if the retro-engine is off-nominal [3]; 3) The launch window
are mainly dictated by the relative geometry between the Earth and Mars, and this
engenders a fixed two-year launch period from the Earth [1].

Another option consists of using aerobraking. Following the incoming hyperbola,
a moderate periapsis burn is used to deploy the spacecraft into an elongated elliptic
orbit, so exposing it to multiple atmospheric passages across the periapsis. The orbit
is gradually circularized because of the energy dissipation in the atmospheric phases
[4, 5]. This mechanism reduces significantly the ∆v to acquire the final orbit, so
making it attractive for Mars missions [6]. In the Mars Global Surveyor (MGS)
mission, at least 1 km/s was saved using aerobraking [2, 7]. Moreover, the data
gathered by on-board sensors may be used to estimate aerodynamic and atmospheric
parameters [8, 9]. Aerobraking was demonstrated by Hiten [10], and was applied in
Venusian missions Magellan [11] and Venus Express [12], and Martian missions MGS
[7], Odysssey [13] and Mars Reconnaissance Orbiter (MRO) [14]. It has also been
proposed in ExoMars [15].

Mars ballistic capture has recently emerged as a valid alternative to patched con-
ics [3]. A proper use of attractions from the Sun and Mars allows a spacecraft to
approach Mars and enter a temporarily captured orbit without requiring maneuvers
in between. Ballistic capture may reduce fuel expenditure at the price of a longer
Mars approach time [16, 17]. It also provides multiple MOI opportunities, so miti-
gating the risks associated to a single-point burn [18, 19, 20]. From an operational
point of view, this benign process is safer than performing a high or moderate cap-
ture maneuver, as required by a Hohmann transfer or a conventional aerobraking.
Stabilization maneuvers can even be totally canceled if temporary, irregular capture
orbits are tolerated [21, 22, 23, 24, 25]. Moreover, ballistic capture can provide more
flexible launch opportunities because the paradigm is no longer to target a physical
point in space, but rather reaching a manifold that supports capture [3, 26]. Bal-
listic capture has been successfully employed in lunar transfers [27, 28, 29, 30] and
baselined for the exploration of Mercury [31, 32].

Although both aerobraking and ballistic capture economize on fuel consumption
over patched conics, they are not immune by deficiencies. A moderate ∆v is still
required before delivering the spacecraft into a low Mars orbit for both alternatives:
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1) Ballistic capture offers, at most, 25% fuel savings over a Hohmann transfer to
Mars [3]; 2) A ∼1 km/s maneuver was needed to insert MGS into a 54, 025.9× 262.9
km elliptical orbit [2]. Moreover, aerobraking is subject to single-point failures and
similar launch windows constraints as patched conics. In addition, both methods
extend considerably the time to acquire the final orbit.

This paper revisits ballistic capture and aerobraking to find a compromise for
their use in Mars missions. A judicious integration involving multi-body dynamics,
aerodynamics, and aerothermodynamics is devised. Mars approaching orbits that
support ballistic capture are first generated using the stable sets method [20, 33].
A small periapsis maneuver is performed at the first close passage. A patching
point is used to switch to a simulation of the aerobraking process. The atmospheric
phase features periapsis trim maneuvers and yaw angle tuning to target a prescribed
dynamic pressure and inclination, respectively. Simulations provide quantitative
results.

The remainder of the manuscript is organized as follows. Section 2 summarizes
background information. Section 3 presents the method developed to merge ballistic
capture and aerobraking. Numerical results are reported in Section 4. Some under-
ling conclusions are drawn in Section 5. Supplementary material is provided in the
Appendix.

2. Background

We study the motion of an unmanned spacecraft approaching Mars, subject to
the gravitational attractions of the Sun and Mars, as well as to the aerodynamic
force exerted by the atmospheric drag. The Sun and Mars are assumed to be point
masses, and Mars is assumed to revolve around the Sun in an elliptic orbit. The
physical constants of the model are given in Table 1, where Gms and Gmp are the
gravitational parameters of the Sun and Mars, respectively. For the latter: R is the
mean equatorial radius, Ωp is the spin angular velocity, and RSOI is the radius of

the sphere of influence (SOI). In our simulation RSOI = as (mp/ms)
2/5, where as is

the semi-major axis of Mars orbiting the Sun, while mp and ms are their respective
masses [1].

Martian atmospheric density is computed by an exponential model

ρ(h) = ρ0 exp

[
−h− h0

H

]
, (1)

1https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
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Table 1: Physical parameters of the Sun and Mars1.

Gms Gmp R Ωp RSOI ρ0 h0 H
(km3/s2) (km3/s2) (km) (rad/s) (×R) (kg/m3) (km) (km)

1.3271×1011 4.2828×104 3,394.2 7.0882×10−5 170.0 2.0×10−8 110.0 10.0

where ρ0 is the density at the reference height h0 and H is the scale height; see
Table 1 [2, 9].

A spacecraft similar to MGS [7], with a “box-wing” configuration comprising a
box-like main body and two solar panels is considered, as shown in Fig. 1. Two solar
panels are assumed to maintain a symmetric aerodynamic configuration with a 90
degree sweep angle to their normal vector n (see Fig. 1(b)).

n

Main body

Aerodynamic Flow

Normal vector

Solar panel
Aerodynamic Flow

n

Flow

Flow

90º

(a) Three-dimension view (b) Side view (not to scale)

Figure 1: Spacecraft aerobraking configuration.

2.1. Reference Frames

To ease the orbital analysis, a body mean equator frame at epoch t0, (xb, yb, zb),
BME@t0 for brevity, is defined (see Fig. 2). This frame is centred at Mars; its zb-axis
is aligned with the spin axis at t0, the xb-axis points to the ascending node of Mars
mean equator at t0 with respect to the Earth mean equator and equinox at J2000.0,
and the yb-axis completes the dextral orthonormal triad; refer to Archinal and et al.
[34] for details.

A velocity-co-normal-normal frame (xv, yv, zv), VCN for brevity, centred at the
spacecraft, is used to decompose the aerodynamic forces. The zv-axis is perpendicular
to the orbital plane, the xv-axis follows the spacecraft inertial velocity v, and the
yv-axis completes the right-hand rule (see Fig. 2). The transformation from VCN
to BME@t0 at time t is denoted by Qv→b(t); it is obtained by projecting the unit
vectors along velocity, orbit normal, and their cross product [1].
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Figure 2: Geometry of reference frames.

2.2. Equations of Motion

The rotation of Martian atmosphere is not considered since the difference between
the inertial velocity and airspeed of the spacecraft is small enough to be ignored.
This paper only considers the case in which θ represents a rotation of n around
the yv-axis; a counter-clockwise turning corresponds to a positive θ and vice versa
(see Fig. 2). Thus, θ can be deemed as a yaw angle relative to the orbit plane.
The aerodynamic acceleration ad follows the normal vector n of solar panels when
ignoring the aerodynamic force experienced by the box component. Therefore

ad = ‖ad‖ =
CdqSr
m

, (2)

where Cd is the drag coefficient, q = ρvr
2/2 is the dynamic pressure, ρ = ρ(h) is the

atmospheric density at a height h (refer to Eq. (1)), Sr is the vehicle reference area,
and m is its mass. We use Newton’s sine-squared law to derive the drag coefficient
[35]

Cd = Cd0 (cos θ)2, (3)

where Cd0 is the drag coefficient for θ = 0.
The governing equations of the spacecraft motion in the BME@t0 frame are

r̈ +
Gmp

r3
r +Gms

(
rs
r3
s

+
r − rs
‖r − rs‖3

)
= −Qv→b(t)Ry(−θ)

Cd0qSr(cos θ)2

m
in, (4)

where r and rs are the position vectors of the spacecraft and the Sun, respectively,
whereas r and rs are their magnitudes; Ry is the direction cosine matrix about the
yv-axis; in = [1, 0, 0]>. The orbital parameters of the Sun with respect to Mars
are read at initial epoch t0 via the DE430 ephemeris model [36] and kept invariable
during the flight, except for the true anomaly, which is calculated by solving Kepler’s
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equation at each time step [22]. Eq. (4) embeds both multi-body gravity (2nd and 3rd

terms on the left-hand side) and aerodynamic forces (right-hand side). By swapping
the right-hand term on and off one can obtain the equations for the ballistic capture
as special case.

3. Methodology

The dynamical model described by Eq. (4) involves both orbital and aerodynamics.
In order to construct orbits that exploit both components, an ad hoc method is
proposed. Figure 3 outlines the whole insertion process. Firstly, the spacecraft
approaches Mars from a far distance with attractions from the Sun and Mars (pre-
capture, t < t0). At t0, the spacecraft experiences the first close encounter, where it
exerts a small periapsis maneuver ∆v0, which yields a relatively stable orbit. The
subsequent phase (aerobraking phase, t > t0) is characterized by three-body orbits
alternating a series of atmospheric passages at periapsis and trim maneuvers at
apoapsis (∆vj at t = tj). At t = tf , a periapsis raising maneuver (∆vf ) is performed
to target the science orbit (mission phase, t > tf ).
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Figure 3: Layout of the whole insertion process (t: time, r: distance to Mars).

3.1. Pre-capture Phase

A method preliminary described in Hyeraci and Topputo [33] and later generalized
in Luo et al. [20] is employed to generate ballistic capture orbits. It is briefly outlined
as follows.

3.1.1. Initial Conditions and Orbit Classification

Initial conditions (i.c.) at t0 are defined by specifying initial periapsis radius
r0, eccentricity e0, inclination i0, right ascension of the ascending node (RAAN)
Ω0, argument of periapsis ω0, and true anomaly f0 in the BME@t0. Without loss of
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generality, we assume the spacecraft initially located at the periapsis of an osculating
ellipse around Mars, i.e., f0 = 0; the eccentricity of this ellipse is such that e0 ∈
[0.9, 1) [33, 37]. Orbital inclination i0 is chosen arbitrary, and a fixed ω0 ∈ [0, 2π) is
taken. Thus, two orbital elements, namely the periapsis radius and RAAN, are left
free. We discretize them with r0 ∈ [r0l, r0h] and Ω0 ∈ [0, 2π) into Nr0 and NΩ0 points,
respectively, where r0l corresponds to an altitude outside of Martian atmosphere and
r0h is an upper bound.

Before orbital integrations, we introduce an escape criterion. The spacecraft es-
capes from Mars at time te if the following two conditions are simultaneously satisfied
[20],

H(te) > 0, r(te) > RSOI, (5)

where RSOI is in Table 1 and H is the Kepler energy of the spacecraft with respect
to Mars,

H(t) =
v2(t)

2
− Gmp

r(t)
. (6)

The function H(t) is not constant due to the perturbation from the Sun.
The motion of the spacecraft is obtained by forward and backward integration of

the i.c. under Eq. (4) (with right-hand side set to zero). According to their orbital
behaviors, the i.c. are classified into different sets [20, 22]. The focus is on two of
them, i.e.,

1) Weakly Stable Set, Wn (n ≥ 1): contains i.c. whose orbits perform n com-
plete revolutions about Mars without impacting with or escaping from it when
integrating forward in time;

2) Unstable Set, X−1: contains i.c. whose orbits escape from Mars without com-
pleting any revolution around or impacting with it when integrating backward
in time.

3.1.2. Construction and Ranking of Ballistic Capture Orbits

The capture set, a set containing i.c. associated to ballistic capture orbits, is
derived through

Cn−1 = X−1 ∩Wn. (7)

Starting from the i.c. in Cn−1, a spacecraft can: 1) escape Mars in backward time
(X−1), or equivalently approach it in forward time, and 2) perform at least n natural
revolutions about Mars (Wn); refer to Hyeraci and Topputo [33] and Luo et al. [20]
for details.
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In general, the capture set Cn−1 embodies a number of points. Solutions with regu-
lar post-capture behaviors are favorable in applied scenarios as they can offer multiple
repetitive insertion conditions (ideal orbits). A stability index S is introduced in Luo
et al. [20], that is

S =
tn − t0
n

, (8)

where tn is the time at which the n-th revolution is accomplished. Physically, the
value of S depicts the mean orbital period in n revolutions [20, 22, 38].

3.2. Aerobraking Phase

3.2.1. Periapsis Maneuver and Aerobraking Trim Maneuvers

A small periapsis braking maneuver is employed at the first close encounter,
r0 = r(t0). This is twofold: a) It shortens the total aerobraking duration; and
b) It provides a geometry that favors the convergence of the subsequent aerobraking
targeting algorithm. While Eq. (7) yields low-energy Mars-approaching orbits, the n
revolutions past t0 guaranteed by Cn−1 are not actually performed, yet kept as backup
option in case of a single-point propulsion failure.

Let v0 be the spacecraft velocity at t0, and let ra0 be a target apoapsis distance
after performing ∆v0. The cost of the periapsis tangential maneuver is then

∆v0 =

∣∣∣∣∣
√

2Gmp

(
1

r0

− 1

r0 + ra0

)
− v0

∣∣∣∣∣ , (9)

which is found with a standard two-body dynamics.
Aerobraking trim maneuvers (ABMs) at apoapses, if necessary, are used to ensure

atmospheric pass conditions. The dynamic pressure at periapsis (denoted by qp) is
selected as the targeting parameter of each ABM, as done in the MGS, Magellan,
and Venus Express missions [7, 11, 12, 39]. Algorithm 1 presents the procedure to
compute the ABMs ∆vj, where rp0 is a given value (j = 1) or it is retrieved from
previous iteration (j ≥ 2), q̄p is the required periapsis dynamic pressure, and δq̄p is
its tolerance.

In summary, following the periapsis maneuver ∆v0, a number of atmospheric
passages are used to gradually reduce the orbit altitude, with ABMs ∆vj interposed
at apoapses, if needed (see Fig. 3). A semi-analytical method is used to estimate the
aerobraking duration; see the Appendix.

3.2.2. Orbital Inclination Correction

A yawed attitude during aerobraking is proposed to correct the orbital inclination
perturbed by the Sun gravity. It is then natural to question whether the inclination
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Algorithm 1 Algorithm to target a required periapsis dynamic pressure

1: function TargetDeltaV(rp0 , q̄p, δq̄p)
2: Set rp = rp0

3: for k = 1→ 10 do
4: Target rp by adjusting apoapsis velocity vaj with ∆vj
5: Calculate periapsis dynamic pressure qp
6: if |qp − q̄p| < δq̄p then
7: Break
8: else
9: rp ← rp −H ln(q̄p/qp)

10: end if
11: end for
12: rp0 ← rp
13: return ∆vj and rp0
14: end function

should be corrected as early as possible, when the orbit is large and elongated.
Answering this question drives the following arguments.

A yaw angle θ decomposes the aerodynamic acceleration ad. The inclination rate
of change is derived by using Gauss’s equations [1]

di

dt
=

√
1− e2 cosu

na(1 + e cos f)
an, (10)

where u = ω + f is the argument of latitude, an is the normal component of the
aerodynamic acceleration; see Eq. (A1) for definitions of remaining parameters. We
assume θ 6= 0. From Eqs. (3), (4), and (A2),

an = ad (cos θ)2 sin θ =
cGmpρA(1 + 2e cos f + e2)

2a(1− e2)
, (11)

where c = (cos θ)2 sin θ. Following the derivation in the Appendix, the derivative of
i with respect to the eccentric anomaly E reads

di

dE
=
cρaA cosu(1− e2 cos2E)

2
√

1− e2
. (12)
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Using Eqs. (A4), (A8) and cosu = cosω cos f − sinω sin f , Eq. (12) becomes

di

dE
=
cρ0aA cosω(1 + e cosE)(cosE − e) exp [−κ(1− cosE)]

2
√

1− e2

−cρ0aA sinω sinE(1 + e cosE) exp [−κ(1− cosE)]

2
,

(13)

where ω is the argument of periapsis. Note that the integral over a revolution of
the second term in the right-side of Eq. (13) is zero due to the odd function sinE.
Referring to Eq. (A10), the inclination change after one revolution is [40]

∆i =

∫ π

−π

di

dE
dE ≈ cρ0aA cosω

∫ π

−π

(1 + e cosE)(cosE − e)
2
√

1− e2
exp

(
−κE

2

2

)
dE

≈cρ0aA cosω
√

1− e2

∫ ∞
−∞

exp

(
−κE

2

2

)
dE = cρ0aA cosω

√
1− e2

√
π

2κ
.

(14)

Thus, the average rate of change of inclination over a revolution takes the form

di

dt
=
ρ0Cd0Sr cosω (cos θ)2 sin θ

ma

√
GmpH (1− e2)

πe
. (15)

From Eq. (15), di/dt depends on values of ρ0, ω, e, and a, the latter playing
a dominant role. That is, the smaller a, the higher the average rate di/dt. This
indicates that a late inclination correction via yaw maneuver is desirable.

After the aerobraking phase, an apoapsis maneuver ∆vf is employed to raise
the periapsis above the atmosphere and thus to deploy the spacecraft into the final
operative orbit (see Fig. 3).

3.3. Optimizing the Yaw Angle

Using Eqs. (3), (4) and (A12) yields

da

dt
= −ρ0Cd0Sr(cos θ)3

m

[
GmpH (1 + e)3

2πe(1− e)

] 1
2

. (16)

From Eq. (16), it can be inferred that da/dt is domniated by θ, and varies continu-
ously with it. Following analogous derivation of Eq. (15), it is possible to obtain

dΩ

dt
=
ρ0Cd0Sr sinω (cos θ)2 sin θ

ma sin i

√
GmpH (1− e2)

πe
(17)

10



and
dω

dt
=− cos i

dΩ

dt
. (18)

Through Eqs. (17) and (18) it is possible to infer that the condition dω/dt = 0 can
be achieved either by using polar orbits (i = π/2) or by choosing ω = 0 or π. In
all these cases, ω is preserved, consistently with the subsequent derivation of orbital
inclination.

The focus is now on selecting the value of yaw angle θ and semi-major axis aθ
where the i-correction begins. Observing that the in-plane and out-of-plane orbital
variations, or equivalently da/dt and di/dt are both affected by θ (Eqs. (15) and
(16)), a natural choice would be to select an initial aθ that makes it possible to
attain both targets simultaneously. Following this approach, dividing Eq. (15) by
Eq. (16) produces

di = −tan θ cosω (1− e)
2a(1 + e)

da. (19)

It is possible to integrate both sides of Eq. (19), i.e.,∫ if

iθ

di =−
∫ af

aθ

tan θ cosω (1− e)
2a(1 + e)

da, (20)

where iθ, aθ are the initial inclination, semi-major axis, while if , af are their required
targets. Then, substituting rp = a(1− e) in Eq. (20) and considering that the aim is
finding a policy involving constant θ, one gets∫ if

iθ

di = −rp tan θ cosω

2

∫ af

aθ

1

2a2 − arp
da, (21)

where ω is assumed constant by setting i ≈ π/2 and/or ω = 0 or π. Assuming
constant rp allows integrating Eq. (21):

if − iθ = tan θ cosω

[
tanh−1

(
4af
rp
− 1

)
− tanh−1

(
4aθ
rp
− 1

)]
. (22)

In Eq. (22), aθ is the unknown, which is function of θ, while iθ, if , and af are treated
as input values, and ω and rp are known. That is, there are infinite pairs of aθ and
θ that allow reaching af and if simultaneously.

11



3.3.1. Minimum yawing duration

The rationale is choosing a yaw angle that involves the minimum yawed duration.
This leads to an optimized yaw angle θ̄ and its corresponding semi-major axis aθ̄.
To ease the notation, we define

Ξ = −

√
2H

πGmp

q̄pCd0Sr
m

(23)

and

F(aθ) = tanh−1

(
4af
rp
− 1

)
− tanh−1

(
4aθ
rp
− 1

)
. (24)

From Eqs. (16), (A12) and (A16), it is possible to obtain the estimated yawing
duration when θ 6= 0, i.e.,

∆tθ =

∫ af
aθ
G(a) da

Ξ(cos θ)3
. (25)

Using Eq. (25) and the chain rule, we calculate

d∆tθ
daθ

=
3 sin θ

∫ af
aθ
G(a)da

Ξ(cos θ)4

dθ

daθ
− G(aθ)

Ξ(cos θ)3
=

1

Ξ(cos θ)3

[
3 tan θ

∫ af

aθ

G(a)da
dθ

daθ
− G(aθ)

]
︸ ︷︷ ︸

L(aθ)

,

(26)
where dθ/daθ can be derived from Eq. (22),

dθ

daθ
= − 4∆i cosω

rp
{

∆i2 + [F (aθ)]
2 (cosω)2

} [(
4aθ
rp
− 1
)2

− 1

] (27)

and ∆i = if − iθ.
Considering that |θ| < π/2 and Ξ 6= 0, the yawed duration ∆tθ arrives an ex-

tremum when d∆tθ/daθ = 0, or equivalently, when L(aθ̄) in Eq. (26) is zero. Enforc-
ing L(aθ̄) = 0 and using Eq. (27) yields

−
12∆i2

∫ af
aθ̄
G(a) da

rpF (aθ̄)
{

∆i2 + [F (aθ̄)]
2 (cosω)2

}[(4aθ̄
rp
− 1
)2

− 1

] − G(aθ̄) = 0. (28)

Newton’s method is introduced to solve Eq. (28), while the current apoapsis distance
is used as an initial guess of aθ in Eq. (24). An optimal aθ̄ with respect to minimum
yawing duration is obtained by verifying an additional condition: the second-order
derivative d2∆tθ/da

2
θ > 0. The corresponding yaw angle θ̄ is then computed by

Eq. (22).
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3.3.2. Minimum aerobraking duration

While θ̄ ensures the shortest yawing phase duration, it would be also desirable to
find another yaw angle θ̂ that guarantees an overall minimum aerobraking duration.
By using Eqs. (A16) and (25), the aerobraking duration can be written as

∆t =

∫ aθ
a0
G(a) da

Ξ︸ ︷︷ ︸
θ=0

+

∫ af
aθ
G(a) da

Ξ (cos θ)3︸ ︷︷ ︸
θ 6=0

, (29)

where a0 is the semi-major axis after ∆v0. Similarly to Eq. (26), we compute the
derivative of ∆t with respect to aθ

d∆t

daθ
=
G(aθ)

Ξ
+

3 sin θ
∫ af
aθ
G(a)da

Ξ(cos θ)4

dθ

daθ
− G(aθ)

Ξ(cos θ)3

=
1

Ξ(cos θ
)3

{
3 tan θ

∫ af

aθ

G(a)da
dθ

daθ
− G(aθ)

[
1− (cos θ)3

]}
︸ ︷︷ ︸

M(aθ)

.
(30)

Using Eq. (27) and imposing M(aθ) = 0, the following is obtained

−
12∆i2

∫ af
aθ̂
G(a)da

rpF (aθ̂)
{

∆i2 + [F (aθ̂)]
2 (cosω)2

} [(4aθ̂
rp
− 1
)2

− 1

] − [1− (cos θ̂)3
]
G(aθ̂) = 0

(31)
and

θ̂ = tan−1 ∆i

F(aθ̂) cosω
. (32)

By solving Eqs. (31), (32) and d2∆tθ/da
2
θ numerically it is possible to obtain the

critical semi-major axis aθ̂ that corresponds to a minimum aerobraking duration,

and hence an optimal yaw angle θ̂.

3.3.3. Summary of the approach

The full procedure developed to constructing ballistically captured and atmo-
spheric braked Mars orbits is summarized in Algorithm 2. The computation of aθ
is only activated when raj < 5R and aj ≥ aθ̄ (or aθ̂); that is to say, θ is updated

by θ̄ (or θ̂) and fixed once aj < aθ̄ (or aθ̂). This strategy speeds up the numerical
simulations. The 5R criterion has been chosen through numerical experiments.
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Algorithm 2 Outline of Mars orbit insertion via ballistic capture and aerobraking

1: Initialize spacecraft’s parameters m0, Cd0 , Sr, and specific impulse Isp
2: Initialize Martian density model with ρ0, h0, and H
3: Set aerobraking targeting variables rp0 , q̄p, and δq̄p
4: Set a zero-yawed attitude with θ = 0 and an inclination mode with iflag = 1
5: Choose periapsis epoch t0, rf and if according to mission requirements
6: Give e0 and ω0; set i0 = if , f0 = 0; discretize r0 and Ω0 into Nr0 and NΩ0 points
7: Integrate (4) forward and backward with a zero right-hand side
8: Obtain sets X−1 and Wn; generate capture set Cn−1 = X−1 ∩Wn

9: Extract candidates from Cn−1 having low values of stability index S
10: Calculate ∆v0 with (9) and a predefined ra0 ; update m with rocket equation
11: Integrate (4) until next apoapsis with a distance ra1 (see Fig. 3)
12: j = 1
13: while raj > rf do
14: if iflag = 1 and raj < 5R then

15: Compute aθ̄ (or aθ̂) and θ̄ (or θ̂) by solving (28) (or (31)) and (22)
16: aj = 0.5(rp0 + raj)
17: if aaj < aθ̄ (or aθ̂) then

18: θ ← θ̄ (or θ̂)
19: Set iflag = 0
20: end if
21: end if
22: [∆vj, rp0] = TargetDeltaV(rp0, q̄p, δq̄p) (see Algorithm 1)
23: Update m with the rocket equation
24: j = j + 1
25: Integrate (4) until next apoapsis with raj and vaj
26: end while
27: Compute ∆vf with raj , vaj and ef = 0
28: Compute ∆v = ∆v0 +

∑
∆vj + ∆vf

29: Compare obtained rf and if with required values

14



4. Simulations

4.1. Mars ballistic capture approach

A MGS-like vehicle with m0 = 760 kg, Sr = 17.04 m2, Cd0 = 1.95, and Isp = 300
s, is considered [2, 7]. The periapsis dynamic pressure q̄p is 0.6 N/m2, following the
original plan of the MGS mission [2, 7]. The tolerance δq̄p is 0.02 N/m2 and can be
reached in few iterations. An initial reference periapsis distance is rp0 = R+100 km.
The final operative orbit is a circular orbit with an altitude of 300 km (rf = R+ 300
km) and an inclination of 90 degree (if ). A polar orbit is chosen to support the
hypothesis of constant ω (see Sec. 3.3).

The initial condition is: 1) t0 = 2459137 JD (or 14 Oct 2020), when Mars has a
true anomaly of π/4 about the Sun; this favours the chances of gravitational capture
[22, 37, 41]; 2) e0 = 0.99; this is larger than 0.95 used in Hyeraci and Topputo [41]
and Luo et al. [20] because it lowers r0 in the capture set Cn−1 and thus reduces
the apoapsis trim maneuver ∆v1 (see Fig. 3); 3) i0 = if = 90 deg; 4) ω0 = 330
deg; 5) r0 ∈ [130 km + R, 2R] (a minimum altitude of 130 km guarantees that the
periapsis maneuver ∆v0 occurs outside of the Martian atmosphere) and Ω0 ∈ [0, 2π)
are uniformly discretized into Nr0 = 653 and NΩ0 = 720 points, respectively. This
is different from fixing Ω0 in Luo et al. [20] and Luo and Topputo [38], because a
large cosω0 is beneficial to inclination corrections (see Eqs. (15) and (22)). A value
of n = 6 is taken; that is, backup ballistic capture orbits in C6

−1 will perform at least
6 free revolutions about Mars (after t0).

The computation of the capture set takes 1.8 hours with 6-core Intel i7 CPU (2.60
GHz) architecture and Matlab environment. Figure 4(a) shows solutions belonging
to C6

−1 projected onto the plane of the pre-capture duration (t0− te ≤ 350 days) and
the post-capture stability index (S ≤ 160 days). As for t0−te, the shorter, the better.
Low values of S are associated to regular post-capture orbits [20, 22, 38]. Desirable
solutions are thus orbits in C6

−1 having short t0 − te and low S; however, these two
conditions are clearly in antithesis. Looking closely at Fig. 4(a), a sample (indicated
by the arrow) is taken from the island at t0 − te ∈ [200, 250] day and S ≤ 120
day, although we have found that the subsequent aerobraking is not sensitive to
which sample we choose. In practice, orbits of interest can be extracted from C6

−1 by
following multiple criteria depending on mission requirements. Figure 4(b) presents
the sample ballistic capture orbit in the BME@t0 frame. The distance and inclination
profiles are illustrated in Fig. 5. It can be seen that the post-capture altitude is
regular and repetitive (Fig. 5(a)). The inclination has instead large variations owing
to out-of-plane perturbations from the Sun (Fig. 5(b)). This involves inclination
corrections described in Section 3.2.2.
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4.2. Post-capture trim maneuvers and aerobraking

Let us focus on the periapsis maneuver at t0. To allow independent reproduction
of the results, the state at t0 (and at other four subsequent epochs) is reported in
Table 2. A moderate ra0 balancing perturbation effects and fuel consumption is
adopted: ra0 = 160R, slightly less than the SOI of 170 radii (see Table 1). Therefore
∆v0 = 7.2 m/s by Eq. (9); see Fig. 6(a). The apoapsis distance at t1 (the first
apoapsis of the aerobraking phase; see Fig. 3) is ra1 = 159.5R (see Fig. 6(b)), quite
close to the desired value of ra0 . After ∆v0, the ABMs ∆vj (j = 1, 2, ...) are calculated
by Algorithm 1, as noted in Fig. 6(a). The largest impulse is ∆v1 = 7.8 m/s; from
then on, the ABMs are less than 2 m/s. Figure 6(c) shows the inclination variations.
It can be seen that the inclination becomes stable when Mars plays a major role on
the orbit.

Table 2: State parameters at t0, tj and tf (before performing maneuvers); θ̄: minimum yawing

duration; θ̂: minimum aerobraking duration.

Epoch (JD)
Position (km) Velocity (km/s) Loop h i

xb yb zb vxb vyb vzb No. (j) km degree

2459137.000, t0 -886.2 3838.7 -2274.6 -0.487 2.109 3.748 0 1155.0 90.00

2459548.181, tj(θ̄) 1498.6 -6190.3 3628.5 0.591 -0.827 -1.654 204 3936.0 80.22
2459589.250, tf (θ̄) 756.0 -3124.1 1817.7 0.393 -1.605 -2.922 589 298.5 89.93

2459543.342, tj(θ̂) 1957.5 -8084.7 4737.6 0.470 -0.658 -1.318 174 6178.6 80.22

2459586.766, tf (θ̂) 750.9 -3100.9 1830.8 0.392 -1.629 -2.920 523 284.3 90.02

When the condition raj < 5R is achieved, the optimized aθ̄ and corresponding θ̄

(or aθ̂ and corresponding θ̂) is solved and updated at each apoapsis (see Algorithm 2).
The spacecraft holds a zero-yawed angle until aaj < aθ̄ (or aaj < aθ̂); subsequently,

a yawed attitude with θ̄ (or θ̂) is maintained during atmospheric passages. For
convenience the apoapsis epoch activating a yawed attitude is denoted by tj(θ̄) (or

tj(θ̂)). The states at tj, as well as the altitude and inclination, are given in Table 2.

In this simulation, θ̄ = 55.0 degree and θ̂ = 48.1 degree; see Fig. 6(d). The inclination
after tj is gradually adjusted from 80.22 degree to the target if for both optimization
options (see Table 2 and Fig. 6(c)). The zoomed-up view in Fig. 6(b) clearly shows
the reduction of da/dt when θ 6= 0.

The aerobraking ends when raj < rf ; the corresponding state is also given in
Table 2. The results show that: 1) both in-plane (altitude) and out-of-plane (in-
clination) dynamics can simultaneously attain their targets within an acceptable
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tolerance; 2) the two optimization approaches are verified, i.e., tf (θ̄) − tj(θ̄) = 41.1

day and tf (θ̂)− tj(θ̂) = 43.4 day; tf (θ̄)− t0 = 452.3 day and tf (θ̂)− t0 = 449.8 day.
Figure 6(e) shows the pericenter height during the aerobraking phase. The variation
is so negligible that rp can be treated as constant, as already done in Eq. (A13). In
practice, an altitude less than 100 km may be dangerous. This risk can be avoided
or reduced by: 1) lowering the targeting q̄p; 2) increasing the reference area Sr; or
3) estimating and updating atmospheric and spacecraft parameters during previous
aerobraking phase. Figure 6(f) shows the cosine value of argument of periapsis. The
assumption of a constant ω is verified. Figure 7 plots the capture orbit with the
optimization condition of min(∆tθ) together with the ballistic capture orbit. The
close-up view in Fig. 7(b) shows the transition from θ = 0 to θ̄.

4.3. Comparison with other injection options

Table 3 reports the comparisons of multiple MOI methods. The full impulsive
option results are taken from the MGS mission [2, 7], where ∆v0 = 973 m/s deploys
the spacecraft into a highly elliptical orbit around Mars and ∆vf = 1270 m/s is the
circularization cost at periapsis. The duration tf − t0 is the period of the elliptical
orbit. Using ballistic capture and chemical propulsion (B.C.+Chem.) is another
option. For convenience, the ballistic capture orbit resulting from the sample in Fig. 4
is used. A periapsis maneuver ∆v0 = 1423 m/s at t0 is used to inject into an orbit
with apoapsis and periapsis altitudes of 1155 and 300 km, respectively, where 1155 km
is the altitude at t0 (see Table 2). Similar to the fully impulsive case, ∆vf = 172 m/s
is applied to circularize the orbit. The data for the conventional aerobraking method
(Chem.+Aero.) in Table 3 are taken form MGS mission. The maneuvers

∑
∆vj and

∆vf are not listed because the mission was redesigned due to solar panel issues [2, 7].
The planned aerobraking duration is 140 day. Eventually, Table 3 reports the results
of this work for both optimization options. The discrepancy of ∆vf derives from
their different altitudes at tf . Comparison among different MOI options indicates
that the one based on combination of ballistic capture and aerobraking proposed in
this paper offers a good fuel consumption, at the expense of a much longer flight
time. Moreover, the reduction of hyperbolic excess velocity upon Mars approach is
achieved at the cost of targeting a point in the deep space (e.g., the point at te in
Fig. 4(b)). This comes at a cost [3], and needs to be considered in the overall mission
assessment, yet is out of the scopes of the present work.

5. Conclusions

A novel Mars orbit insertion strategy that combines ballistic capture and aer-
obraking is presented in this work. Mars approaching orbits that support ballistic
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Table 3: Comparison with other MOI types (θ̄: minimum yawing duration; θ̂: minimum aerobraking
duration).

MOI type
Total ∆v ∆v0

∑
∆vj ∆vf tf − t0 mf

m0(m/s) (m/s) (m/s) (m/s) (day)

Chemical 2173 973 – 1270 1.9 0.467
B.C.+Chem. 1595 1423 – 172 < 1 0.581
Chem.+Aero. ∼973 973 140 ∼0.718
This work (θ̄) 72.2† 7.2 16.2 48.8 452.3 0.976

This work (θ̂) 69.0† 7.2 16.2 45.6 449.8 0.977
† Total ∆v of this work excludes the maneuver to enter the pre-capture trajectory and poten-
tial expense of station keeping, momentum dumping or other required maneuvers during the
aerobraking phase.

capture are first generated using a construction method developed in previous works.
A small periapsis maneuver is implemented at the first close passage. A patching
point is used to switch to aerobraking. The atmospheric phase features periapsis
trim maneuvers and yaw angle tuning to target a prescribed dynamics pressure and
inclination, respectively. Comparison with other injection alternatives yields a good
compromise of desirable features, i.e., lower insertion fuel consumption, lower failure
risks and more flexible launch windows, albeit involving a longer flight time (Mars
gravity and atmosphere measurements can be scheduled as by-product of long-time
insertion) and more aerobraking trim maneuvers.

Although numerical simulations are carried out in a low-fidelity model, e.g., a point
mass assumption for Martian gravity, an exponential model for Martian atmosphere
and a simplified “box-wing” configuration for the spacecraft, the developed insertion
strategy can be extended to simulating environments modeled with high levels of
fidelity and provide an alternative for missions to Mars or other planets/satellites
with atmosphere.

Appendix: Aerobraking Duration Prediction

Three assumptions are made: 1) a two-body dynamics is considered; 2) θ = 0; 3)
q̄p is a constant. According to Gauss’s equations [1], we obtain

da

dt
= −2

√
1 + 2e cos f + e2

n
√

1− e2
ad, (A1)
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where a, e, f , n are the semi-major axis, the eccentricity, the true anomaly, and
the mean motion, respectively. The term ad is the tangential acceleration here; see

Eq. (2). Substituting the vis viva equation and r = a(1−e2)
1+e cos f

into Eq. (2), we have

ad =
GmpρA(1 + 2e cos f + e2)

2a(1− e2)
, (A2)

where A = Cd0Sr/m. Using Gmp = n2a3, we find that

da

dt
= −ρAna2

[
1 + 2e cos f + e2

1− e2

] 3
2

. (A3)

To calculate the derivatives of a with respect to the eccentric anomaly E, note
that 

r = a(1− e cosE)

r sin f = a
√

1− e2 sinE

r cos f = a(cosE − e)
. (A4)

Hence, we have
dE

dt
=

n

1− e cosE
(A5)

and

1 + 2e cos f + e2 =
(1− e2)(1 + e cosE)

1− e cosE
. (A6)

There obtains

da

dE
= −ρAa2

[
(1 + e cosE)3

1− e cosE

] 1
2

. (A7)

Now assume ρ0 in Eq. (1) is exactly the density at the pericenter and h0 is the
pericenter altitude. Substituting r = a(1− e cosE) into Eq. (1), we can obtain

ρ = ρ0 exp [−κ(1− cosE)] (A8)

with κ = ae
H

. Thus,

da

dE
= −ρ0Aa

2 exp [−κ(1− cosE)]

[
(1 + e cosE)3

1− e cosE

] 1
2

. (A9)

22



Since aerobraking occurs in close proximity to the pericenter, we have 1−cosE =

2
(
sin E

2

)2 ≈ E2

2
. Then, we evaluate decremental semi-major axis from one apoapsis

to next one

∆a =

∫ π

−π

da

dE
dE ≈− ρ0Aa

2

∫ π

−π
exp

(
−κE

2

2

)[
(1 + e cosE)3

1− e cosE

] 1
2

dE

≈− ρ0Aa
2

[
(1 + e)3

1− e

] 1
2 ∫ ∞
−∞

exp

(
−κE

2

2

)
dE.

(A10)

Using the Gaussian integral
∫∞
−∞ exp(−x2)dx =

√
π, Eq. (A10) becomes

∆a ≈ −ρ0Aa
2

[
(1 + e)3

1− e

] 1
2
√

2π

κ
. (A11)

Similar conclusions can also be found in Esposito et al. [2], Roy [40] and Zhou and
Liu [42]. Dividing Eq. (A11) with T = 2π

√
a3/Gmp, we obtain the average rate

da

dt
=

∆a

2π
√
a3/Gmp

= −ρ0Cd0Sr
m

[
GmpH (1 + e)3

2πe(1− e)

] 1
2

(A12)

and the density at pericenter

ρ0 =
2q̄p
v2
p

=
2q̄p

Gmp(
2
rp
− 1

a
)
, (A13)

where rp and vp are the distance and velocity at pericenter, respectively. The variable
rp is supposed to be constant. Using rp = a(1− e), we find that e is a single variable
function of a. Substituting Eq. (A13) into Eq. (A12) and removing the variable e,
we have

da

dt
= −

√
2H

πGmp

Cd0Srq̄p
m

[G(a)]−1 (A14)

and G(a) is a function of a in the form

G(a) =

√
a− rp

arp(2a− rp)
. (A15)
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Now integrating Eq. (A14) from aj to aj+1, we find that

∆t = − m

Cd0Srq̄p

√
πGmp

2H

∫ aj+1

aj

G(a)da. (A16)

Numerical integrators are used to solve Eq. (A16) for the aerobraking duration ∆t
as no explicit integral for G(a) is found.
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