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A Matheuristic Approach 
for the Home Care Scheduling Problem 

with Chargeable Overtime and Preference Matching

1 
Abstract—Home Care (HC) services represent an effective 

solution to face the health issues related to population aging. 
However, several scheduling problems arise in HC and the 
providers must make several scheduling and routing decisions, e.g. 
the assignment of caregivers to clients, in order to balance 
operating costs and client satisfaction. Starting from the analysis 
of a real HC provider operating in New York City, NY, USA, this 
paper addresses a scheduling problem with chargeable overtime 
and preference matching, and formulates it as an integer 
programming model. The objective is to minimize a cost function 
that includes travelling costs, the overtime cost paid by the 
provider, the preference mismatch and a penalty related to the 
continuity of care violation. To solve this problem, we design a 
matheuristic algorithm which integrates a specific variable 
neighborhood search with a set covering model. The results 
demonstrate the applicability and efficiency of our approach in 
solving real-size instances. Sensitivity analyses are also performed 
to discuss practical insights. 
 

Note to Practitioners—This paper provides a decision support 
tool to HC managers, which appropriately assigns caregivers to 
clients and makes routing decision over a long horizon. 
Chargeable overtimes and preference matching enclosed in this 
tool are rarely considered in the literature, despite matching is 
relevant in HC caregiver-to-client assignments and chargeable 
overtime has a potential in tailoring the service level based on the 
specific client. We formulate the scheduling problem as a 
mathematical model. Then, we propose a matheuristic algorithm 
to efficiently solve the problem in real-size instances. The results 
show the applicability and efficiency of our method. Thus, HC 
managers can exploit it to efficiently make assignment and routing 
decisions, and to analyze the impact on other operating costs when 
adjusting any of them. 
 

Index Terms—Home Care Assignment and Scheduling, Vehicle 
Routing Problem, Variable Neighborhood Search, Set Covering 
Model. 

I. INTRODUCTION 
ITH the development of society and the rising of life 
expectancy, aging has become one of the most 

significant population trends all over the world. Currently, over 
11% of the world population are aged 60 and over, and the 
number is estimated to rise to 22% by 2050 [1]. Along this trend, 
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Home Care (HC) has become an increasingly important part of 
health care systems in many countries. In the US, about 3.3 
million people received HC services from more than 11400 
agencies in 2009, and Medicare expenditure on HC is more than 
19 billion dollars [2]. In this light, the HC Scheduling Problem 
(HCSP) attracts more and more attention of researchers and 
practitioners. Generally, HCSP addresses the optimization of 
assignment of caregivers to customers and construction of their 
routes among customers in different locations over a day or a 
longer horizon. The definition of HCSP resembles vehicle 
routing problem (VRP) while some specific medical 
requirements make HCSP different. For example, continuity of 
care is required to assign the same caregiver to the same 
customer in HCSP, and preference of care should be respected 
to improve the quality of care. These requirements make HCSP 
more complex. It is challenging for the HC service providers to 
solve the HCSP to reduce the cost and improve the patients’ 
satisfaction. 

This paper is motivated by a real HC provider operating in 
New York City, NY, USA, which provides HC services to 
customers in different locations. Based on this specific case, in 
this paper we address a particular HCSP setting with several 
specific features. The main feature consists of the so-called 
chargeable overtime, i.e., a part of the overtime costs is 
sustained by the clients who are willing to pay a higher fee to 
cover the additional overtime costs incurred because extra time 
worded with the same client to preserve his/her continuity of 
care. The feature correlates two significant operational 
objectives in HCSP, i.e. overtime cost and continuity of care. 
On the one hand, these clients are beneficial for the provider to 
reduce its overtime cost; on the other hand, the feature puts even 
more pressure on the provider to meet clients’ requirements for 
continuity of care. Moreover, the preference of clients for being 
served by a special type of caregiver or a specific caregiver is 
considered. The objective of the HCSP is to minimize a cost 
function that includes travelling cost, the overtime cost paid by 
the provider, the preference mismatch and a penalty related to 
the continuity of care violation. The first two components aim 
at reducing the costs sustained by the provider, while the others 
aim at improving the quality of care. Finally, some strict 
constraints need to be satisfied, which include available 
working time periods, rest times and the maximum working 
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times of caregivers. These specific and strict constraints make 
it more difficult to model the problem and narrow the feasible 
region, making it even difficult to find a feasible solution. 

This problem was first formulated in [3], in which it has been 
formulated as a linear programming model and the problem has 
been solved exploiting a cluster-based decomposition. Then, in 
our preliminary conference paper [4], we proposed a simple 
Variable Neighborhood Search (VNS) algorithm to solve it. In 
this paper, we extend and consolidate the conference paper. 
First, we design a matheuristic algorithm that combines VNS 
with a Set Covering Model (SCM). Both components can 
perform the optimization in a collaborative manner and provide 
beneficial information for each other. Furthermore, we revise 
the previous VNS and put forward some adaptive mechanisms 
to provide more and better routing input to the SCM. To assess 
the effectiveness and efficiency of our algorithm, we test it with 
a real-life case and compare the results with the optimal 
solution. We also perform sensitivity analyses and provide 
managerial insights for the practitioners. 

The rest of this paper is organized as follows. Section II 
presents a review on the related literature. Section III describes 
the problem and formulates the HCSP model, while the solution 
approach is proposed in Section IV. Section V describes the 
case study and sensitivity analyses. Finally, Section VI draws 
the conclusions of the paper. 

II. LITERATURE REVIEW 
Despite the importance of HC services, there is still not 

enough work to tackle HC scheduling problems. The difficulty 
of HCSP is that not only the revenue of caregiver and the 
regular constraints in VRP, but also the medical constraints and 
some matching and preference requirements, need to be 
considered when making scheduling decisions. In these years, 
more and more researchers and practitioners make efforts to 
narrow the gap between research and practice and solve real-
life HCSP. Eveborn et al [5] consider different types of tasks in 
HC and for each client, he/she should be visited by the same 
caregiver if possible. They develop a HC planning system to aid 
the planners that includes several modules about data, 
optimization and report. Carello et al [6] consider nurse-to-
patient assignment under the constraint of continuity of care and 
uncertainty of demand. A cardinality-constrained robust 
assignment model that does not rely on generation of scenarios 
is proposed. Liu et al [7] consider three types of demand of 
patients at home: transportation of medical devices between HC 
company and clients, delivery of drugs from care deliver to 
patients and delivery of blood samples from clients to the 
hospital. They intend to determine the visit pattern of each 
patient in a period and vehicle routing for each day. A Tabu 
search scheme, in which several neighborhood structures are 
proposed and infeasible solutions are allowed, is designed to 
solve the problem. In the following, they also consider 
stochastic travelling and service time in HC and home health 
care problem [8] and synchronized visits [9]. Duque et al [10] 
consider training and skills of caregivers in HC service to meet 
the preference of both patients and caregivers and minimize the 
total travelling distance. The problem is formulated as a bi-
objective mathematical program, based on a set-partitioning 
problem formulation. A flexible two-stage solution strategy is 

designed to efficiently tackle the problem. Qin et al [11] study 
a multi-period inspector scheduling problem that is a new 
variant of multi-trip VRP with time windows. The inspectors 
are permitted not to return the depot in the problem. The 
objective is to construct routes for inspectors to complete as 
many workloads as possible. Several local operators are 
proposed and integrated into a Tabu search framework. An 
upper bound is also established by constructing a constrained 
knapsack. Yalçındağ et al [12] propose a data-driven method to 
estimate the travel times of care givers in the assignment 
problem when their routes are not available. The method, based 
on the Kernel regression technique, uses the travel times 
observed from previous periods to estimate the time necessary 
for visiting a set of patients located in specific geographical 
locations. In another paper, Yalçındağ et al [13] jointly consider 
three characteristics in HC services, namely the assignment of 
patients to caregivers, the pattern applied by caregivers to visit 
patients and the routing problem. A two-stage approach 
framework is proposed to incrementally incorporate decisions 
into the first stage. Riazi et al [14] address a home health care 
routing and scheduling problem, in which time windows of 
caregivers and clients are restricted and the caregivers for each 
client must be qualified. A hybrid algorithm is proposed to 
solve the problem, which integrates a heuristic distributed 
gossip algorithm with a local solver based on column 
generation. Zhan et al [15] simultaneously consider team 
assignment, routing and appointment scheduling in HC 
problem. By considering the random service time, a scenario-
based mixed integer program is proposed and a heuristic 
algorithm is developed based on Tabu search. Gomes et al [16] 
present a HC problem, in which each patient must be served by 
exactly one caregiver within a week and between weeks, the 
caregivers must rotate among patients. In addition, the updating 
of the plan is triggered by the events of patients’ arrival or 
departure. The problem is formulated as mixed-integer linear 
program which is solved by decomposing the whole problem 
by patients’ typology and day. Chaieb et al [17] consider the 
skills of caregivers and time windows and preference of clients. 
The problem is decomposed into three subproblems which is 
solved by k-means, Hungarian algorithm, and Tabu search 
respectively. Grenouilleau et al [18] study a weekly HCSP 
considering patients’ requirements, caregivers’ skills, time-
dependent travel times and contracted working hours. More 
recently, Liu et al [19] study a periodic home health care server 
assignment problem to properly assign servers to customers 
along the planning horizon; the continuity of care is regarded as 
a hard constraint. Grenouilleau et al [20] maximize the 
acceptance of new patients considering visit patterns in HC 
problem (each patient is assigned to a single provider and visit 
times must be the same throughout the week) and time windows 
of patients and caregivers and maximum time for caregivers. 
Three mathematical formulations are proposed and a hybrid 
algorithm are developed that combines logic-based Benders 
decomposition and large neighborhood search. The algorithm 
iteratively solves the problem using large neighborhood search 
and then solves Dantzig-Wolfe formulation using the 
information found by large neighborhood search. Zabinsky et 
al [21] study how to transport medical specimens from clinics, 
physician’s offices and hospitals to a central laboratory. A 
vehicle routing and scheduling algorithm is proposed, in which 



 

some propositions are proved to efficiently traverse a branch-
and-bound tree. 

According to Fikar et al [22] and Cissé et al [23], the 
objectives in multi-period HCSP includes travel cost, wait time, 
overtime, preferences, number of caregivers, fairness, number 
of tasks, number of caregivers and continuity of care. The 
constraints include time windows, skill requirements, 
regulations, breaks, workload balance and uncertainty, etc. 
Compared with the existing literature, this paper considers 
HCSP with multi-depot and long planning horizon 
characteristic and the caregivers are allowed not to go home at 
the end of a period. The payment mechanism that clients can 
choose to pay the overtime to get continuity of care has been 
rarely considered in the literature (only in our previous works 
[3] and [4]). Otherwise, we also consider matching 
requirements that have received little attention in previous HC 

problems, which are represented as the caregivers’ and clients’ 
preference, “Not send” and “Must go” lists by thorough 
investigation. In Table I, we list the objectives and constraints 
of the papers regarding HCSP after 2015 and compare them 
with our problem setting. Note that in our setting clients 
propose their requirements and usually they need several visits 
over a week and each requirement must be strictly respected, so 
multiple pattern is out of our consideration. In addition, 
considering the synchronization with other types of assistance 
or some other conditions, the time window constraint is not 
considered. However, our model and approach can be easily 
extended to enclose time window constraint. Our problem 
considers a richer version of HCSP than most of the existing 
papers and there is no literature tackling with chargeable 
overtime and caregivers’ strict preference of working period. 

TABLE I 
OBJECTIVE AND CONSTRAINTS OF AVAILABLE HCSP FORMULATIONS AND OUR FORMULATION

Article Horizon Objectives Constraints 
TW MM CO CC BK CP WC MP 

Riazi et al [14] Daily ↓ Travel distance √ √       
Cappanera et al [24] Weekly ↑ Minimum workload  √  √    √ 
Grenouilleau et al [20] Weekly ↑ # patients visited √ √  √   √ √ 
Gomes et al [16] Weekly ↓ Travel time 

↓ Change of visiting time 
↓ Maximum workload 

√   √ √  √  

Yalçındağ et al [13] Weekly ↓ Maximum workload 
↓ Travel distance 

 √  √   √  

Duque et al [10] Weekly ↑ Preference match 
↓ Travel distance 

      √ √ 

Grenouilleau et al [18] Weekly ↓ Uncovered jobs 
↓ Travel time  
↓ Continuity of care violation 
↓ Working hours penalty 
↓ Soft requirement mismatch 

√ √     √  

Liu et al [8] Daily ↓ Travel time 
↓ Uncovered jobs 

√ √       

Liu et al [19] Weekly ↓ Maximum workload    √    √ 
Chaieb et al [17] Daily ↓ Uncovered jobs 

↓ Waiting time 
↓ Travel time 
↓ Preference mismatch 

√ √       

This paper Weekly ↓ Preference mismatch 
↓ Travel time 
↓ Overtime cost 
↓ Continuity of care violation 

 √ √ √ √ √ √  

Note: ↓, Minimize; ↑, Maximize; #, Number of; TW, Time Window; MM, Mandatory Match (Skill requirement or clients’ strict preference etc.); CO, 
Chargeable Overtime; CC, Continuity of Care; BK, Break; CP, Caregivers’ Strict Working Preference (Work on weekend or at night etc.); WC, Work Time 
Contracts; MP, Multiple Service Pattern 

 
Two classes of methodology are applied to tackle HCSP or 

multi-depot periodic VRP (MPVRP), namely exact approaches 
and approximate methods [23]. Exact approaches for HCSP or 
MPVRP usually include integer programming [16], [24], [25], 
branch-and-bound [21], branch-and-price [8], [26], [27], or 
branch-and-cut [28], [29], [30], [31], [32]. Although these 
approaches can theoretically obtain the optimal solution, they 
usually require the models to have specific structures and the 
running times are rather long. Approximate methods can be 
divided into two categories: metaheuristic and hybrid 
algorithms. In metaheuristic algorithms, the frameworks of 
different algorithms are inherited and specific operators or rules 
are defined based on problem characteristics. Tabu search [7], 
[11], [15], [33], adaptive large neighborhood search [34], [35], 
genetic algorithm [36], modular heuristic algorithm [37], path 

relinking algorithm [38], constraint programming [39] are 
frequently-used metaheuristic algorithms. In hybrid algorithms, 
two or more strategies are integrated; for example, matheuristic 
algorithms combine exact solution procedures for subproblems 
of the overall problem together with metaheuristics [22]. 
Therefore, they inherit the advantages of both strategies, which 
is also the reason why we use this type of algorithm in our 
problem. Column generation [14], Benders decomposition [20], 
set covering-type model [40] are usually integrated in the 
metaheuristic approach. Metaheuristic algorithms are known 
for their efficiency; however, there is no guarantee of 
convergence. 



 

III. PROBLEM DESCRIPTION AND FORMULATION 
The complexity of HCSP considered in this paper lies in 

some real-life constraints that must be respected when making 
the scheduling plan. Different from traditional VRP, HC 
providers balance their own revenue and the satisfaction of 
clients. In this section, we first describe the specific 
characteristics existing in HCSP, then the integer linear 
programming (ILP) model formulation is presented for solving 
the problem. 

A. Problem description 
The provider has a set of clients to take care of at home and 

a pool of caregivers to assign jobs. Clients propose a weekly list 
of requests for assistance with specific starting times and 
durations. Caregivers can be assigned to clients based on a set 
of constraints including clients’ needs and preferences. In this 
problem, all the requirements from clients are collected before 
the scheduling work. Therefore, the demand information is 
known in advance. A fixed weekly schedule determines which 
jobs are assigned to which caregiver, as well as each caregiver’s 
travelling route. No temporal dependency exists in this 
problem, i.e., no team work exists thus every caregiver does the 
jobs on his/her own. Once the caregivers communicate their 
availabilities, they are not allowed to reject the requests in the 
schedule. Note that in our case, where shifts are related to the 
assistance to the client, the provider has to guarantee that the 
client is assisted over a very specific time period considering 
the synchronization with other types of assistance (e.g., another 
member of the family is taking care of the patient in specific 
hours or a shift has to start when the caregiver of the previous 
shift stops working), the starting and finishing times of each job 
need to be strictly respected. From an optimization respective, 
a flexible starting time results in better solution in terms of costs 
and workload balancing. In fact, our model and approach can 
be easily extended to enclose time window constraints, as 
shown in Appendix B.   

Several relevant characteristics define the specific problem 
faced by provider: 

1) Travel time. It is not considered as work time and, thus, it 
is not paid. We assume the caregivers’ home as the initial and 
final location. The travel time to and from a client is calculated 
as the driving time in the two directions respectively. 

 
TABLE II 

PREFERENCE CRITERIA 
Index Criteria 
1 Prefer female caregiver 
2 Prefer male caregiver 
3 Native language 
4 Car holder 
5 Driver's license required 
6 CNA license required 
7 CPR/First Aid certification required 
8 HHA certification required 

 
2) Chargeable overtime. A reference number of weekly 

working hours is defined according to regulation, which is 
equal to 40 hours. Moreover, each caregiver will define a 
threshold for the maximum working hours per week, which can 
be lower than 40 hours, or equal to 40 hours plus the extra hours 
he/she is willing to work. The total number of working hours 

cannot be greater than each caregiver’s threshold. The 
caregivers are paid for their actual working hours and if 
caregivers work overtime, i.e., more than 40 hours one week 
with the US regulation, the hourly payment is higher. However, 
since some clients value continuity of care, the clients can 
decide to pay such extra overtime cost by themselves. In reality, 
the company provides all the information about such additional 
fee, including the hourly overtime cost, the range of variability 
for the cost and so on. Then the clients decide whether to pay 
the overtime cost or not. More specifically, if one caregiver 
works for more than 40 hours per week with one client and the 
client is willing to pay for the overtime, the company will have 
no extra cost for this caregiver. If the client decides to pay for 
the overtime cost, then the care of continuity can be better 
maintained; otherwise, the company may assign another 
caregiver to this client to reduce the total cost. This payment 
mechanism that clients pay more for better service can also be 
found in some other services. For example, the price of a flight 
ticket is higher if a traveler asks for a better place in the aircraft 
or for more flexible cancellation policies, or the shipping cost 
of goods purchased online is higher if special delivery 
conditions are required. 

3) Preference matching. A questionnaire is designed for 
clients and caregivers for satisfying clients’ personal demands, 
in which some preference criteria are collected and presented in 
Table II. All the clients and caregivers need to answer to the 
survey containing these criteria with answer “YES” or “NO”. It 
is important to notice that the criteria do not give precise 
indications. For example, if a client answers "NO" to the 
statement "Prefer female caregiver", this may not mean he/she 
prefers a male caregiver; if a client answers "NO" to the 
statement "Require driver's license”, this does not mean he/she 
does not want a caregiver with driver’s license. Therefore, all 
clients need to answer to another list of questions that whether 
they are interested in each criterion in the questionnaire. So the 
answers form above two questionnaires are both considered 
when calculating preference matching and it is calculated using 
equation (1), where the notations are explained in Table III. 

2(( ) ), ,k
c cq kq cq

q M
c C k Kγ π ω λ

∈

= − ∀ ∈ ∈∑   (1) 

4) Night shift. In the real case problem, night shift is not a 
real working shift as is traditionally considered. In reality, some 
clients may need assistance when sleeping during the night and 
some may not, so the provider defines an 8-hour night shift 
attached to a regular job for the latter. If a job including a night 
shift is assigned to a caregiver, he/she will spend an 8-hour 
break during the night at the client’s home. Therefore, the 8-
hour night shift is considered as rest time instead of working 
time, and thus the caregiver is not paid. Note that, night shifts 
do not contribute to the reaching of maximum working hours 
for caregivers. Caregivers may have different preferences for 
working at night and, specifically, some part-time caregivers 
only accept jobs that start after certain time (9 p.m.) at night. 

5) Continuity of care. Clients are allowed to choose the 
maximum number of caregivers that is sent to him/her each 
week. Although full continuity of care with one caregiver per 
client [23] [41] is widely pursued, it is not usually possible 
while respecting other constraints. Thus, the clients choose the 
maximum number of different caregivers that they are willing 



 

to accept per week and the provider tries to keep the number of 
caregivers lower than or equal to this maximum number. 

 
TABLE III 

SETS, PARAMETERS, AND VARIABLES FOR HCSP 
Notations for HCSP 

Sets Description 
I Set of jobs 
C Set of clients 
K Set of caregivers 
M Set of preferences 
WE Set of weekend hours in a week 
NS Set of night hours in a week 
ON Set of hours after 9 p.m. each day in a week 
Parameters Description 

kS  Maximum working hours of caregiver k 

it  Starting time of job i 
β   Max duration of a break for caregivers not going home 

c
iθ  Binary, 1 if job i is of client c 

k
cmg  Binary, 1 if caregiver k must do a job of client c 

k
ins   Binary, 1 if job i cannot be allotted to caregiver k 

τ   Maximum working hours according to regulation 

id   Duration of job i 
re   The duration of a rest at home for caregivers 

ijδ   Travel time from job i to job j 

 k
iδ  Travel time between caregiver k and job i 

cε   Binary, 1 if client c is willing to pay for overtime 

kξ   Binary, 1 if k is willing to work on weekends 

kν   Binary, 1 if k is willing to work at night 

kϕ   Binary, 1 if k only accepts job after 9 p.m. 
k
cγ   Preference mismatch of client c and caregiver k 

cη   Max number of caregivers that can be sent to client c 

cπ   Vector of preferences for client c 

kω   Vector of characteristic for caregiver k 

cλ   Vector of interests of client c 
Variables Description 

k
ijx   Binary, 1 if job j is done after i by caregiver k without 

going home 
k
ijy  Binary, 1 if job j is done after i by caregiver k when going 

back home between two jobs 
k
iz  Binary, 1 if job i is done by caregiver k 

k
cp  Binary, 1 if caregiver k does at least one job of client c 
k

if  Binary, 1 if job i is the first job of caregiver k 
k
il  Binary, 1 if job i is the last job of caregiver k 

k
cO  Overtime of caregiver k worked on client c 

kσ  Total overtime not paid by clients 

cE  Exceeded number of caregivers sent to client c 
, k

cu g   Auxiliary binary variables 
 
6) “Not send” and “Must go” lists. It is natural that some 

clients have personal preference for certain caregivers. Trying 
to match the preferred caregivers with clients as well as avoid 
assigning the unwished caregivers will increase clients’ 
satisfaction. The provider creates a “Must go” list and a “Not 
send” list for each client. If a caregiver appears in the “Not 
send” list, he/she will not be assigned the job. On the other 
hand, if a caregiver appears in the “Must go” list, he/she will be 

assigned at least one job requested by the client per week. It is 
important for the provider to increase clients’ satisfaction. 

Note that the requirement of “Not send” and “Must go” is 
rather stricter than the general preference. The former can 
seriously affect the quality of HC and therefore must be 
respected. 

The objective of the HCSP is to provide a service that 
minimize: 

1) Preference mismatches between clients and caregivers 
2) Travelling distance of caregivers 
3) Overtime paid by the provider 
4) Penalty for violating continuity of care 

 

B. Problem formulation 
We list all the notations in Table III that can be referred to. 

Multiple objectives are transformed into single objective by 
applying weight αi associated to each component. As different 
components in the objective function may have different 
magnitude, a normalization is required [42]. The weights are 
computed as i i iaα θ= , where 𝑎𝑎𝑖𝑖  are the weights assigned by 
the decision maker and θi are the normalization factors 
calculated as 1/ ( )U L

i i ie eθ = − , where U
ie  and L

ie  are the upper 
and lower bound of each component respectively. 

The objective can be formulated as follows: 

   

1
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  (2) 

The first component represents the cost of preference 
mismatch. The second part is the travelling cost and the total 
travelling time is obtained by summing up the travelling time 
between caregivers and clients, travelling time between 
different clients as well. The third and fourth parts represent 
overtime cost and penalty for violating continuity of care 
respectively. In (2), k

cγ , kσ and cE need to be calculated 

respectively. Parameter k
cγ  is calculated as equation (1). 

The other two variables, kσ  and cE  are dependent on 

decision variables k
iz ; kσ can be calculated as follows:  
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The overtime of caregiver k served for c is first calculated 
and then the willingness of client c to pay for overtime is 
considered when summing up the overtime of caregiver k. The 
first equation in (3) can be linearized by: 
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cE  represents the exceeded number of caregivers for client 
c and can be calculated as shown in (4). Note that in all formulas 
M represents a sufficient large number. 

, ,

· , ,

,

0

k c k
c i i

i I
k c k
c i i

i I
k
c c c

k K

c

M p z c C k K

p M z c C k K

p E c C

E c C

θ

θ

η

∈

∈

∈

⋅ ≥ ∀ ∈ ∈

≤ ∀ ∈ ∈

≤ + ∀ ∈

≥ ∀ ∈

∑

∑

∑
，

  (4) 

Other constraints are listed as follows: 
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Constraints (5) ensure that the total working time of 

caregivers cannot exceed the maximum hours each caregiver 
has declared. Constraints (6) guarantee that each job is done 
exactly once. Constraints (7) impose that if a caregiver does a 
job, this job can either be the last/first one, or the 

predecessor/successor of another job. In the latter case, the two 
jobs can be done either one after the other or by going home in 
between. Constraints (8) guarantee that the starting times of the 
jobs are set correctly in the cases when two jobs are done one 
after the other or by going home in between. Constraints (9) 
guarantee that if two jobs have more than β hours in between, 
then the caregivers must go home. Constraints (10) ensure that 
each caregiver starts and ends work at home. Constraints (11) 
state that either a job is done after another or the caregiver goes 
home in between. Constraints (12) and (13) deal with “Not 
send” and “Must go” lists respectively. Constraints (14)-(16) 
guarantee that, if a caregiver is not available at night or on the 
weekend of before 9 p.m., he/she is not assigned jobs in this 
period. 

The model is from our previous conference paper [4]. In this 
paper all the preferences are treated as soft requirements and 
share identical weights. Constraints (4) are augmented to 
present the relation of decision variables k

iz  and cE . Note that 
there are different ways to formulate the problem, we construct 
several formulations and choose the best one. Two other 
alternatives are presented in Appendix A. 

IV. SOLUTION APPROACH 
In this section, we propose a matheuristic approach that 

embeds an integer programming model in the VNS process, 
which is named IP-Insert VNS algorithm and resembles the idea 
in [40]. The framework of the IP-Insert VNS is presented in 
Algorithm 1. The solution is in terms of a set of routes, where 
each route contains all jobs assigned to the corresponding 
caregiver in the planning horizon. 

In the initialization phase, a heuristic mechanism generates a 
single solution that is saved as the current optimal solution. At 
each iteration, the current best solution is first diversified by 
removal and insertion operations, namely r caregivers are 
randomly selected and the jobs assigned to them are removed 
and reinserted. The number r of selected caregivers is 
adaptively adjusted according to the status of the current best 
solution. Then, the solution is improved in the intensification 
phase by means of a neighborhood search. During the above 
two procedures, some routes (also called columns) can be 
generated and recorded in the column pool. When the trigger 
condition of SCM is met, it is solved with CPLEX, otherwise it 
is not solved at that iteration. 

 
Algorithm 1 IP-Insert VNS Algorithm 
Input: Data set of caregivers and clients; Weights for objectives; 
Parameters in algorithm 
Output: Schedule for caregivers; Cost of each objective 
1: Initialization 
2: While stopping criteria is not satisfied 
3:    Diversification(r) 
4:    Intensification 
5:    SCM solving 
6:    Update the current optimal and the number of caregivers adaptively in 

the process of diversification r 
7: End While 

 
The details of each step are illustrated below. We describe in 

Sections IV.A-IV.D the framework and each component of the 
IP-Insert VNS; then, we describe in Section IV.E a variant of 
the IP-Insert VNS, which is named IP-Post VNS. 



 

A. Generation of initial solution 
Since the “Must go” and “Not send” constraints are relatively 

hard to satisfy, they are considered first for the generation of the 
initial solution. The clients who require “Must go” caregivers 
are sorted by descending order of number of “Must go” 
caregivers. Jobs randomly chosen from these clients are 
assigned to the required caregiver to firstly satisfy “Must go” 
constraints. For the remaining jobs, in order to give priority to 
the jobs that are more difficult to assign, the total number of 
“Not send” caregivers for each job is calculated. Then, the jobs 
are sorted by descending order of this number. For each job, all 
available caregivers are sorted by ascending order of preference 
mismatches between the client and caregiver. If there are 
caregivers that have the same preference mismatch, they are 
then sorted according to the travelling time from the job. Jobs 
are assigned according to the priority of minimum preference 
violation and then minimum travelling time. The pseudocode of 
initialization process is presented in Algorithm 2. 

After assigning all jobs to caregivers, an initial solution can 
be generated. It is important to mention that a feasible solution 
might not be easy to find for the real case problem. Therefore, 
infeasible initial solutions are allowed by relaxing “Not send” 
constraint in line 11 of Algorithm 2, and the infeasible solutions 
will be improved by diversification process presented in 
Algorithm 3 and neighborhood 1 in intensification process 
presented in Algorithm 4, until a feasible solution is found. 

 
Algorithm 2 Initialization 
Input: Data set of caregivers and clients. 
Output: Initial solution 
1: Sort clients by descending order of number of “Must go” caregivers 

requested 
2: For c = 1 to |C| 
3:   Repeat 
4:     Randomly choose a job from client 𝑐𝑐 and assign to unassigned “Must 

go” caregiver who is feasible 
5:   Until All “Must go” caregivers are assigned one job from client c 
6: End For 
7: Sort unassigned jobs by descending order of number of “Not send” 

caregivers 
8: For i = 1 to |I| 
9:   Repeat 
10:    Rank available caregivers by ascending order of preference 

mismatches and travelling time 
11:    Assign job i to first feasible caregiver 
12:  Until all jobs are assigned 
13: End For 

B. Diversification process 
Diversification is the most important part of the algorithm to 

avoid falling into local optima. This section proposes a strong 
shaking procedure [43] to diversify the solution. As is shown in 
Algorithm 3, firstly r caregivers are randomly selected and all 
jobs assigned to them are removed. Then these unassigned jobs 
are randomly selected and assigned to the first available 
caregiver. Note that if removing a job can incur violation of 
“must go” constraint, then this removal operation is revoked. 
Similar to the initialization process, there may exist jobs that 
cannot be inserted in all routes, in this case the “Not send” 
constraint is relaxed in line 5 of Algorithm 3. 

The effectiveness of the algorithm depends on r: it is harder 
to get the local optima if r is too large, while a small r is 
detrimental to the exploration of the feasible region. For SCM, 
a larger r is helpful for generating diverse routes and brings 

more opportunities to get better solution, however, a large 
column pool can decelerate the speed for solving SCM. To 
balance the effectiveness and efficiency, r is adjusted 
adaptively in each iteration. The percentage of caregivers 
participating in the diversification takes values in [minS, maxS]. 
In order to generate more diverse routes, SCM is not triggered 
and r is set to maxS in the first kFC iterations. After that, r starts 
from minS and increases by 10% if there is no improvement in 
iFS iterations. 

 
Algorithm 3 Diversification(r) 
Input: Caregiver and client dataset; current optimal solution 
Output: Diversified solution 
1: Randomly select r caregivers and remove all jobs within their routes 
2: Repeat 
3:   Randomly choose an unassigned job i 
4:   For k ∈ K 
5:     If job i can be assigned to caregiver k 
6:       Job i is assigned to caregiver k 
7:       Break 
8:     End If 
9:   End For 
10: Until all jobs are assigned 

 

C. Intensification process 
In this subsection, four different neighborhood structures are 

designed for exploiting the neighborhood of a solution. Based 
on the related literature, there are multiple intra-route and inter-
route neighborhood operators that are commonly used [44] 
[45]. In our problem, where time windows are fixed, only inter-
route neighborhood operators are implemented. 

1) Neighborhood 1. Shift one job from a route to another. 
2) Neighborhood 2. Swap two jobs in different routes. 
3) Neighborhood 3. Swap a segment that contains two or 

more jobs from a route with another segment from another 
route. 

4) Neighborhood 4. Choose three routes and swap two jobs 
in different routes. 

 
Algorithm 4 Intensification 
Input: Data set of caregivers and clients; A solution after diversification 
Output: A local optimal solution 
1: While True 
2:   Search in Neighborhood 1 
3:   If “Not send” pairs diminish or the total cost is reduced 
4:     Update the solution and Continue 
5:   Else  
6:   Search in Neighborhood 2 (Neighborhood 3 and Neighborhood 4 

successively) 
7:      If The total cost is reduced 
8:        Update the solution and Continue 
9:      Else If No improvement achieved in all Neighborhoods 
10:       Break 
11:     End If 
12:   End If 
13: End While 
 
The neighborhood structure from 1 to 4 is increasingly more 

complicated. The intensification process with the four 
structures is presented in Algorithm 4. During the process of 
intensification, all possible shifts or swaps are screened to 
ensure the local optima can be obtained. Lines 6-10 in 
Algorithm 4 express the sequence of neighborhoods to use. 
Only when there is no improvement after Neighborhood 1, 
Neighborhood 2 is called. If a better solution is obtained after 



 

Neighborhood 2 then it returns to Line 2, otherwise 
Neighborhood 3 is used. The trigger mechanism of 
Neighborhood 4 is in the same way. To accelerate the 
intensification process, only the changes of the objective caused 
by applying neighborhood search rather than the entire new 
solution are evaluated. Note that there may be infeasible 
solutions after initialization or diversification, so Neighborhood 
1 is not only designed to search for the local optima but also 
responsible for repairing these infeasible solutions. The repair 
procedure is applied in lots of literature works [7] [36] and its 
effectiveness has been verified. In this work, a sufficiently large 
reward is given to the shift that can diminish the “Not send” 
pair. The reward aims at redirecting the search toward feasible 
solutions. 

D. Set covering model 
SCM is the most important part of IP-Insert VNS. On the one 

hand, SCM can screen the current column pool and exploit the 
information that is missed by VNS. On the other hand, SCM 
can guide the searching direction of VNS by offering a new 
current optimal solution. In terms of functionality of the model, 
there are three key components significantly affecting the 
effectiveness of SCM, namely the construction of SCM, the 
generation mechanism of routes and the rule to trigger SCM. 

1) Construction of SCM. To construct the SCM, more 
notations are needed and presented in Table IV, other notations 
used in SCM is the same as those in HCSP and readers can refer 
to Table III. 

 
TABLE IV 

NOTATIONS FOR SET COVERING MODEL 
Sets Description 
Rk Set of routs in a week period for caregiver k 
Parameters Description 

rδ   Travel time of route r 

rf   Preference mismatch of route r 

rσ   Overtime paid by company of route r 

kρ   Binary, 1 if caregiver k has must-go clients 

irς  Binary, 1 if job i is in route r 

dr Total working time of route r 
Variables Description 

zr Binary, 1 if route r is selected in the solution 
k
co   

Auxiliary variable 

 
The model is expressed as follows: 
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In the model, objective (18) includes the cost of travelling, 

preference mismatch, overtime and penalty for exceeding the 
maximum number of caregivers for clients. Constraints (19) 
guarantee that every job is done. Constraints (20) ensure that at 
most one route can be selected for a caregiver k and the 
caregivers with must-go clients must be selected to satisfy 
“Must go” constraint. Constraints (21)-(23) calculate the 
exceeded number of caregivers for each client. 

If a feasible schedule (also called a route) for a caregiver is 
obtained, then the traveling time, service time and preference 
cost can be obtained correspondingly. For a route kr R∈ , the 
overtime that the company need to pay is calculated as follows 
and the method of calculating rσ  resembles that in (3). 
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2) Generation mechanism of routes. It is important to notice 
that all the routes in the pool are feasible, namely for a caregiver 
all “Must go” and “Not send” constraints are satisfied. In 
addition, all the routes in the pool are different. As mentioned 
in the diversification section, in the first kFC (the number of 
iterations before triggering SCM) iterations a large percentage 
of caregivers participates in the process of diversification. 
Although too much diversification may lead to infeasibility in 
the early stage of the algorithm, it can generate more diverse 
routes and is beneficial for the SCM to execute optimization. 
The computational results in Section V support the statement. 
On the other hand, the routes can be generated in the process of 
intensification if a better solution is found with any 
neighborhood structure. The routes generated in the process of 
intensification are generally superior to those by diversification, 
which can provide for SCM more local information. 
Appropriately arranging the intensification and diversification 
can balance the global information and local information of 
routes for SCM. 

 
Algorithm 5 SCM solving 
Input: Data set of caregivers and clients; Column pool; The number of 

iteration k; The number of iterations from last trigger n; The number of 
iterations in which the optimal is not changed h 

Output: The solution of SCM 
1: If No feasible solution is found or k > kFC 
2:   If n = nFC or h = nFC 
3:     Solving SCM and update the optimal 
4:     n = 0; 
5:   End If  
6: End If 
 
3) The rule to trigger SCM. It is inefficient to solve SCM in 

each iteration because the routes generated in each iteration 
have some similarities. However, when the column pool is 
large, it takes long time to solve SCM. Therefore, a parameter 
nFC, which denotes the number of iterations between two SCM 
process, is proposed to balance the solution efficiency and 
computational time. In Algorithm 5, if no feasible solution can 
be found by VNS or the current optimal is not changed for nFC 



 

iterations, then SCM is triggered to help find a feasible solution. 
After kFC iterations, SCM is triggered when the number of 
iterations from the last run of SCM is equal to nFC or the 
current optimal is not changed for nFC iterations. Note that 
whenever a better solution is found in the whole IP-Insert VNS 
process, h is set to zero. 

E. A post-optimization VNS algorithm 
In this subsection, we describe a variant of IP-Insert VNS, 

i.e., IP-Post VNS, in which the definition of initialization, 
diversification and intensification process is the same as in the 
IP-Insert VNS while SCM only triggered at the end of VNS 
procedure. This framework is firstly proposed by [46] to solve 
VRP. 

V. COMPUTATIONAL EXPERIMENTS 
In this section, we test the performance of our algorithms by 

conducting experiments with the data collected from a HC 
service provider operating in New York City, USA. We 
implement three algorithms in C++ and run on a computer 
equipped with Intel(R) Core(TM) i7@ 2.60GHz and 8GB 
RAM. The ILP model proposed in Section III and SCM are both 
exactly solved with CPLEX (Version 12.9) and the number of 
parallel threads is 12. 

A. Experimental setting 
The base case data is collected from a HC service provider 

operating in New York City, USA. When focusing on the 
operations of the mentioned provider of one certain week in 
2019, there are 57 caregivers and 21 clients. The requirements 
from clients range from 4 hours per week to a 24/7 live in 
service. The location of all clients and caregivers are shown in 
Fig.1. Although the number of caregivers is much larger than 
that of clients, the total number of working hours requested by 
clients is 1807 hours during that week, while the total number 
of available working hours of caregivers is only 2063 hours. 
This is because the maximum working hours requested by many 
caregivers is much less than the regulated maximum working 
time. Moreover, some caregivers are part time employees who 
only accepts jobs which start at night. Therefore, even though 
the number of caregivers is larger than that of clients, it is not 
easy to have all jobs from clients properly assigned. 

 

 
Fig.1. Location of clients and caregivers 

 
Based on the base case data, we first tune the parameters in 

IP-Insert algorithm. There are five key parameters in IP-Insert 

algorithm, namely the minimum (minS) and maximum (maxS) 
percentage of caregivers to execute diversification process, the 
number of iteration to start solving SCM (kFC), the number of 
iterations between two SCM processes (nFC) and the number 
of iterations for increasing caregivers in diversification process 
(iFS). We conduct some trial experiments and finally set minS 
as 0.3, maxS as 0.8, kFC as 15, nFC as 5 and iFS as 3. In the 
following, we first test the functionality of the adaptive 
mechanism used in IP-Insert. Then we use the basecase data and 
compare the IP-Insert VNS algorithm, ILP solver in CPLEX 
(ILP_C), IP-Post VNS algorithm, VNS algorithm. Finally, 
sensitivity analyses are performed. 

B. Effectiveness of adaptive mechanism 
For the IP-Insert VNS, the adaptive mechanism, i.e., the 

adaptive choice for the number r of caregivers in Section IV.B 
and the rule to trigger SCM in Section IV.D, plays an important 
role cooperated with SCM. When trapped in the local optima, 
more feasible routes should be generated and provided for the 
model by shaking more caregivers. Therefore, the probability 
of jumping out of the trap increases. When the current best 
solution is frequently improved, fewer caregivers are selected 
for shaking so as to enhance the effect of local search. 

To verify the effectiveness of the adaptive mechanism, we 
compare IP-Insert VNS with the algorithm without adaptive 
mechanism which is denoted by IP-Insert-N. Note that for IP-
Insert-N, we use an increasing number of caregivers with the 
iteration for diversification instead of the adaptive mechanism. 
The two algorithms are run for 10 times and the stopping 
criterion is set to 90 seconds. Table V shows the average cost 
and Standard Deviation (StD) over 10 replications of two 
algorithms. In conclusion, IP-Insert can reduce the total cost by 
5.3% averagely compared with IP-Insert-N. In addition, the StD 
of IP-Insert is much smaller than that of IP-Insert-N. Note that 
IP-Insert can provide 5654 different routes while only 1092 
different routes are generated in the process of IP-Insert-N. 
Fig.2 shows the downtrend of two algorithms, which indicates 
the efficiency of IP-Insert VNS. 

 
Fig.2. Comparison of IP-Insert and IP-Insert-N algorithms 

 
TABLE V 

VERIFICATION OF ADAPTIVE MECHANISM 

Algorithm 
Optimal Percentage Gap (%) 

StD Cost Time 
(s) Average Maximum Minimum 

IP-Insert 1563.1 402.5 1.5 1.9 1.1 4.5 
IP-Insert-

N 1563.1 402.5 6.8 11.6 3.3 50.9 
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C. Real-life case study 
According to our consultant with managers of the company, 

the weights of four objectives are estimated. Using the 
normalization method proposed in section III, the weights is 
estimated as [7.194, 4.107, 8.591, 25.51] respectively for 
preference mismatch, travel distance, unpaid overtime and 
exceeded number of maximum number of caregivers sent to 
clients. 

The optimal solution obtained with CPLEX is 1563.1, which 
is obtained in 402.5 seconds. For all the four algorithms, 10 
independent repetitions are executed. For IP-Insert VNS, we set 
the maximum number of iterations as 100. To compare with the 
other three algorithms, we get the running time of IP-Insert 
VNS which is used as the maximum running time of ILP_C, IP-
Post VNS and VNS algorithms. Table VI shows the 
performance of four algorithms, where the average value (Ave) 
and the StD are over 10 replications. The percentage gap can be 
calculated as: 

( 1) 100%solution of algorithmPercentage Gap
optimal solution

= − ×   

The average and maximum percentage gap and the average 
running time is shown in the table. For IP-Insert VNS, the 
average gap is 1.5% and the maximum gap is 2.6%, which 
indicates that IP-Insert can get near-optimal solutions stably. 
The StD over 10 replications of two algorithms also illustrates 
the stability of IP-Insert. The running time is 54 seconds, which 
is rather shorter than the CPLEX. For ILP_C, IP-Post and VNS, 
the average gaps are 7.1%, 5.1% and 10.7% respectively. 
Although sometimes they can also get near-optimal solutions, 
the fluctuation of them is much larger than IP-Insert. 
Furthermore, the converge process of IP-Insert and IP-Post is 
also depicted in Fig.3, in which we prolong the running time to 
90s in order to depict the trend. As the IP-Post is based on VNS 
and SCM only functions at the end of the VNS process, the 
convergence process of VNS is included in that of IP-Post. 
From Fig.3, IP-Insert can rapidly decrease to a lower level of 
total cost and can get satisfactory solutions within 25 seconds, 
while VNS converges slowly before the post optimization. The 
box plot in Fig.4 shows that the results of IP-Insert is more 
superior to the other two algorithms and CPLEX. In addition, 
there is no feasible solution in the early process of IP-Insert, 
which is due to the large percentage of caregivers for 
diversification. Although diversification process is harmful for 
convergence, it can generate diverse routes quickly and is 
beneficial for the SCM. 

 
TABLE VI 

COMPARISON OF THREE ALGORITHMS 

Algorithm Ave StD Percentage Gap (%) Time (s) Average Maximum 
IP-Insert 1586.7 6.6 1.5 2.6 54 
ILP_C 1674.5 16.4 7.1 8.0 54 
IP-Post 1643.0 26.1 5.1 8.4 55.2 
VNS 1730.0 36.9 10.7 14.7 54 

 

 
Fig.3. Downtrend of three algorithms 

 

 
Fig.4. Box plot of IP-Insert, ILP_C, IP-Post, and VNS 

D. Sensitivity analyses 
In this subsection, we present some sensitivity analyses of the 

weights of four objectives using IP-Insert VNS algorithm. Then 
we test IP-Insert VNS with a larger instance. In each real-life 
case, the cost of corresponding objective is changed by 
multiplying a factor. Each case is repeated 10 times and the 
maximum number of iterations is 100. Other parameters setting 
is the same as that in the base case. The optimal cost and 
running time of CPLEX, the average and maximum percentage 
gap, StD over 10 replications and average running time of IP-
Insert VNS are presented in Table VII. In sensitivity analyses, 
the performance of IP-Insert VNS is similar to that of the base 
case. The cost decreases rapidly in the early process, then the 
algorithm focuses on exploitation and attempts to improve the 
current best solution. Therefore, we only focus on IP-Insert 
VNS in the sensitivity analysis part. For all cases, it is enough 
to stabilize the outcome after 100 iterations, so it is reasonable 
to analyze the variation of cost by using the outcome. For the 
larger instance, CPLEX is unable to get the optimal solution; so 
we compare IP-Insert VNS algorithm with IP-Post VNS and 
VNS. 

Impact of preference mismatch penalty: Preference part of 
Table VII and Fig.5a show the results of sensitivity analysis by 
varying the preference penalty. Note that the average exceeded 
number of caregivers for each client (continuity indicator) in 
the figure is 10 times larger than the original value because the 
exceeded number is too small. Generally, the total cost 
increases with the multiplier of preference mismatch penalty 
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and the StD under each multiplier is below 8. From Fig.5a, the 
overall distance basically remain unchanged and continuity 
indicator has a slightly downward trend. In contrast, the 
preference mismatch decreases significantly and overtime 
increases dramatically. The results show that overtime and 
preference are sensitive to the change of preference mismatch 
penalty. 

Impact of travelling cost: Travelling part of Table VII and 
Fig.5b show the results of sensitivity analysis by varying the 
travelling cost. Generally, the total cost increases with the 
multiplier and StD values are all under 10. From Fig.5b, the 
four objective indicators have little variation, which indicates 
that the change of total cost in Travelling part of Table VII are 
almost caused by the variation of travelling cost and the four 
objectives are not so sensitive to the travelling cost. 

 

 
Fig.5a. Sensitivity analysis on preference mismatch 

 
Fig.5b. Sensitivity analysis on traveling cost 

 
Fig.5c. Sensitivity analysis on overtime cost   

 
Fig.5d. Sensitivity analysis on continuity of care 

Fig.5 Sensitivity analysis 
 

Impact of overtime cost: Overtime part of Table VII and 
Fig.5c show the results of sensitivity analysis by varying 
overtime cost. From Overtime part of Table VII, the total cost 
increases with the multiplier and StD values are nearly all larger 
those in the other sensitivity analyses, which indicates that the 
overtime cost matters a lot for the total cost. From Fig.5c, 
continuity indicator increases slightly, while overtime 

decreases sharply and preference mismatch increases 
significantly. The results show that preference mismatch and 
overtime are both sensitive to the variation of overtime cost. 

Impact of penalty for exceeded number of caregivers: 
Continuity part of Table VII and Fig.5d show the results of 
sensitivity analysis of varying penalty for exceeded number of 
caregivers. Similarly, the total cost increases with the 
multiplier. The overtime decreases slightly and overtime 
increases slightly with the multiplier respectively. However, 
generally four objectives are not very sensitive to the variation 
of penalty. 

Impact of problem size: To test the ability of IP-Insert VNS 
algorithm for tackling larger problems, we construct a large-
scale instance based on the real-life case. There are 100 
caregivers, 40 clients with 225 requests in the instance. CPLEX 
cannot solve this large case. For IP-Insert VNS, the number of 
iterations is set to 100. The average running time is obtained 
and set as the maximum running time for IP-Post VNS. We run 
the three algorithms 5 replications. The results show that the 
average gap of IP-Post from IP-Insert VNS is 8%, and that of 
VNS is 14.5%. The running time of IP-Insert VNS is less than 
1000 second. Fig. 6 shows the results of three replications, 
where the three blue and red lines separately denote three 
replications for IP-Insert VNS and IP-Post VNS. Fig.6 shows 
that IP-Insert VNS can get better solutions compared with VNS 
and IP-Post VNS. Although IP-Post VNS may bring sharp 
reduction of cost in the early stage, it leads to local convergence 
ultimately. Thanks to the SCM, IP-Post VNS can largely reduce 
the cost compared to VNS.  

To sum up, although CPLEX can obtain the optimal with an 
acceptable time for the small-scale problem, it is unable to solve 
the problem when its scale gets a little bit larger. Considering 
the serious problem of population aging and the consequent 
growth of home services, it is reasonable to foresee a larger 
volume of clients in the near future. As our approach is intended 
as a decision support tool for the considered provider and other 
similar providers, a key requirement is the capability to solve 
even larger instances. Thus, heuristic approaches as the one we 
propose turn out to be necessary.  

 
TABLE VII 

RESULTS OF SENSITIVITY ANALYSIS 

Objective & 
Multiplier 

Optimal Percentage Gap (%) 
StD Time 

(s) Cost Time 
(s) Average Maximum 

Pr
ef

er
en

ce
  0.6 1241.1 401.2 1.4 2.3 8.3 42 

0.8 1413.5 360.1 1.4 2.1 7.1 46 
1.0 1563.1 402.5 1.5 2.6 6.6 56 
1.2 1705.1 353.3 1.6 2.7 8.3 64 
1.4 1837.5 369.0 1.3 1.7 4.5 57 

Tr
av

el
lin

g 0.6 1346.7 351.4 2.2 3.5 4.3 72 
0.8 1454.9 463.3 1.8 2.5 4.3 72 
1.0 1563.1 402.5 1.5 2.6 6.6 56 
1.2 1671.4 393.9 1.4 2.1 5.5 56 
1.4 1779.6 424.1 1.2 1.8 8.1 75 

O
ve

rti
m

e 0.6 1462.8 457.2 0.9 1.3 3.5 63 
0.8 1517.7 477.7 1.2 1.4 2.8 58 
1.0 1563.1 402.5 1.5 2.6 6.6 56 
1.2 1597.5 464.2 0.7 1.6 6.2 58 
1.4 1613.9 351.8 0.3 0.7 3.1 73 

C
on

tin
ui

ty
 0.6 1522.3 342.9 1.6 3.2 9.6 64 

0.8 1542.7 461.3 1.7 3.1 8.7 68 
1.0 1563.1 402.5 1.5 2.6 6.6 56 
1.2 1583.5 362.1 2.1 3.4 10.6 56 



 

1.4 1603.9 443.4 1.7 2.3 5.9 58 

 
Fig.6. Results of large-scale instance 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we study a particular HC scheduling problem 

according to the request of a HC provider in New York City. 
We consider chargeable overtime, which is rarely concerned in 
the HC literature, preference matching, and continuity of care. 
To deal with this problem, an integer programming model is 
proposed to minimize the total cost, including travelling cost, 
overtime cost, preference mismatch and penalty of violating 
continuity of care. A matheuristic algorithm is developed, 
which combines VNS with a SCM. The SCM can be used to 
generate the optimal solution with route pool and guide the 
searching direction of VNS. The components, including 
generation of initial solution, diversification process and 
intensification process are designed in VNS. To realize the 
cooperation with the SCM, some adaptive mechanisms are 
designed to provide superior routes for the SCM. 

The computational results demonstrate the applicability and 
efficiency of IP-Insert VNS algorithm. Compared with the 
method in [4], IP-Insert VNS can obtain better results more 
efficiently and stably. Sensitivity analyses are conducted and 
the results show how the objectives react to the change of the 
parameters. Managerial insights can be obtained from our 
approach and analyses. The managers should keep an eye on 
the variation of other operating costs when adjusting specific 
operating costs. For the real case in this work, the preference 
satisfaction and overtime have mutually exclusive relationships, 
which can help managers to set a suitable salary standard. 

This paper can be extended in several aspects. First, the 
objective of minimizing the additional overtime cost paid by 
clients can be integrated in the objective function (e.g., with the 
formulation of minimizing the maximum overtime cost paid by 
clients). Another extension is to consider the dynamic 
conditions like the cancellation of service. 
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APPENDIX A 
In this part, we construct two different integer linear 

programming (ILP) models for our specific home care 
scheduling problem (HCSP). The difficulty of constructing the 
model lies in how to calculate the travelling distance when there 
are two types of visiting modes, namely serve two jobs 
successively and serve two jobs with going home between them. 
In the manuscript, we capture the latter visiting mode using a 
set of variable 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 . In this part, we use a set of binary variable 
𝑢𝑢𝑖𝑖𝑖𝑖 to denote whether the caregiver needs to go home between 
and another set of binary variable 𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘  to calculate the travelling 
distance when caregivers need to go home.  

All the notations in the two new models are presented in 
Table A.I. The formulation of route constraints in Model 1 is 
similar to that in [47], = {0 }k k kI n∪ ，N  denotes the set of 
jobs (including the start job and end job) for caregiver k.  

Similar to the original model in our paper, the preference 
mismatch between each caregiver and each client can be 
calculated beforehand as follows: 
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Equation (a10) can be linearized as follows. 
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TABLE A.I 
SETS, PARAMETERS, AND VARIABLES FOR ILP 

Notations for HCSP 
Sets  Description 
I Set of jobs 

kN  
Set of jobs (including the start job and end job) for caregiver 
k 

C Set of clients 

K Set of caregivers 
M Set of preferences 
WE Set of weekend hours in a week 
NS Set of night shifts in a week 
ON Set of hours after 9 p.m. each day in a week 
Parameters Description 
Sk Maximum working hours of caregiver k 
ti Starting time of job i 
β  Max duration of a break for caregivers not going home 

c
iθ  Binary, 1 if job i is of client c 

k
cmg  Binary, 1 if caregiver k must do a job of client c 
k
ins   Binary, 1 if job i cannot be allotted to caregiver k 

τ  Maximum working hours according to regulation 
di  Duration of job i 

ijδ
 Travel time from job i to job j 

cε   Binary, 1 if client c is willing to pay for overtime 

kξ   Binary, 1 if k is willing to work on weekends 

kν   Binary, 1 if k is willing to work on night shifts 

kϕ   Binary, 1 if k only accepts job after 9 p.m. 
k
cγ   Preference mismatch of client c and caregiver k 

cη   Max number of caregivers that can be sent to client c 

cπ   Vector of preferences for client c 

kω   Vector of characteristic for caregiver k 

cλ   Vector of interests of client c 
Variables Description 

k
ijx   Binary, 1 if job j is done after i by caregiver k  
k
iz  Binary, 1 if job i is done by caregiver k 

T Overall travelling time 
k
cp   Binary, 1 if caregiver k does at least one job of client c 
k
cO   Overtime of caregiver k worked on client c 

kσ   Total overtime not paid by clients 

cE   Exceeded number of caregivers sent to client c 
, ,k k

ij ij cu w g   Auxiliary binary variables 

 
The overtime can be calculated as follows  
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cE  represents the exceeded number of caregivers for client c 

and can be calculated as follows: 
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Other constraints: 
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x M k Kξ
∈ ∈∈

≤ ∀ ∈∑ ∑
N

  (a15) 



 

;
,

k
j

k
ij k

j I t NSi

x M k Kν
∈ ∈∈

≤ ∀ ∈∑ ∑
N

 (a16) 

;
(1 ),

k
j

k
ij k

j I t ONi

x M k Kϕ
∈ ∉∈

≤ − ∀ ∈∑ ∑
N

 (a17) 

In equation (a1), the first component represents the cost of 
preference mismatch. The second part is the travelling cost and 
the total travelling time is obtained by summing up the 
travelling time between caregivers and clients, travelling time 
between different clients as well. The third and fourth parts 
represent overtime cost and penalty for violating continuity of 
care respectively. 

Constraints (a2) ensure that each job is done exactly once. 
Constraints (a3) ensure that the total working time of caregivers 
cannot exceed the maximum hours each caregiver has declared. 
Constraints (a4)-(a6) guarantee the continuity of each 
caregiver’s route. Constraints (a7) impose the time precedence 
of jobs on one route. Constraints (a8) denote whether the 
caregiver needs to go home between job i and job j. Constraint 
(a9) calculates the overall travelling distance and the relations 
between w𝑖𝑖𝑖𝑖

𝑘𝑘 , 𝑢𝑢𝑖𝑖𝑖𝑖  and 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘  are illustrated in constraints (a10). 
Constraints (a13)-(a14) deal with “Not send” and “Must go” 
lists respectively. Constraints (a15)-(a17) guarantee that, if a 
caregiver is not available at night or on the weekend of before 
9 p.m., he/she is not assigned jobs in this period. 
 
Model 2: 

The objective is: 
1 2

3 4

min k k c
i c i i

k K c C i I

k c
k K c C

z d T

E

α γ θ α

α σ α
∈ ∈ ∈

∈ ∈

+ +

+

∑∑∑

∑ ∑
 

(a18) 

Route constraint: 
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i i k
i I
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k K
z i I
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∑
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i i ij j ij
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k K i j

δ+ + − ≤ −

∀ ∈ ∈, N
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( ) , ,j i i ij ij
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ij ij ij
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Other constraints: 
1 , ,k k

i iz ns i I k K≤ − ∀ ∈ ∈   (a25) 

, ,k k
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;
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, , , , {0,1}k k k k
i ij c ij ijz x p w u ∈   (a30) 
The overtime can be calculated as follows:  
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,
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cE  represents the exceeded number of caregivers for client c 
and can be calculated as follows: 
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· , ,

,

0

k c k
c i i

i I
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∑
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(a32) 

The meaning of constraints can be referred to those in Model 
1. However, we use 𝑧𝑧𝑖𝑖𝑘𝑘 to express the relation of caregivers and 
jobs in Model 2.  

 
Comparison of models: 

In this part, we compare the three models (including the 
original model in our paper) using the real case data. We 
implement three models in C++ and CPLEX (Version 12.9) and 
run on a computer equipped with Intel(R) Core(TM) i7@ 
2.60GHz and 8GB RAM. The number of parallel threads is 12. 

In conclusion, the original model is the best. As reported in 
the paper, the optimal solution is 1563.1, which is obtained in 
402.5 seconds. For Model 1, we set the running time as one hour 
and the solution is 1598.5, whose percentage gap with the 
optimal is 2.3%. Model 2 can obtain the optimal solution while 
the running time is 1554.5 seconds. In addition, we test three 
models with the running time for IP-Insert in the paper (54 
seconds). For each model, 10 independent repetitions are 
executed and the results are presented in Table A.II, where 
ILP_C denotes the model used in our paper and it can obtain the 
best solution among three models. Compared with ILP_C, 
Model 1 and Model 2 can only obtain the solution with the 
percentage gap above 30%. 

TABLE A.II 
COMPARISON OF THREE MODELS 

Model Ave StD Percentage Gap (%) Time (s) Average Maximum 
ILP_C 1674.5 16.4 7.1 8.0 54 

Model 1 2134.7 0 36.6 36.6 54 
Model 2 2045.9 0 30.9 30.9 54 

 
  



 

APPENDIX B 
In this Appendix we extend our model to enclose flexible 

starting times within predefined time windows. We assume that 
each job i can start within a hard time window [ai, bi], and that 
variable 𝑡𝑡𝑖𝑖𝑘𝑘  denotes the actual starting time when caregiver k 
serves job i. Accordingly, the extended model can be 
formulated by replacing constraints (8) and (9) of the original 
model with the following constraints (b1)-(b5). 

( ) ( )

(1 ), , ;

k k k k k
i ij i ij ij i i j

k k k
j i ij ij

t x d y d re

t b x y i j I k K

δ δ δ+ + + + + +

≤ + − − ∀ ∈ ∈

 
 (b1) 

( ) , ;k k k
j i i ij ijt t d Mu i j I k Kδ β− + + − ≤ ∀ ∈ ∈，  (b2) 

(1 ), , ;k k
ij ijx M u i j I k K≤ − ∀ ∈ ∈  (b3) 

,k k
i i it b z i I k K≤ ∀ ∈ ∈  (b4) 

,k k
i i it a z i I k K≥ ∀ ∈ ∈  (b5) 

Constraints (b1) ensure that the starting times of successive 
jobs are set correctly, while constraints (b2) and (b3) ensure that 
the caregivers go home if there is enough time. Finally, 
constraints (b4) and (b5) ensure the starting times to be in the 
allowed time window. 
  This extended model has been tested by setting the time 
window of each job i as ai = ti - Δ and bi = ti + Δ, where ti is the 
exact starting time in the base case and Δ is set to 1, 2 or 3, 
respectively (Δ=0 refers to the base case with no flexibility). 
Results in TABLE B.I show that the total cost is reduced when 
Δ is larger while the computational time increases dramatically.  

TABLE B.I 
IMPACT OF TIME WINDOW 

Δ Objective function value Computational 
time (s) 

0 1563.1 402.5 
1 1545.7 1819.5 
2 1536.4 2931.0 
3 1512.8 7065.1 
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