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Abstract—Laser cutting of metals offers the advantage of
high precision and accuracy. Dross attachment, measured as the
length of the re-solidified material perpendicular to the surface,
has definitely the highest impact on the overall process quality.
Dross attachment is commonly judged by skilled technicians that
evaluate the cut quality. Process parameters are optimized to
maximize the cutting speed while keeping an acceptable level
of dross attachment. However, in practice, increased levels of
dross may occur due to different processing conditions. In this
framework, a real-time dross attachment monitoring system is
desired. Within the stream of vision based monitoring systems, in
this work we use high frequency images generated by a precision
camera, mounted on the laser head, to capture the cutting process
light emission. A CNN-based classification system is developed,
where captured images are fed into the trained network with
the aim of automatically recognize if a predetermined dross
attachment level is exceeded. To our best knowledge, this is the
first work where a CNN is used for monitoring the quality of
laser cutting process via dross attachment classification.

I. INTRODUCTION

Among the many uses of laser there is the one for cutting
metal plates and tubes. On metals, the laser cutting process
is highly accurate, offers a great productivity and makes it
possible to cut very intricate shapes, [1], [2]. The laser beam
can be thought as a column of high intensity infra-red light, of
a single wavelength in the range of some hundreds of microns
in diameter and travels from the laser resonator through the
machine’s beam path. The beam has to be precisely focused
so that the power density at its waist diameter is extreme and
the material either melts, burns, vaporizes and is eventually
blown away by a jet of gas, leaving an edge with a high-quality
surface finish. Among others, cutting speed, laser power, beam
focal position and gas pressure are reported as the main
influential parameters of the process, [3]. Nozzle diameter
and distance between the end of the nozzle and the material
surface are usually fixed to reference values. Finally, two kinds
of assisting gas, namely, oxygen and nitrogen, are commonly
used; according to the assisting gas type, two cutting modes are
defined, that are oxidation and fusion cutting. The oxidation
cutting mode benefits of the energy content given by the
oxygen: the gas jet not only blows away the material but
participates actively to the cutting operation thanks to an
exothermic reaction. In the fusion cutting mode all the energy
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Fig. 1. Possible defects in the laser-cutting process.

required to melt the material is given by the laser beam and
the role of the gas consist in removing the molten material
only. Due to the larger field of application in terms of material
type and the increased productivity that it offers, the fusion
cutting mode is replacing the oxidation cutting one in most
of the applications and this study is accordingly focused on
this kind of process. Considering the fusion cutting mode, the
main defects are given, according to both industrial practice
and relevant standards, by (see also Fig. 1):
• dross attachment measured as the length of the re-

solidified material perpendicular to the material surface;
• surface roughness of the cut edges;
• striation’s pattern
• presence of a burned bottom profile due to a too high

energy input.
Dross attachment has definitely the highest impact on the

overall quality of the laser cutting process, [3], [4], [5], [6].
Commonly, process quality is not a quantitative measure but
it consists of a judgement given by skilled technicians that
brings together the mentioned defects in a single synthetic
mark. In practical applications, process parameters are a priori
optimized with respect to quality, productivity and process
reliability. Manufacturers try to increase cutting speed as much
as possible, to reduce process time as far as the process
quality for all cutting conditions is ensured. It is observed
that, within a suitable range, the roughness decreases with the
cutting speed. Therefore, dross attachment becomes the real
limiting factor to the increase of cutting speed. The online
estimation of dross attachment represents a challenging and
innovative issue in the laser cutting context. Related works
employ photodiodes [7], [8], to transduce the cut image from
an optical signal to an electrical one. More recently, camera
based monitoring systems are used, which guarantee a much
more high quantity of information of the cut, [9], [10], [11],



Fig. 2. Experimental architecture for process monitoring.

[12]. The present study addresses the problem of determining
whether a significant and non negligible dross attachment is
present or not in a performed cut, based on the high resolution
camera images, which are collected at high speed during the
cutting process. We estimate the dross attachment by resorting
to a suitable Convolutional Neural Network (CNN), [13], [14],
starting from the camera images. We will use the trained
CNN in ”binary classification” mode: having chosen a set
of geometrical descriptors below which the dross height is
considered to be of acceptable quality, then the CNN will
classify ”dross-yes” or ”dross-no” based on the fact that this
quality level is exceeded. To our best knowledge, this is
the first work where a CNN is used for dross attachment
estimation in the monitoring of the laser cutting process. We
will show in detail how, a proper on-line training of the
CNN, can yield satisfactory and promising results, with the
significant advantage of avoiding the time-consuming design
phase inherent in other estimation techniques.

II. PROBLEM STATEMENT AND EXPERIMENTAL SETUP

The goal of our work is to tackle the problem of dross
attachment estimation from indirect kerf characteristics’ mea-
surement. In order to perform the indirect estimation of dross
formation a dedicated experimental setup has been developed,
which is depicted in Fig. 2. All cutting experiments were
performed with a BLM Group LC5 machine [15], equipped
with an IPG YLS-6000 laser source with a maximum available
power of 6kW and a fiber diameter of 100µm. The cutting head
was a Precitec HPSSL, that has a collimation lens of 100mm
and a focal lens of 200mm. Therefore, the laser spot in the bore
of the nozzle has a dimension of 200µm. A microcontroller
was adopted to monitor inputs (process parameters) at a
sample rate of 10kHz. The microcontroller then outputs a
TTL signal that triggers the camera acquisition and permits
to synchronize videos with signals. This platform was chosen
considering also the possible future implementation within
a feedback control scheme. The monitoring equipment is
composed of a Ximea [16] camera, mounted coaxially with
respect to the laser beam. A proper camera lens was chosen

based on a target framerate of 1500fps and a target spatial
resolution of at least 10µm/px. Then, different tests using ex-
ternal illumination, or simply acquiring the process emission,
were performed to choose proper optical filtering. To design
and test the estimation methodology, a dedicated experimental
campaign was needed, to obtain cuts with different levels of
dross attachment, for different materials and thicknesses. All
the performed cuts were square sided specimens of side 45mm.

III. CNN BASED DROSS ATTACHMENT ESTIMATION

In the present contribution we will describe a CNN custom
architecture for dross attachment estimation from indirect mea-
surements coming from the high-speed camera. This section
is organized as follows: we firstly describe how the ground
truth of the dross attachment in laser cuts is normally defined.
Then, we provide in Section III-B and III-C some theoretical
background on CNNs and our custom CNN structure. We
then describe the dataset used in this work in Section III-D.
Section III-E and III-F outline the network training phase
and the validation stage. Furthermore, Section III-F includes
a detailed description of the CNN-based algorithm testing
process together with its performance discussion.

A. Dross attachment Ground Truth Definition

After the cuts are carried out, pictures of the specimens are
taken. A single specimen side is represented by three consec-
utive pictures, that are then stitched together. Stitching does
not affect the estimation performances because is univocal.
Stitched images are processed with an edge-detection tools,
used to reconstruct the perimeter of each side of the specimen
and to reconstruct the overall specimen dross measurement.
The latter will be used as ground truth in the following
estimation process, as shown in Fig. 3.

Fig. 3. Spatial measurement Θ(s) of the specimen profile after the cut is
performed.

Once the above process is applied, a measure of the whole
thickness is obtained, then an estimation of dross attachment
is calculated.

h(s) = Θ(s) − Θreal (1)

In Eq. 1, h(s) represents the measure of the dross profile, Θ(s)
represents the measured thickness obtained by image stitching



and edge detection algorithms and Θreal is the real thickness
of the specimen. All this variables are function of the spatial
coordinate s, along the perimeter of the considered specimen.

B. CNN Fundamentals

The Convolutional Neural Networks (CNN) are a type of
Artificial Neural Networks (ANN). The CNN can automat-
ically learn a hierarchy of features from the input image
matrices, which prove to be better than those hand-crafted
features extracted by carefully designed complex algorithms
[13]. CNNs automatically assign importance to various aspects
and objects in the images. By discovering and differentiating
those aspects and objects, CNNs can learn filters to isolate a
specific characteristic inside images. A typical CNN architec-
ture consists of several nested convolutional and pooling layers
followed by fully connected layers at the end. One of the first
efficient example of CNN is AlexNet [17], followed by many
others in the consecutive years. A compact presentation of this
kind of network [Input - Conv - ReLU - Pool - FC] consists
of the following five layers:
• Input: the input of the CNN is the image. More specif-

ically, in our application inputs are 210 × 210 pixel 1-
channel grayscale images, containing the intensity values
of each pixel.

• Conv: the convolutional layers apply a set of learned
filters each of which is connected to only a small region
of the output. So, the filters are usually learnable matrices,
updated during training, of small size (like 3 × 3 or 5 ×
5). The convolution operation is applied over the whole
input image, across the spatial dimensions, to extract one
feature, performing a matrix multiplication between the
filter and the portion of the image over which the kernel
is hovering. It is still needed to specify manually some
numerical parameters such as the number of filters, the
size and the architecture of the whole network.

• ReLU: ReLU (Rectified Linear Units) is the most widely
used activation function by adding non-linear transfor-
mations to the output response of the convolutional or
fully connected layers. It is an element-wise operation
applied per pixel. The formula of this function is f(x) =
max(0, x) and it replaces all negative pixel values with
a zero. ReLU can effectively prevent the gradients from
saturating, expedite convergence of the training procedure
while at the same time keeping the original value to the
most extent, which proves to be experimental better than
conventional sigmoid-like activation functions [13], [17],
[18]. Convolution is a linear operation since it applies
an element-wise matrix multiplication and additions. In-
troducing non-linearity in the CNN accounts for most of
the real-world data, that contain non-linearity, otherwise
unrecognisable by the convolution operation itself.

• Pool: the pooling layer performs a form of non-linear
down-sampling along both spatial dimensions, leading
to reduced spatial size of the convolved features. It
aims to reduce the amount of the network parameters
and the computational cost, keeping the most important

information inside the convolved features. The pooling
layer is commonly placed between two successive con-
volutional layers. The most common pooling strategy
is ”max” pooling, which outputs the max value from
the neighbourhood of the input feature map. Extracting
dominant features results in convolved features which
are rotational and positional invariant. Simple ANN have
little invariance to shifting, scaling, and other forms of
distortion because they process images directly with pixel
values as inputs. Results will turn out to be very bad with
input image slightly modified (for example translated by 1
pixel). Pooling layers allow CNN to be almost completely
invariant to forms of distortion.

• FC: The fully connected layers are the last part of the
neural networks. All the neurons in the fully connected
layers are connected to all the units of the last layer. And
the last fully connected layer generates the output of the
whole network.

These layers are stack together to form a CNN, the input
is fed forward into the network, and the hyperparameters are
updated by the back propagation algorithm.

C. Structure of the CNN for dross attachment estimation

As shown in Fig. 5, the custom CNN structure used
consists of 24 layers. To summarize, the architecture
can be described as: input layer, C(32,3,3), S(2,2,2),
C(32,3,3), C(64,3,3), S(2,2,2), C(128,3,3), C(128,3,3),
S(2,2,2), FC(1024), FC(1024), FC(2), softmax layer. C(n,
3, 3) represents a convolutional layer with n filters of kernel
size 3×3, S(2, 2, 2) represents a pooling layer with a sub-
sampling factor of 2×2 by stride 2 in both dimensions,
FC(n) represents a fully-connected layer with n neurons.
The pooling strategy adopted in all the pooling layers is
max-pooling, which is robust to distortions. After all the
convolutional layers, a ReLU layer is applied. The last fully-
connected layer generates the output, composed by 2 numbers,
corresponding to the classes adopted (dross present or not),
meaning the estimation of each image’s class membership
probability. Softmax layer is used to select the class with
higher probability.

D. Images’ Dataset Description

The dataset is composed by 210×210 pixel 1-channel
grayscale images. Images are captured by an high-speed
camera (1500fps), mounted coaxially with respect to the laser
beam, as described in Section II. Images shows the real-time

Fig. 4. Example of image in the dataset.



Fig. 5. Schematic architecture of the custom CNN.

emission of the laser irradiated zone, as can be seen in Fig.
4, where the black part is simply the background and the
grayscale values are related to the material temperature. We
will concentrate on shape and dimensions of the white part,
called ”blob”. For each image, we also have the real dross
profile h(s), as described in III-A. Images are captured from
a fusion-cutting process of stainless steel (AISI 304) and mild
steel. Both materials are considered with different thickness,
in particular 3, 5, 8 and 10 millimetres. We want to achieve
a general purpose recognition of dross so the CNN is trained
to recognize defected images for specimen of both materials
and the different thicknesses. The whole dataset has more than
10000 images. To better understand the information collected
from the camera, let us consider Fig. 6, which shows a camera
image during a cut of AISI 304 with different thicknesses,
ranging from 3 to 8 mm.

Fig. 6. Cut of AISI 304 with a different thicknesses, ranging from 3 to 8 mm,
starting from the left image. Shown images are modified with pseudo-color
transformation.

Of course, the camera has a very high frame rate (1500fps),
so that the overall cutting process yields many images that can
be processed. It can be seen that the different cuts generate
different blobs in the images because different thickness
produces different cutting process. So our CNN is trained to
recognize defect in different kind of cutting processes, as our
goal is to achieve a general purpose dross recognition.

E. CNN Training and Testing

CNNs work with classification problems, so two class had
to be created: dross present and not present. In this way,
expressing a threshold in millimetres, is possible to detect
the presence or the absence of defects. The threshold was
discussed with expert technicians and set to 0.03mm. With
this specific threshold, all the images are divided into the

Fig. 7. Difference between well-classified and misclassified images, high-
lighted with red square. First image is an example of well-classified, second
and third images are examples of misclassified images.

two classes. The two created classes are perfectly balanced in
number of elements; half of the images belong to the class with
defect and the other half belong to defect-free class. During
training, the whole dataset is divided in three different sets:
• training set, used during training to update weights and

biases of CNN;
• validation set, used for validating updates during training;
• test set, used for testing accuracy results with CNN after

the whole training procedure is finished.
In our experiments, we randomly choose 70% of the data as
the training set, 20% of the data as the validation set and
the rest 10% as the test set. The output of the trained CNN
is a binary indicator hth(s). An example of a real output
signal is reported in Fig. 8, case b). First training sessions
showed that image and dross profile h(s) frequencies were
decoupled; the final accuracy results were always around the
”random guess” percentage. This means that CNN could not
learn anything from images. Analysing the spectrum of h(s),
we discovered that the maximum spatial frequency was 150Hz.
For this reason, we created an averaged dataset, using 10 of
the original frames, captured at 1500fps, to create an averaged
image from 10 subsequent ones. The average is made pixel-by-
pixel. The created average dataset frequency is approximately
150Hz and coupled with the dross signal. Therefore, a deep
knowledge of the laser-cutting process is required to correctly
train the CNN.

F. Training Results and Misclassification

Training results show a final accuracy of 93% over the
validation set and a final accuracy of 92% over the test
set. This means there is no observation of over-fitting in the



training process. A misclassification of 7-8% is acceptable in
this application field because our CNN is trained to recognize
defect in different cutting processes. Images of different ma-
terials and thicknesses are quite different, so the CNN has
to learn a wide set of features to classify them correctly.
On the other hand, we decided to understand and investigate
why there is such misclassification. In particular, we aimed
to understand if there exists particular conditions of material
and/or thicknesses related to misclassification. It turns out
that there was an even distribution of misclassifications over
thickness and materials, meaning that characteristics of speci-
men do not influence training results and misclassification. We
also visually investigated the images, and we discovered that
misclassified ones tend to have a very particular characteristic
in the front part of the blob (Section III-D). Specifically,
as can be seen in Fig. 7, the front of the blob (red square
in the images) is not well defined in misclassified images.
Conversely, the first image shows a well-classified image,
in which the front of the blob is coincident with laser ray.
So, the common characteristic of misclassified images is the
antecedent ”scarce illumination” of blob, identified in front of
direction of laser ray during cutting.

IV. ENHANCED CNN DROSS ATTACHMENT ESTIMATION
VIA REGRESSION

In order to have a continuous output variable, that indicates
the quality of the laser cutting process, the binary indicator
hth(s) (introduced in Section III-E) is converted from spatial
domain to time domain in hth(t) using a spatial/temporal rela-
tionship, that is acquired from machine’s process parameters.
Using the same relationship h(s) (see III-A) is converted in
h(t). Then hth(t) is manipulated with a sliding window. A
windows of 150ms is selected and the sliding window output
y(t) is calculated using

y(t) =
1

SW

SW∑
k=1

hth(t− k) (2)

where SW indicates the number of frames included in 150ms
of data. With our experimental setup, in 150ms are acquired

225 frames with a framerate of 1500fps (see Eq. 3).

SWframes = 0.15 [s] · 1500

[
frame

s

]
= 225 [frames] (3)

The whole transformation is depicted in Fig. 8. The output
y(t) is a continuous variable, varying between 0 and 1,
representing the likelihood of having dross attachment over
time in a specific cut. Thus, a regression output is obtained
from the binary output of the CNN. With y(t) as a continuous
variable is possible to continuously control cutting parameters,
i.e. speed or pressure (see Section I). Furthermore, ytruth(t)
is defined as the measurement of the dross profile processed
with sliding window method. More precisely, starting from
h(t) and using the sliding window method in the same way as
is done for hth(t), ytruth(t) is obtained. In this way, y(t)
and ytruth(t) are comparable, and the difference between
the two represents the error in the estimation of dross with
the CNN. Therefore, an estimation performance analysis is
carried out, comparing y(t) with ytruth(t), for each material
and thickness. Overall, the performances are satisfying. More
precisely, dross attachment estimation is perfectly accurate in
dross-free cuts and in cuts with very high-dross cuts, that
means the error on defects estimation is approximately zero.
An accurate analysis of cuts with intermediate-dross values
shows that high-frequency changes in h(t) lead to a wrong
classification with the CNN. In particular, when h(t) is around
the chosen threshold and switches frequently above and below
it, the CNN-based classification contains a non negligible
number of false positives. This is obviously visible also from
y(t). An example of false positive detection in an intermediate
dross cut is shown in Fig. 9. The overall performances of the
enhanced CNN dross estimation via regression on the whole
dataset are summarized in Table I.

V. CONCLUSIONS

A CNN-based method has been presented for the estimation
of dross attachment in laser cutting experiments performed by
an industrial laser cutting machine, starting from the images
collected through a high-speed camera. This kind of vision
based monitoring of the cutting process on the one side

Fig. 8. a) Real dross attachment profile of an illustrative laser cut. b) Binary indicator. c) Sliding window of the binary output.



Fig. 9. a) h(t) and quality threshold in illustrative intermediate-dross cut. b)
y(t) and ytruth(t) in the same illustrative intermediate dross cut.

TABLE I
RESULTS OF THE ENHANCED CNN DROSS ATTACHMENT ESTIMATION VIA

REGRESSION.

Cut Type Classification Regression
dross-free cuts 98% 99.8%
low-dross cuts 95% 97%
intermediate-dross cuts 85% 87%
high-dross cuts 99% 99.9%

tries to overcome the need of an a-posteriori measurement
of dross while, on the other side, aims at developing a real-
time algorithm for the detection of a significant dross level and
hence at making possible the development of a future closed-
loop control system, able to read the sensed dross presence
and to act, if needed, reducing the cutting speed, one of the
main process variables. We show in the paper how a custom
CNN architecture, once suitably trained with precaution based
on laser-cutting knowledge, can automatically differentiate
images captured during the laser cutting process. The real-time
images exhibit a black background with a white part (the laser
irradiated zone), of different geometry and shape depending on
the material and its thickness, from which the network is able
to recognize the presence of dross attachment that exceeds an
accepted maximum level. The CNN, operated on the validation
and test sets, shows an accuracy of about 92% against both
datasets. A detailed investigation was also performed on the
misclassified images letting us identify the situations where
the CNN recognition task is more challenging. In order to
generate a continuous dross estimation, the original binary
CNN response (presence or non-presence of dross, according
to a suitable threshold) is weighted over the total length of
a sliding time window while the cutting is run, so that an
enhanced regression-adapted CNN is built. Future work will
focus on the better understanding of those intermediate-dross
sections where the continuous output signal leads to erroneous
dross attachment estimates.
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