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Abstract: The effect of sustained fatigue during an upper limb isometric exercise is presented 
to investigate a group of healthy subjects with simultaneous time-domain (TD) NIRS and 
surface electromyography (sEMG) recordings on the deltoid lateralis muscle. The aim of the 
work was to understand which TD-NIRS parameters can be used as descriptors for sustained 
muscular fatigue, focusing on the slow phase of this process and using Median Frequency (MF) 
computed from sEMG as gold standard measure. It was found that oxygen saturation and 
deoxy-hemoglobin are slightly better descriptors of sustained fatigue, than oxy-hemoglobin, 
since they showed a higher correlation with MF, while total-hemoglobin correlation with MF 
was lower.  
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1. Introduction 
The phenomenon of muscular fatigue can be defined as a progressive decline of muscle 
performances [1]. It depends on different factors based on both muscle type and exercise 
typology. In general, the endurance time, during an exercise, is defined as the ability of an 
individual to maintain a contraction at a given torque until exhaustion [2]. The exercise-induced 
muscular fatigue, i.e. peripheral fatigue, is considered as a reversible loss of muscle force during 
work over time, which occurs as a safety mechanism to avoid structural damages to muscle 
cells [3].  

The assessment of muscular fatigue is performed with the analysis of ATP metabolism (e.g. 
lactate, ammonia and oxipurines), oxidative stress (e.g. lipid and protein peroxidation 
biomarkers and others) and inflammatory biomarkers (e.g. leukocytes). In this framework, the 
best fatigue descriptor parameters to use are still under debate, because of their dependence on 
a wide range of experimental settings and on the range of population groups [3]. Furthermore, 
with these techniques, a biological sample is required and it is not possible to perform a 
continuous monitoring during the whole exercise. A series of non-invasive techniques for the 
monitoring of muscle fatigue are listed as an alternative to the invasive analysis: 
mechanomyography (MMG), surface electromyography (sEMG) [4], near-infrared 
spectroscopy (NIRS) and sonomyography (SMG) for both isometric and non-isometric 
contractions [5]. 

In many cases, the sEMG technique is employed. sEMG is a versatile and non-invasive 
method that allows the extraction of myoelectric properties of the neuromuscular activation 
associated with muscle contraction. These features and their variation provide insight into both 
biochemical and physiological changes in the investigated muscle and can be used for a real-
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time fatigue monitoring task [6]. In fact, the myoelectric signal displays time-dependent 
changes prior to any force modification, and this is the reason why it has the potential to both 
study contractile fatigue in isometric conditions, and predict fatigue onset. Past studies 
investigated the progression of fatigue resulting from isometric contractions using various 
sEMG time and frequency signal processing methods [7]. sEMG time-domain assessments 
such as the mean absolute value (MAV) and the root-mean-square (RMS) are rarely the only 
measures used for fatigue assessment: most research papers perform a combined evaluation of 
both signal amplitude estimates and spectral properties. In fact, it is commonly accepted that 
the sEMG spectral features show better performances than other-domain properties in assessing 
fatigue [8]. It was proven that sustained muscle contractions cause a frequency compression in 
the power spectral density (PSD) of the sEMG signal, long before the muscle arrives to 
exhaustion [9]. Besides a downward shift in the frequency spectrum, other changes have been 
found in both signal power (high-frequency decrease and low-frequency small increase) and 
spectrum slope (high-frequency increase and low-frequency decrease); such changes are 
considered as myoelectric manifestations of localized muscular fatigue [10–15]. For these 
reasons, the mean frequency (MNF) and median frequency (MF) are the most commonly used 
spectral variables and are considered as the gold standard for muscle fatigue assessment, 
especially in static contractile conditions, where the sEMG signal can be assumed as 
stationary [16]. In particular, a drop in the MF (or MNF) course and a simultaneous increase in 
sEMG amplitude reveal the onset of local muscular fatigue [7]. Though these spectral variables 
display similar behaviors, the estimation of MF is less affected by random high-frequency 
noise, and more affected by the fatigue phenomenon [17]. To this day, the effects of muscle 
force and muscle geometry on MF are subject dependent and the results across different papers 
not always consistent. However, it can be clearly assumed from the previous literature that MF 
is a golden-standard variable to identify muscle fatigue, particularly for isometric muscle 
contraction.  

Since the fatigue process can be also characterized from the oxidative metabolism point of 
view, NIRS technique can be considered an interesting tool in the assessment of muscular 
performances during exercises [18]. Near infrared light (600-1000 nm) is selectively absorbed 
by oxy-hemoglobin (O2Hb) and deoxy-hemoglobin (HHb) allowing to evaluate total 
hemoglobin content (tHb=O2Hb+HHb), and the tissue oxygen saturation (SO2=O2Hb/tHb) 
changes in the working muscle. NIRS parameters provide information about the energy 
requirement rate, which should be maintained during the whole exercise, giving information 
about local skeletal muscle microvascular function and capacity to utilize oxygen [19,20]. The 
most spread NIRS modality is the continuous wave (CW), since the instrumentation has limited 
dimension and it is commercially available with moderate prices [21]. CW-NIRS was already 
employed successfully in the fatigue assessment alone or together with EMG [22]. However, 
this approach has some limitations in terms of depth selectivity and quantification of absolute 
hemoglobin content, which we have overcome with the time-domain (TD) NIRS modality. We 
found, in literature, few examples of use of TD-NIRS for muscle fatigue monitoring. Yamada 
et al. [23] monitored the vastus lateralis muscle during 50% maximum voluntary contraction 
(MVC) sustained isometric contractions, but in the results only relative variations for O2Hb, 
HHb and total hemoglobin (tHb) are presented. Neither absolute values nor SO2 time courses 
are presented. Furthermore, the examples of application of TD-NIRS on muscle are limited, 
probably because of the absence of commercial devices, outside Japan, based on this technique. 
TD-NIRS was also applied during functional electrical stimulation (FES) on the calf 
muscle [24], on the vastus lateralis during incremental cycling exercises [25] and on the rectus 
femoris of post-stroke patients [26]. Some other examples are reported in order to study the 
effect of arterial occlusion [27] or cutaneous vasodilation [28]. 

In this paper, we study the combined use of TD-NIRS and sEMG in muscle fatigue 
assessment. When a muscular exercise is performed, the hemodynamic response as measured 
by NIRS can be roughly divided in two parts: the initial one is a “fast phase”, where there is a 



rapid change in the HHb and O2Hb parameters which represent the arising of the early fatigue. 
Then, a “slow phase” can be identified, which reflects the local energy turnover during 
isometric contractions [29]. This behavior will be identified by sEMG and TD-NIRS 
parameters. In particular, we will investigate the possible correlations between sEMG and TD-
NIRS parameters during the “slow” phase, simultaneously measured, which, to our knowledge, 
were never presented during sustained isometric exercises.  

 

2. Material and methods 
2.1 Devices & probes 

sEMG acquisitions were performed with a commercial Device (Cometa, Italy) featuring 16 
channels wireless electromyography. During the recordings, one sEMG probe was positioned 
in the belly of the deltoid lateralis muscle of the dominant arm of each healthy volunteer with 
Ag-Ag/Cl electrodes.  
To perform TD-NIRS acquisitions, the class IIa medical device, previously developed by the 
authors at the Department of Physics of Politecnico di Milano, was employed. It has two diode 
lasers operating at 688 nm and 828 nm as light sources and two hybrid photomultipliers tubes 
as detectors. Laser pulses are delivered to the tissue by means of optical fibers according to the 
space multiplexing modality [30]. The electronic acquisition chain is based on time correlated 
single photon counting (TCSPC) technique. For further details, the reader can refer to the paper 
by Re et al. [31]. The optical bundle for the detection is 90° degrees bended, while the injection 
beam was bended by means of a glass prism. Both the fibers were host in a 3D custom probe 
printed by means of a filament printer (Sharebot NG, Sharebot s.r.l., Nibionno, Italy) and a 
black PLA filament (3Ditaly, Roma, Italy) compatible with diffuse optics measurements [32]. 
We then arranged one injection and one detection channel with an interfiber distance of 30 mm. 

The sEMG electrodes (one channel) were placed perpendicular to the TD-NIRS probe, but 
on the same anatomical landmark, so that simultaneous acquisition on the same muscle volume 
were performed. In Fig. 1, a picture of the arrangement of the TD-NIRS optodes (one channel) 
and sEMG electrodes is presented. To fix the probes to the arm, we employed a black elastic 
bandage that guarantees good adhesion to the skin without compressing the muscle. It also acts 
as a shield from the ambient light, avoiding its entrance into the optical fibers. sEMG and TD-
NIRS devices were also synchronized with a TTL signal sent by the sEMG (acting as master) 
to the TD-NIRS instrument (acting as slave). 

 
 

 
Fig. 1. EMG and TD-NIRS probe arrangement on deltoid medialis muscle. 

 



2.2 Subjects and Protocol 

We recruited 12 healthy subjects (28.9 ± 3.2 age), 6 males and 6 females. All the enrolled 
subjects had Body Mass Index (BMI) ranging from 20 to 25, within normal weight range.  The 
study was approved by the Ethical Committee of Politecnico di Milano and was conducted in 
compliance with the Declaration of Helsinki. Before the study each subject was informed about 
the experiment modality and gave a written consent. All the subjects had no neurological or 
orthopaedical diseases affecting their performance and were not trained in fatigue tasks. 

During the measurements, subjects were sitting on a chair holding their dominant arm 
elevated laterally at the shoulder level in order to keep the arm horizontal. The positioning was 
guaranteed by placing a mark on a vertical support, which the subject had to reach (without 
touching it) with the hand. The protocol was conceived to elicit fatigue during an upper-limb 
isometric trial. The position was held until exhaustion, or for a maximum time of 330 seconds 
(task period). The subject was verbally motivated to maintain the position. The task period was 
preceded by 30 s of baseline and followed by 210 s of recovery, during which the arm was lying 
along the body. For TD-NIRS, the instrument response function (IRF) with a “reference” 
modality [33] was acquired for each subject. 

In order to speed up the onset of the fatigue, subjects held a water bottle full of water for 
the whole experiment. The amount of water in the bottle was determined in order to reach a 
selected static torque at the shoulder (Mw). The torque to be added to the physiological one was 
proportional to the static maximum shoulder torque (Ms), which was computed with a 
biomechanical model of the upper limb. Ms depended on the arm mass, forearm mass and 
upper-limb barycenter locations, computed with anthropometric tables starting from body mass 
and height ( [34]), according to the following formula (1): 

( ) ( )w s b wM M m m g a b= + + ⋅ ⋅ +  
Being Ms computed as follows (2): 

( )s a l f fM m g a m g a a= ⋅ ⋅ + ⋅ ⋅ +  
where mb is the mass of the bottle, mw is the mass of the added water, b is the forearm length, ma 
is the mass of the arm, mf is the mass of the forearm, g is gravity acceleration, al is the shoulder-
arm segment barycenter length, a is the arm length and af is the elbow-forearm barycenter 
segment length. The overall torque to be held was Mw = Ms (1+k), with k>0 that in this study 
was set at 0.5. We calculated the customized amount of water mW for each subject as (3): 

1( / ( ) )
2w s bm M a b g m= ⋅ + ⋅ −  

We explicitly note that mw depends on the anthropometric data of each subject. 
 

2.3 sEMG analysis 

Raw sEMG data were sampled at 2000 Hz. The pre-processing was performed in Matlab 
(Mathworks Inc., Natick, USA). The raw signal was notch-filtered to erase the 50 Hz frequency 
interference, then it was bandpass filtered with a 6th order Butterworth filter with cut-off 
frequencies 5 and 500 Hz. Since the lifting arm phase lasted about 1.5-2.5 s, we decided to use 
sEMG signal starting from 35 s until the end of the lifting phase to eliminate the transient period 
related to arm elevation. Then, for each trial, the sEMG was divided into adjacent consecutive 
windows of 5 s – starting from the time instant 35 s. The number of windows depended on the 
subject’s capability to complete the trial; the maximum number of windows was 65 in case the 
subject could hold the weight in isometric contraction until the end (we removed the last 
window to avoid the transient when the limb was brought back to the resting position). We 
stopped the windowing when the trial was completed, or when the subject dropped off. In each 
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window, we computed the average RMS value [15,35] and the MF [17,36]. Then, for each 
subject, we created histories by plotting the RMS and MF as a function of time-windows 
progressing in time. In order to compare performances across subjects, we normalized both 
RMS and MF histories to their maximum value within each subject, obtaining adimensional, 
normalized RMS and MF values ranging from 0 to 1. 

To perform frequency analysis, we preliminary tested sEMG signal’s stationarity within 
each window with the Augmented Dickey-Fuller (ADF) and the Reverse Arrangement (RA) 
tests [37,38]. 

2.4 TD-NIRS analysis 

The acquired TD-NIRS reflectance curves at each wavelength were fitted with the solution of 
the diffusion equation for a semi-infinite homogenous medium after the convolution with the 
IRF [39]. From the absolute values of the absorption coefficient, we calculated O2HB and HHb 
with the Beer’s law, knowing the extinction coefficients at the given wavelengths [40]. Starting 
from these values, we calculated the tHb and SO2. These values were calculated for all the 
temporal points of the acquisition. Furthermore, for the initial baseline, we considered the 
average value between 5 and 25, interval where no movements were performed. We checked 
the quality of the data acquired in terms of detected photons number (> 350 kcounts/second 
during the whole acquisition) and fitting parameter (χ2 ≤ 2). We also check the stability of the 
instrument through the acquisitions on the different subjects, evaluating the fluctuations of the 
IRF in terms of curves barycenter. 

For the analysis of correlations between TD-NIRS and sEMG signals, we removed from 
the TD-NIRS signal all the parts where the sEMG indicated an absence of movement. This 
procedure was personalized for each subject, since not all the participants were able to elevate 
the arm for the whole allowed time (330 seconds). Then we kept TD-NIRS signal starting from 
35 s until the end of lifting phase. Furthermore, according to what was done for the sEMG 
signal, we divided also the time courses of the TD-NIRS parameters into adjacent consecutive 
windows of 5 s. For each window we calculated the average value and the standard deviation 
of the TD-NIRS parameters. With these procedures, TD-NIRS and sEMG data for each subject 
were not only synchronized but also of equal length. 

2.5 Coupling TD-NIRS & sEMG analysis 

To provide cross-domain correlations on signals, some segmentation criteria were needed, in 
order to clearly identify the slow and fast phase in TD-NIRS parameters. In this study, we 
executed a two-step procedure to provide accurate automated segmentation of the NIRS signal. 
First, as a compromise between smoothing and avoiding altering the original signal, we 
implemented a 5th order Butterworth low pass filter with cut-off frequency fc = 0.3*fNYQUIST 
(since this application is novel, fc was empirically determined). Then, we found the local 
minima and maxima of the TD-NIRS signals; this was achieved implementing a first derivative 
algorithm on the filtered signals. The first local minimum/maximum was consequently 
appointed as reference cutpoint to separate the fast phase from the slow phase of the TD-NIRS 
signal. This allowed us to separate the initial transient of the signal, and to consider the rest as 
slow phase. Of course, the cutpoints could vary from subject to subject, but also among TD-
NIRS parameters within the same subject. 

We then performed a correlation analysis using the Pearson linear correlation coefficient 
between all the possible TD-NIRS and sEMG measure pairs. This analysis was performed using 
different “driver signals”. The driver signal for an analysis was defined as the one currently 
controlling the segmentation of the epochs. The purpose of using driver signals was to 
investigate if different segmentations could lead to higher/lower correlation levels with the 
RMS average value and MF. The role of driver signal was assigned, alternatively, to three out 
of four TD-NIRS variables: O2Hb, HHb and SO2. In this work, we used the following notation: 
SO2HHb(MF) means that we are correlating the HHb with MF with the segmentation done 



with SO2 as driver signal. Since in the results we will motivate the use of MF only, as well as 
not using tHb as driver, we omit MF and simply write “SO2HHb”. 

2.6 Statistical analysis 

TD-NIRS and sEMG correlation data were merged in a 12-by-12 matrix where each column 
contained the MF-NIRS correlation values calculated for each subject (12 subjects, each one 
with 12 correlations – 3 driver signals x 4 MF-NIRSi combinations). In this way, it was possible 
to compare the effect of different segmentations on correlations and to search for statistically 
significant differences in our dataset. Statistical analysis was conducted with Matlab 
(MathWorks Inc., Natick, USA). To verify which TD-NIRS parameter would correlate better 
with the MF, we removed the outliers from each dataset (rmoutliers Matlab built-in function) 
and then proceeded with the computation of the absolute value for each correlation to allow 
comparisons. We verified that data were now normally distributed and ran 3 separated one-way 
ANOVA test (one for each driver signal) with correlations between MF-NIRS data as factor. 
The ANOVA test compares the means of different independent groups to find statistically 
significant differences between the variables. In all tests, the significance level was set at α = 
0.05. 

3. Results  
3.1 EMG parameters 

From a visual inspection of the EMG parameters, we found that MF (reported in Fig. 2), was 
mostly monotonous and with a fairly intra-subject constant decay rate. However, for some 
subjects, we noted a decrease of the decay rate in the last part of the trial, when close to the end 
of the considered time window for detecting fatigue. Inter-subject average slope could vary. 
The average slope values are reported in detail in Table 1, together with the task time and the 
number of temporal windows. 
On the other hand, in our dataset we could not find a common trend in the RMS time-course, 
as shown in Fig. 2. In most cases, the RMS showed no clear variations, or was not monotonic; 
instead, some subjects showed increased RMS values towards the end of the recording when 
they were close to exhaustion, or vice-versa.  

The ADF and the RA tests revealed that the hypothesis of stationarity could not be rejected 
on the chosen windows. 

 
 

 
 

Fig. 2. Median Frequency (MF) and RMS time courses in respect to 5-seconds windows for observation for a 
typical subject. 

 

 



 
 

Table 1. Task length, number of windows, and average MF Slope for time-MF courses 

SUBJECT tTASK 
[s] 

Windows 
[#] 

Average MF slope 
[Hz/sec] 

1 255 51 -0.125 
2 265 53 -0.116 
3 260 52 -0.136 
4 325 65 -0.232 
5 320 64 -0.279 
6 325 65 -0.129 
7 325 65 -0.152 
8 290 58 -0.136 
9 280 56 -0.253 
10 305 61 -0.126 
11 310 62 -0.168 
12 230 46 -0.101 

 
3.2 TD-NIRS parameters 

The TD-NIRS signal quality check confirmed that the minimum count rate was reached during 
the whole acquisition for all the subjects. The χ2 value of the inversion procedure was always 
≤ 2 except for some few seconds for subject 11 (anyway it was < 2.8) because of some direct 
light, which we verified didn’t affect the hemodynamic time courses. The standard deviations 
of the IRF barycenter positions of each subject, was always <10 ps.  

In Table 2, TD-NIRS parameters obtained for the initial baseline (standard deviation 
negligible, not reported in table and in the graphs neither) are reported. 

Table 2. TD-NIRS hemodynamic parameters for the baseline 

SUBJECT O2Hb 
[μM] 

HHb 
[μM] 

tHb 
[μM] 

SO2 
[%] 

1 36 11 47 76 
2 63 26 89 71 
3 20 6 26 76 
4 49 18 66 73 
5 44 17 61 72 
6 103 43 145 71 
7 115 39 154 75 
8 61 23 84 73 
9 53 18 71 75 

10 61 27 88 70 
11 47 18 65 72 
12 36 12 48 74 

 
In Fig. 3 (a) the complete time courses for the absolute values of O2Hb (red) and HHb (blue) 

are shown for a representative subject. During the baseline period (0-30 s) the signals are almost 
flat for each subject. When the subject starts to move the arm in order to displace it to the 
horizontal position (starting around at time instant 30 s), we observe that the hemodynamic 
parameters undergo a fast variation with an increase for O2Hb, and a decrease for HHb. In the 
inset, the detail of these hemodynamic parameters’ behavior is highlighted. After few seconds, 



the trends swap. Since the aim of our work is to consider the oxygen metabolism during a 
sustained contraction, this initial transient was then removed, as described in section 2.4, 
together with the baseline period. In Fig. 3 (b), we show the time course as obtained in this 
way. We used a new time scale, so that now the origin of the time is set 35 s after the start of 
the acquisition. Here we can clearly notice a rapid change of HHb (increase) and O2Hb 
(decrease). After 30 seconds (65 from the beginning of the acquisition), the two parameters 
start to settle around a plateau value; then, they show again changing trends but slower. The 
final part of these signals is more variable among the subjects: signals do not show always a 
plateau, but sometimes they start to vary again (increase for O2Hb and decrease for HHb) but 
with slower slopes. At the end of the exercise, observing again Fig. 3 (a), we can find the typical 
hyperemic phase of the recovery period. The pattern of SO2 of a typical subject recall the one 
for O2Hb, while the behavior of tHb is not uniform among the subjects. In some cases, it is 
almost flat, in some others it has a significant increase.  

 

 
 Fig. 3. TD-NIRS typical signal. In red: oxy-hemoglobin (O2Hb), in blue: de-oxyhemoglobin (HHb). a) whole 

time courses. In the inset the initial transient when the arm movement starts. b) time courses after the removal of the 
baseline, the first 5 seconds of the movement and the final part when no movement was performed.  

 
3.3 sEMG and TD-NIRS Assessments 

As a first result, we portray in Fig. 4 the typical graph of the absolute values of the TD-NIRS 
variables together with the MF achieved with the sEMG. In this figure, all the signals are 
reported according to the 5 s windows. In the TD-NIRS data, the standard deviations are also 
shown. We underline two main results that can be noticed among all the subjects. First, positive 
correlation between MF and HHb were found; negative correlation between MF and SO2 and 
O2Hb were also spotted in most of the subjects; while no clear correlation between MF and tHb 
was detected. This pre-processing procedure also revealed that, in several cases, tHb had no 
transient phase: either the signal was mostly monotonic with many small fluctuations, or the 
trend changes (concavity change) occurred at a late time sample.  For this reason, tHb was not 
used as driver signal. Moreover, tHb showed the lowest correlation with the other TD-NIRS 
variables, and with a high variability (with O2Hb: 0.715 ± 0.397; with HHb: 0.062 ± 0.528; 



with SO2: 0.411 ± 0.493). These preliminary results, along with the lack of transient phase in 
many subjects, justify our choice not to use tHb as a driver signal. 
 

 
 

Fig. 4. MF and TD-NIRS variables typical time courses from one of the subjects (S9). (a) O2Hb-MF, (b) HHb-MF, 
(c) SO2-MF, (d) tHb-MF. Time samples are mapped into 5 seconds windows. 

Following these choices, we could provide 12 NIRS-sEMG correlations: 4 correlations using 
O2Hb as driver, 4 using HHb and 4 using SO2. Furthermore, since RMS showed poor 
correlation and varying trend with both NIRS measures and the MF, it was excluded from 
further analysis procedures being discarded a-priori as a possible reliable descriptor of fatigue.  
 

 

Fig. 5. Intra and cross-domain correlation histograms between all possible NIRS-EMG pairs, using the complete 
dataset and non-segmented signals. The title of each figure indicates the parameters that is correlated with all the 

others (x-axis). 



From the preliminary correlation test on not-segmented signals (detailed results are reported 
in Fig. 5), we can see that three out of four TD-NIRS measures showed high average correlation 
values between themselves, as it can be seen on histogram (a), (b) and (c). The O2Hb->SO2 
correlation was the one with the lowest standard deviation value. The correlation between all 
the TD-NIRS and sEMG parameters of the dataset (considering the not-yet segmented signals) 
is reported on Table 3.  

As for the sEMG domain, the mean correlation value found between the RMS and the TD-
NIRS variables was 0.079 ± 0.549, while the RMS-MF correlation value was -0.112 ± 0.623. 
Both the poor cross-domain correlation and the high variability of this data caused for the 
exclusion of the RMS from further analyses in this study. 

On the contrary, the MF showed good levels of cross-domain correlation, albeit with rather 
high standard deviation values.  

 
Table 3. Correlation matrix (mean ± standard deviation) of the complete dataset resulting from the 

preliminary correlation test using Pearson’s linear correlation coefficient 
 

O2Hb HHb SO2 tHb RMS MF 
O2Hb 1 -0.478 ± 

0.503 
0.878 ± 0.106 0.715 ± 0.397 0.023 ± 0.581 0.530±0.507 

HHb -0.478± 0.503 1 -0.786±0.346 0.062 ± 0.528 -0.023± 0.436 0.133±0.577 
SO2 0.878 ± 0.106 -0.786±0.346 1 0.411 ± 0.493 0.015± 0.556 -0.438±0.475 
tHb 0.715 ± 0.397 0.062 ± 0.528 0.411 ± 0.493 1 0.016± 0.625 -0.619±0.456 

RMS 0.023 ± 0.581 -0.023± 0.436 0.015 ± 0.556 0.016 ± 0.625 1 -0.112±0.623 
MF -0.530± 0.507 0.133 ± 0.577 -0.438 ±0.475 -0.619±0.456 -0.112±0.623 1 

 
Afterwards, NIRS data were segmented – using O2Hb, HHb and SO2 as drivers. In Fig. 6, 

we portray graphically the results of the segmentation for one subject in our dataset. Once these 
three sets of cutpoints were found for all subjects, the cross-domain correlation test was 
repeated only on the slow phase, and again using Pearson’s linear correlation coefficient.  

 

 
Fig. 6. Filtering, implementation of the local maxima/minima algorithm and following segmentation of each NIRS 

signal on a subject. The blue-dotted line represents the original signal; the red line is the low-pass filtered signal; the 
magenta dots represent the sign changes in the first derivative of the red line; the orange dashed line is used to 

separate the fast phase (on the left) and the slow phase of the signal (on the right). 
 

 
 



3.4 TD-NIRS and sEMG correlations 

Given the high levels of standard deviation due to outliers, we removed outliers from each 
distribution and then re-run the correlation test. As can be seen on the bar graphs in Fig. 7, this 
further step produced a notable reduction of the standard deviation values and increased the 
average MF-NIRS correlation values. The new values are reported on Table 4. 
 

 

Fig. 7. MF cross-domain normalized correlation histograms after the outlier removal, obtained with O2Hb (red), HHb 
(blue) and SO2 (green) as driver signals. 

 
Table 4. NIRS-MF correlations after outlier removal: MF cross-domain mean (first row) and standard 

deviation (second row) for each driver signal 

DRIVER: O2Hb DRIVER: HHb DRIVER: SO2 

O
2
Hb HHb SO

2
 tHb O

2
Hb HHb SO

2
 tHb O

2
Hb HHb SO

2
 tHb 

-0.875 0.855 -0.901 -0.799 -0.861 0.878 -0.890 -0.772 -0.874 0.835 -0.907 -0.783 

0.063 0.143 0.058 0.012 0.083 0.097 0.057 0.151 0.066 0.152 0.042 0.131 

 
Three one-way ANOVA were performed, one for each segmentation. Results are reported 

in Fig. 8 as three different boxplot sets. All tests revealed statistically significant differences. 
For the O2Hb-driven dataset (p value = 0.008); for the HHb-driven dataset, (p value = 0.016); 
for the SO2-driven dataset (p value = 0.006).  

From the Tukey-Kramer HSD post hoc test applied to ANOVA stats, statistically significant 
differences were found when considering the following comparisons. The comparison between 
the MF-tHb Pearson coefficient was always significantly different from both the MF-HHb and 
MF-SO2 correlation values (for the O2Hb-driven dataset, p value = 0.037 and p value = 0.008; 
for the HHb-driven dataset, p value = 0.025 and p value = 0.034; for the SO2-driven dataset, p 
value = 0.018 and p value = 0.009).  

As can be seen in all boxplots reported in Fig. 8, we could conclude that the worst-
performing measure across the different segmentations is the MF-tHb correlation. Instead, 
whatever driver signal was chosen, SO2 and HHb performed averagely better than tHb, even if 
they could not be distinguished from O2Hb. Thus, we could conclude that 3 out of 4 TD-NIRS 
parameters correlate highly with the MF during the slow phase. 



 
 

Fig. 8. Results of the ANOVA test on the normalized MF-NIRS correlation of the dataset without outliers (from 
left to right: driver signal is O2Hb with p- value = 0.08; driver signal is HHb with p value = 0.016; driver signal is 

SO2 with p value = 0.006). 

4. Discussion and conclusion 
4.1 TD-NIRS signal  

The TD-NIRS quality check determined that no subjects or parts of the time courses had to be 
eliminated because of direct light or inadequate photons count rate. Furthermore, the standard 
deviations referred to the IRF barycenter show a good device stability. 

The subjects’ baseline values of the hemodynamic parameters (see Table 2), are not 
uniformly distributed around an average value, except for the SO2, which is a good candidate 
to represent the metabolic state of resting muscle. Our testing scenario involved healthy 
subjects and analysis on the deltoid lateralis muscle. Even though shoulder is implied in most 
of our movements, very few papers report examples of muscular fatigue studies with EMG and 
NIRS on this muscle. Ferguson et al. [41] and Jensen et al. [42] investigated deltoid and 
trapezius during a repetitive task; while Lusina et al. [43] investigated deltoid deoxygenation 
during arm cranking exercises. Unfortunately, no absolute values for its hemodynamic 
parameters are presented, but just their relative variations with respect to a baseline period. We 
find just an example, where absolute values for SO2 of the deltoid muscle is reported as 85.4 % 
±4.4 % [42]. Hamaoka et al. report values around 70 μM and 45 μM for O2Hb and HHb 
respectively on the forearm muscle [27], while Koga et al. found 100 μM and 35 μM on the 
flexor digitorum profundus [28]. Both these studies employed TD-NIRS and used homogenous 
models for the data analysis. A direct comparison between the hemodynamic parameters of 
different muscles compartments, might not be the best approach, since differences in oxygen 
status are reported in literature [44]. The values we find for SO2 are almost homogeneous and 
in line to the expected one. The values for O2Hb and HHb respect the ratio of 2/3 that they 
should have in human tissues [45] but are not uniform. The heterogeneity could be due to the 
homogeneous model we have employed for analyze TD-NIRS data, which doesn’t consider 
that the volume under the optical probe is a multilayered medium. In particular, we should 
consider the adipose tissue thickness (ATT), which is different among subjects and can create 
confounding effects in the estimation of the basal optical properties. Furthermore, there are 
evidences of differences in SO2 between male and female in literature, always because of the 
different ATT [23]. Other approaches to analyze TD-NIRS muscle data were already 
proposed [46,47], but for the aim of this paper, the determination of the absolute values during 
the baseline period is not a critical point, i.e. we do not consider the baseline for the statistical 



analysis. Since the typical distance from the skin surface to the deltoid muscle is between 6 and 
8 mm [42], we can consider the ATT thin enough to consider the sample as homogenous. 

4.2 sEMG signal 

In this study, we found that MF presented a monotonic decrease in all subjects. This result 
matches with previous findings in the literature and allowed us to consider MF as a reliable 
biomarker for fatigue. In our experiment, MF had a monotonic decrease that could be observed 
even if with different magnitude between subjects. In fact, during a sustained isometric 
contraction, the sEMG power spectrum shifts to lower frequency bands as local muscle fatigue 
develops. This compression is linked to variations in both spectral variables and conduction 
velocity (CV) [15], and may also be correlated with the type of motor unit (MU) 
recruited [48,49]. In fact, the typical MF decrease associated with fatigue onset has been 
attributed to the decrease in CV [50,51] - meaning these two variables are highly correlated, 
and MU synchronization [52]. It has been shown that during a sustained submaximal isometric 
contraction, the decline rate of MF is highly correlated with both the endurance time and 
increased levels of metabolites implicated in the development of local muscle fatigue (Mannion 
et al., 1996), [53–57]. The decay rate of the MF and endurance time were found to be linearly 
correlated, and thus the first one was used to predict the latter, regardless of the force of 
isometric contraction being sustained. Furthermore, changes in MF are associated with the high 
frequency fatigue of a muscle and is highly correlated with a decline in force from the fresh 
state [9,57]. Interestingly, we found a MF slope of about 0.10-0.30%/s which is in line with the 
one found in previous works [58]. 

On the contrary, throughout literature on muscle fatigue, the RMS is often quite variable in 
terms of time-series fatigue-related patterns, and our data confirmed this unclear trend. The 
variability of RMS often leads to inconsistency in muscle fatigue evaluation. This is because 
the EMG signal amplitude can be easily influenced by experimental conditions (workload, 
contraction type, endurance time), and thus the use of this variable as fatigue index should be 
interpreted with caution [59,60]. Some studies based on isometric exercises showed that, in 
some cases, an increasing trend was found on the EMG signal amplitude [61,62], as it happened 
also in this study for some subjects. These higher values were associated with MU 
synchronization and increase of the firing rate, which counteracts the fatigue process of the 
MUs and contraction force decrements [63]. 

4.3 TD-NIRS versus sEMG 

In Fig. 3(b), we can observe the typical response, when a muscular sustained isometric exercise 
is performed. From a physiological point of view, it can be divided into two main parts. The 
initial one (fast phase), where there is a rapid change of HHb (increase) and O2Hb (decrease). 
This is due to the sudden energy demand at the onset of the exercise together with the increase 
in intramuscular pressure (IMP) [29]. In particular, the oxygen delivery does not match the 
oxygen demand even if the oxygen extraction increases. When static contractions are 
performed, the vascular bed is more compressed resulting in a temporary occlusion of the blood 
flow. Following this initial fast phase, as we can see in the figure after about 30 s, there is a 
second one (slow phase), which reflects the local energy turnover during isometric contractions. 
During the fast phase, the principal mechanism for energy production is the aerobic one 
(oxygen is consumed). During this phase, the type I fibers, the oxidative ones, are mostly 
recruited. In the slower phase, there is less oxygen available (decrease oxygenation) and higher 
occlusion due to the IMP. This lack of oxygen leads to the preference for anaerobic 
metabolism [64] and mostly the recruitment of the type II muscular fibers. During the fast 
phase, we observe a drop in SO2, which reflects the fact that large oxidative fibers are 
prevalent [65]. The deltoid muscle is about 33% type I fibers, i.e. it has a reduced aerobic 
capacity with respect to other muscles such as trapezius [66]. We acknowledge that the 
description of the mechanisms underlying muscular metabolism is more complex than the one 



presented above. In particular, in literature, muscular fatigue is described by the 
phosphocreatine system in the first 5-10 seconds, followed by glycogen and lactic acid 
conversion in the next couple of minutes, followed by oxidative (aerobic) metabolism for 
longer fatigue durations  [67]. Since the aim of this paper is focused on the technical aspect of 
comparing two different signals, rather than going deep into the physiology of the muscular 
fatigue, we preferred to divide the timeline in two main blocks (fast and slow) as suggested 
from a preliminary analysis. Future works will investigate in TD-NIRS time-courses, other 
inflection points or significant changes, which could better describe all the phases of the 
muscular metabolism during the fatigue process. 

For what concerns the interpretation of the sEMG signal, we can affirm that MUs are 
recruited in an orderly fashion, from type I, oxidative, to type IIb, mostly anaerobic, as the force 
output increases [65]. During the fast phase we should observe correlations between the sEMG 
and TD-NIRS parameters because higher energy requirements should lead to a faster fatigue 
process [29], in particular between the parameters’ slopes. This behavior was already widely 
investigated in literature. Guo et al. [68], for example, tested the effect of the short term fatigue 
(80 s), on the extensor digitorum, and showed the effect of muscular fatigue both in NIRS 
(O2Hb) and sEMG (MF) parameters. In the study by Taelman et al. [69], during a static elbow 
flexion, a strong correlation between frequency content of the sEMG signal and TOI was found. 
Very recently, also study on elderly people were presented [70]. We also observed that 
correlations were noticed between NIRS and sEMG parameters during the fast phase, and used 
as predictors of medium-term fatigue. 

One of the novelties of this work was to investigate deeply sustained fatigue, focusing on 
the slow phase. In literature, different objective criteria and ad-hoc algorithms were proposed 
to separate these two phases – focusing mainly on the determination of the initial transitory 
phase and, eventually, on how to correlate its slope with the slope of the MF [29,65]. Most of 
the examples of sEMG-NIRS combined studies are proposed for the “fast phase”, while we 
focused on the slow one. We assessed the slow phase for some minutes of isometric contraction, 
when the TD-NIRS parameters reach a plateau condition. After the plateau we found different 
behaviors that we characterized with the analysis proposed in paragraph 3.3 and 3.4 in order to 
couple TD-NIRS with sEMG. During the slow phase, the MF decreases in a monotonic way. 

As already depicted in the introduction, we could not find works where all the parameters 
that characterize the muscular oxidative metabolism are interpret together. For this reason, also 
the interpretation of the muscular fatigue and the identification of a unique NIRS representative 
parameter is nowadays controversial. Thanks to the fact that with TD-NIRS, it is possible, with 
one single measurement to extrapolate all the four hemodynamic parameters (O2Hb, HHb, SO2 
and tHb), we could show correlations between their absolute values and the sEMG signal in the 
same paper, for the first time. The main finding of this analysis is that there are 3 out of 4 NIRS 
parameters that show high correlation with the MF signal during the slow phase, and could 
potentially be used as biomarkers for muscular fatigue. In particular, our tests showed that SO2 
and HHb are a better biomarker than tHb, even if they cannot be distinguished from O2Hb. This 
result should not surprise since we also showed that TD-NIRS parameters are strongly 
correlated one with the other (especially O2Hb, HHb and SO2). We also found that this result 
is not achieved on all the enrolled subjects and that there might be some outliers that differ from 
this trend (especially when considering HHb). A more detailed investigation on variability was 
not reported in this paper due to the relatively small number of subjects. 

In our study, we also could exclude some sEMG and TD-NIRS parameters to be used as 
biomarkers for sustained fatigue. RMS showed high variability among subjects, not revealing 
any average relevant correlation with MF or TD-NIRS parameters. In the literature, there are 
contrasting evidences suggesting that probably RMS has inferior utility compared to other 
indices, indicating inconsistent performance to evaluate muscle fatigue [60]. This is due to 
some factors related to experimental conditions such as muscle contraction, workload, 
endurance time, and other factors, the use of this index as fatigue indicator should be interpreted 



with caution [60,71,72]. Coherently, in our study, we found high variability across subjects. In 
NIRS, while 3 out of 4 parameters correlated well with MF, tHb showed poorer performances. 
This can be explained considering that tHb reflects the blood volume under the sample. During 
the contraction, because of the IMP, it is possible to observe an occlusion of the vessels, which 
is not always complete also if the contraction is high (around the 80% of the MVC) [65]. Also 
Yamada et al., in a TD-NIRS study on the vastus lateralis during sustained isometric contraction 
of 1 minute, show different patterns for tHb for the fast phase, since the 50% of the MVC would 
not cause a complete suppression of blood flow [23]. The torque we added with the employment 
of the bottle full of a certain quantity of water, was not enough to reach a 100% MVC, so that 
we can affirm that a not complete occlusion of the blood flow was performed also during the 
slow phase. This fact is reflected by the different behaviors among the subjects of tHb, at least 
during the first 60-100 seconds of the exercise. After this interval we can recognize a general 
increase of the tHb, except for subject 4. The increase in ΔtHb with muscle fatigue and local 
muscle fatigue level was already reported in literature [73]. Furthermore, changes in muscle 
blood flow due to muscle fiber architecture during muscle contraction may affect significant 
relationships between the decrease in the slope of MF and maximal changes in O2Hb and 
HHb [23]. In order to overcome this problem, it is necessary in a future study, to integrate the 
acquisitions with a blood flow sensor, in order to understand what is really happening in each 
subject. For example the diffuse correlation spectroscopy (DCS) technique could be a good 
candidate, since it is a non-invasive optical technique which allows real time measurements of 
the blood flow [74]. This technique could be also used in combination with Doppler 
acquisitions over major arteries in order to estimate the input function for oxygenated blood 
flow rates [75]. 

In order to discriminate between fast and slow phase, different strategies are suggested in 
literature. For example, it is possible to consider the inflection point, i.e. the point when the 
initial fast change rate of HHb and O2Hb decelerates considerably. It is possible to consider 
also the inflection duration, i.e. the duration from the start of the exercise until the inflection 
point [29]. Felici et al. identified automatically the beginning and end of the fast phase with a 
7-degree polynomial interpolation [65]. In this paper, we used TD-NIRS parameters for signal 
segmentation and in particular to identify the end of the transitory phase. This approach is 
reasonable since it is NIRS-driven, coherently with the objective of the work. However, for 
future developments, it could be equally reasonable to use MF as a signal to detect fatigue and 
distinguish phases. However, interestingly enough, in our trials MF showed a monotonic, linear 
decreasing trend, apparently showing a continuous augmentation of fatigue – except a slight 
decrease in MF slope for a few subjects when approaching the end of the test (close to complete 
exhaustion). This result was not favorable to the use of MF as a segmentation signal. In fact, 
MF did not allow us to clearly and univocally distinguish the transient phase found in TD-
NIRS. It is thus possible that, despite the slower dynamics, some TD-NIRS signals may be 
appropriate to distinguish fatigue phases. Further experiments should be designed to investigate 
this issue in more detail. 

We think that all these considerations can be very useful, in particular to drive the choice 
of the best NIRS parameters to employ for the assessing of the sustained fatigue during 
isometric exercises. This can help in more fields of research: from the sport sciences for 
evaluating the athletes training or in clinical setting, where it is necessary, for example, to assess 
the rehabilitation progresses of different kinds of populations (athletes after injuries or elder 
people after fractures) [76]. Considering also the fact that, thanks to the recent technological 
developments, cheaper, more compact and wearable TD-NIRS devices are now available [77], 
this analysis can be of interest in newer applications, where a portable system is required.  

 

 



4.4 Future works and limitations 

While providing novel evidences on sustained fatigue with the combined use of EMG and 
NIRS, this study leaves some open points that can be investigated and overcame in future 
works. First, it will be interesting to better assess the physiological outcome about muscular 
metabolism during the fatigue process from the TD-NIRS signal, comparing it with other gold 
standard techniques used for the assessment of fatigue. Some possible correlations can be 
investigated on the exhaled breath with a metabolic cart to assess the anaerobic and the 
ventilator threshold [22], on the blood metabolite with the analysis of a blood sample  [78], or 
with the photoplethysmography and electrocardiographic technique [79]. Moreover, another 
open point is to determine a unique parameter for the detection of the onset of fatigue to perform 
uniform analysis on the dataset. Our future research will investigate the meaningfulness of 
estimating a single fatigue onset by combining the multi-modal metrics proposed in this study 
into a common denominator, possibly also including other fatigue-related signals. These 
synthesis process in the analysis might prove useful when contextualized in pragmatic clinical 
scenarios and for uniform and straightforward interpretation of the data. 

Lastly, we acknowledge that this work has some limitations. The number of subjects 
enrolled for this study is quite low and can be increased for more reliable conclusions. 
Moreover, increasing the number of subjects would allow to assess in more detail whether 
relevant differences can be found in sustained fatigue assessment when considering subject-
specific parameters (e.g. gender, age, BMI) that may affect the analysis. 
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