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7 Highlights 

8  Variations in the support/observation scale of hydraulic conductivity induce changes in the 
9 information content of the associated Darcy fluxes.

10  Propagation of information about conductivity onto Darcy flux through the flow and mass 
11 balance equation can be quantified via Information Theory.
12  Flux data at large scales provide more information about fluxes at small scales than what can 
13 be observed with reference to conductivities

14 Abstract 

15 We rest on an Information Theory perspective and assess (i) the average information content and (i) 
16 the information shared between Darcy flux fields associated with fields of hydraulic conductivity (K) 
17 characterized by differing support (or measurement) scale. We treat hydraulic conductivity as a 
18 spatial random field, characterized by a given distribution and correlation structure. The latter is 
19 modeled through a truncated power law variogram (TPV), which explicitly takes into account a 
20 characteristic length scale of the support volume of K through a lower cutoff scale. We then frame 
21 our study in a numerical Monte Carlo context where groundwater flow is evaluated across a collection 
22 of realizations of hydraulic conductivity characterized by different values of the TPV parameters and 
23 subject to uniform in the mean flow. We quantify information through the Shannon entropy of the 
24 probability mass functions of the Darcy flux components as well as the mutual information and the 
25 multivariate mutual information respectively shared by pairs and triplets of Darcy flux components 
26 related to hydraulic conductivity fields evaluated at diverse scales and associated with various levels 
27 of heterogeneity. Partitioning of multivariate mutual information according to unique, redundant and 
28 synergetic contributions is also quantified. We found consistent trends (i) in the variation of the 
29 average information content with respect to the size of lower cutoff scale and (ii) in the way 
30 information is shared between pairs and triplets of Darcy flux components associated with diverse 
31 support scales of the underlying conductivities.

32 1.Introduction

33 Investigation, conceptualization and rendering of processes taking place within porous media 
34 are strongly influenced by and intimately tied to a variety of length scales. The latter are naturally the 
35 subject of various studies and analysis. For example, the size of the sampling window (or domain of 
36 investigation) is of relevance for studies conducted both at the pore (see e.g., Zhang et al., 2000; 
37 Puyguiraud et al., 2020) and at the laboratory or field scale (see e.g., Schad and Teutsch, 1994; 
38 Neuman, 1994; Neuman and Di Federico, 2003; Abidoye and Das, 2014). The strength of the spatial 
39 correlation (or degree of structural coherence) of the pore structure and/or of hydraulic properties 
40 (e.g., most notably hydraulic conductivity) is key to flow and solute transport phenomena (e.g., Porta 
41 et al., 2013, 2015; Siena et al., 2014, 2019; Meyer and Bijeljic, 2016; Wright et al., 2018; Comolli et 
42 al., 2019; Hyman et al., 2019 and references therein). Furthermore, the support scale (or data support) 
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43 associated with porous media attributes is an important element to be taken into account for the 
44 analysis of a variety of processes taking place within porous media (e.g., Andersson et al., 1988; 
45 Neuman, 1995; Tidwell and Wilson, 1999a, b; Tartakovsky et al., 2004; Berkowitz et al. 2006; 
46 Tartakovsky et al., 2017; Icardi et al., 2019). It should also be noted that the relevance of a given 
47 length scale is typically tied to all length scales affecting the process under investigation (see e.g., 
48 Dagan, 1984; Chen et al., 2006; Meile and Tunkay, 2006; de Barros and Rubin, 2011; Dentz and de 
49 Barros, 2015; de Barros and Dentz, 2016; Moslehi et al., 2016; Moslehi and de Barros, 2017; Di 
50 Palma et al., 2017; de Barros, 2018; Wang et al., 2019).

51 In this broad context, our study is keyed to the analysis of the impact of the size of the support 
52 (or measurement) scale of hydraulic conductivity on the information content of the ensuing Darcy 
53 flux field. We do so by considering a stochastic approach within which we treat hydraulic 
54 conductivity as a spatial random field, characterized by a given distribution and correlation structure. 
55 We model the latter by explicitly taking into account the length scales associated with the size (i) of 
56 the domain where flow takes place and (ii) of the support volume (or data support) associated with 
57 available data. To do so we leverage on prior studies (see e.g., Di Federico and Neuman 1997, 
58 Neuman and Di Federico, 2003; Neuman et al., 2008) and model the spatial correlation structure of 
59 the natural logarithm of conductivity, , through a truncated power law variogram (TPV). The latter 'Y
60 naturally arises upon considering geologic media as characterized by a continuum hierarchy of scales 
61 and is fully consistent with the documented behavior displayed by geostatistical parameters (i.e., 
62 variance and integral scale) inferred through typical analyses, which are seen to vary systematically 
63 with (i) the scale at which observations are taken and (ii) the length scale characterizing the domain 
64 of investigation. TPV models have the unique ability to capture these documented variations in terms 
65 of a few scaling parameters, which are tied to the length scales mentioned above. From a theoretical 
66 standpoint, a TPV is related to a view of  as a random fractal characterized by a power law 'Y
67 variogram (PV). The latter has been shown (see Neuman and Di Federico, 2003 and references 
68 therein) to be constructed as an infinite hierarchy of second order stationary random fields, each 
69 characterized by a given (Exponential or Gaussian) variogram of characteristic length scale, . 
70 Truncation of such a hierarchy of random fields by way of a lower and upper cutoff scale (denoted 
71 as , and , respectively) yields a truncated version of the PV. In this context,  is associated with l u l
72 the size of the support/measurement scale of log conductivity, whereas  is linked to the u
73 characteristic length scale of the investigated domain. As such, the resulting (multiscale) TPV model 
74 can be used even in settings where the support/measurement scale and/or the structure of coarsening 
75 of observations are unknown a priori. These concepts have been used by Neuman et al. (2008) to 
76 develop and apply co-kriging equations enabling one to use information pertaining to a given 
77 support/measurement scale to predict the behavior of the system at a differing scale of interest. 

78 Here, we focus on the lower cutoff scale, i.e., , and the way its value (which is associated l
79 with a given measurement/support scale for conductivity) can affect Darcy fluxes. As an example to 
80 frame the analysis, Fig.s 1a-d depict two-dimensional spatial distributions of log-conductivities 
81 related to four differing values of  (hereafter, each of these is denoted by a subscript and they are l

82 ordered as  <  <  < ; see also Section 2.2). Each of these exemplary fields is a random 1
l 2

l 3
l 4

l
83 sample associated with the collection of fields generated according to the procedure described in 
84 Section 2.2 within the context of a numerical Monte Carlo framework. Fig.s 1e-h depict the logarithm 
85 of the module of the Darcy flux associated with the diverse values of . Inspection of Fig.s 1a-d l
86 reveals a decrease of the level of descriptive detail in the spatial field of  as  increases. This is 'Y l
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87 reflected by an increased degree of spatial uniformity of log-conductivity values. In other words, there 
88 is a loss of information about the spatial arrangement of log-conductivity values as  increases (i.e., l

89 as its value shifts from  to ). This pattern is then imprinted to the spatial distribution of Darcy 1
l 4

l
90 flux magnitude (see Fig.s 1e-h), whose degree of spatial homogeneity is seen to increase with the 
91 value of . Fig.s 1i-m depict relative percentage differences between the module of Darcy flux l

92 related to  and its counterpart associated with increased values of  (i.e.,  = , , ). In 1
l l l 2

l 3
l 4

l
93 general, as the difference in the size of the support scales increases there is an overall increase in the 
94 (absolute) values of these relative differences. It is noted that positive and negative values of the latter 
95 (see Fig.s i-m) tend to correspond to locations where values of the module of Darcy flux are low and 
96 high (see Fig.s f-h), respectively. This behavior is also reflected through the increased degree of 
97 spatial uniformity of the velocity field with increasing values of . One can also note that there are l
98 certain degrees of similarity between log-conductivity fields associated with the diverse values of , l
99 i.e., it is reasonable to assume that a given conductivity field can contain a certain amount of 

100 information about its counterparts characterized by differing values of . A similar behavior appears l
101 to be recognizable also in the fields of Darcy flux magnitude. In our study we aim at providing a 
102 quantitative description of these qualitative observations upon leveraging on elements of Information 
103 Theory (IT) (see e.g., Stone, 2015). Specifically, we aim at quantifying (i) how the (average) level of 
104 information about the hydraulic conductivity and about the Darcy flux field is affected by the support 
105 scale; and how information is shared between (ii) pairs and (iii) triplets of these investigated variables 
106 associated with diverse supports. We note that, even as we focus here on the impact that variations of 
107 the support/measurement scale of  can have on the ensuing Darcy flux field, the IT-based analysis 'Y
108 illustrated in the following can (in principle) be extended and adapted to various contexts (including, 
109 e.g., upscaling/coarsening of flow and solute transport processes) to characterize the way information 
110 content (about some variables of interest) varies with characteristic length scale(s) and to quantify 
111 how information is shared between diverse variables of interest (e.g., solute concentrations rendered 
112 by a pore scale description of the system and its counterpart based on a continuum/Darcy scale 
113 model).

114 As compared to surface hydrology scenarios, Information Theory has been employed in a 
115 limited set of studies related to subsurface hydrology. Woodbury and Ulrych (1993, 1996, 2000) 
116 leverage on the principle of minimum relative entropy in the context of uncertainty propagation and 
117 inverse modeling. Kitanidis (1994) grounds the concept of dilution index, employed to describe 
118 chemical transport in heterogeneous aquifers, on the definition of entropy. In the context of 
119 subsurface systems analyses, Abellan and Noetinger (2010) define an optimal data acquisition 
120 strategy introducing an utility function grounded on the Kullback-Leibler divergence. Mishra et al. 
121 (2009) and Zeng et al. (2012) characterize global sensitivity of groundwater flow models through the 
122 concept of mutual information shared between pairs of model input(s) and output(s). Gotovac et al. 
123 (2010) employ the maximum entropy principle to characterize the probability distribution function 
124 of travel time of solute migrating through heterogeneous formations. Wellman and Regenaur-Lieb 
125 (2012) and Wellman (2013) characterize uncertainty affecting the geological structure of subsurface 
126 formations employing Shannon’ entropy and mutual information concepts. Nowak and Guthke 
127 (2016) focus on the optimal experimental design to discriminate between various interpretative 
128 models to render the process of sorption of metals onto soils. Bianchi and Pedretti (2017, 2018) define 
129 a set of metrics, grounded on IT concepts, to characterize the heterogeneity of porous formations. 
130 Boso and Tartakovsky (2018) develop an IT-based framework to upscale/downscale the flow problem 
131 within heterogeneous porous systems. Butera et al. (2018) investigate the spatial dependence of 
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132 observables related to flow and solute transport, focusing on the importance of non-linear effects. At 
133 the same time, IT has been used in a variety of studies associated with surface hydrology settings and 
134 covering a broad range of topics. For instance, IT elements have been employed to (a) quantify the 
135 quality of predictions of hydrological processes (e.g., Benedetti, 2010; Weijs et al., 2010), (b) design 
136 monitoring networks (e.g., Alfonso et al., 2010; Fahle et al., 2015), (c) assess data assimilation 
137 procedures (e.g., Nearing et al., 2013a, b), (d) benchmark model performance and model functioning 
138 (e.g., Nearing et al., 2016, 2018; Bennett et al., 2019; Ruddell et al., 2019), and (e) characterize the 
139 way information is shared between triplets of hydrological variables (e.g., Goodwell and Kumar, 
140 2017). This marked variety of settings where IT concepts and evaluation tools are applied supports 
141 the flexibility of IT to provide insights in complex natural systems (Goodwell et al., 2020; Kumar 
142 and Gupta, 2020; Nearing et al., 2020; Perdigão et al., 2020, Weijs and Ruddell, 2020).

143 The rest of the work is organized as follows. In Section 2 we describe the groundwater flow 
144 set-up (Section 2.1), the geostatistical model (Section 2.2), and the IT-metrics (Section 2.3) we 
145 consider. Results of the analyses related to various degrees of system heterogeneity and lower cutoff 
146 scale characterizing hydraulic conductivities are illustrated in Section 3. Major conclusions are 
147 exposed in Section 4.

148 2.Methodology

149 2.1 Flow problem and set-up

150 We consider a two-dimensional domain of uniform side L = 300 (all quantities being here 
151 expressed in consistent units) where uniform (in the mean) groundwater flow takes place. The two 
152 spatial directions are identified by x (transverse to the mean flow direction) and y (aligned with the 
153 mean flow direction) (see Fig. 2). Steady-state Darcy-scale flow is governed by

154 ; . (1)( ) 0  q x ( ) ( ) ( )h  q x K x x
155 Here, x denotes the space coordinate vector, q(x) is Darcy flux vector (with components  and ), xq yq
156 h(x) is hydraulic head, and K(x) is hydraulic conductivity tensor. The latter is here taken as 
157 heterogenous and isotropic, i.e., K(x) = K(x)I, I being the identity matrix. No-flow boundary 
158 conditions are imposed along the right and left boundaries, i.e., x = (0; L); a unit Darcy flux is set 
159 along the top boundary, i.e., y = L; hydraulic head is fixed at a constant (deterministically known) 
160 value, i.e.,  across the bottom edge, i.e., at y = 0 (see Fig. 2).BCh h
161 Flow is solved numerically through a finite element approach (here, we rely on first order 
162 Raviart-Thomas elements), as coded within the FreeFEM++ environment (Hecht, 2012). The spatial 
163 domain is discretized through a structured and regular triangular mesh comprising 300 elements along 
164 each side of the domain (see Fig. 2).

165 2.2 Geostatistical modeling approach

166 Hydraulic conductivity is treated as a two-dimensional random field. The latter is described 
167 through a zero-mean random fluctuation, i.e.,

168 , (2)( )'( ) ln
g

KY
K

 
   

 

xx

169 where  is the (spatially uniform) geometric mean of . We treat  as an unconditional gK ( )K x '( )Y x
170 multi-Gaussian random field, characterized by an isotropic truncated power law (TPV) variogram 
171 (see Neuman and Di Federico, 2003; Neuman et al., 2008 and references therein), i.e.,
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172 , (3) 2 2 2
' ; , ( ; ) ( ; )Y l u u ls s s       
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174 . (4)
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175 Here, s is separation distance (or lag), A is a coefficient, 0 < H ≤ 0.5 is the Hurst exponent,  is  ,  

176 the incomplete gamma function,  and  being termed as lower and upper cutoff scales, l u
177 respectively. We recall that (i)  and  are associated with the measurement/support scale of l u
178 hydraulic conductivity and with a characteristic length scale of the investigated domain, respectively 
179 and (ii) the TPV (3)-(4) is a weighted integral from  to  over a hierarchy of scales of exponential l u
180 variograms associated with stationary random fields related to point support. Expression for the 
181 variance of  can be evaluated as (see Di Federico and Neuman, 1997)'Y

182 , (5) 2 2 2
' ' ', ( ) ( )Y l u Y u Y l       

183 with

184 , (6)
2

2
' ( ) ,

2

H

m
Y m

A
m l u

H


 
   

185 while the integral scale associated with a TPV variogram reads 

186 , (7) 
1 2 1 2

' 2 2

2,
1 2

H H
u l

Y l u H H
u l

HI
H

  
 

 


 

187 Consistent with this modeling concept, the lower cutoff scale, , is here associated with the l
188 size of the support/measurement scale of hydraulic conductivity. Random spatial distributions of 
189  are then generated by setting H = 0.15 (corresponding to an antipersistent random field, where '( )Y x
190 high and low values tend to alternate quite rapidly in space) and  (corresponding to L /    32u  u
191 10). We explore the effect of various values of (i) the support/measurement scale associated with , 'Y
192 as expressed in terms of the lower cutoff scale, i.e.,  = [1; 2; 4; 6] (corresponding to L /  = [300; l l
193 150; 75; 50]) and (ii) the degree of system heterogeneity. The latter has been varied by considering 
194 three values of A, i.e., A = [0.082; 0.205; 0.41]. For conciseness of notation, we denote entries of  l

195 = [1; 2; 4; 6] as  with superscript i = 1, 2, 3, 4 and , in the following, we drop the dependence of i
l

196 the variance and of the integral scale on the upper cutoff scale, i.e., we write  2 2
' '( , ) ( )i i

Y l u Y l    

197 and . The ensuing values of  and of  are listed in Table 1. It is ' '( , ) ( )i i
Y l u Y lI I   2

' ( )i
Y l  ' ( )i

Y lI 
198 noted that,  decreases and  increases as the lower cutoff scale of  increases. As an 2

' ( )i
Y l  ' ( )i

Y lI  'Y
199 example, in Figure SM1 of the Supplementary Material we depict TPVs with A = 0.41 for various 
200 values of the lower cutoff scale. The pattern highlighted by these results is consistent the intuition 
201 that the degree of spatial variability of  tends to decrease as its support/measurement scale widens.'Y

202 We note here that there is an extensive body of literature focusing on the upscaling of the flow 
203 problem (1) (see e.g., Renard and de Marsily, 1997; Wen and Gomez Hernandez, 1996; Chen et al., 
204 2003; Noetinger et al., 2005; Sanchez-Vila et al., 2006; Boschan and Noetinger, 2012; Colecchio et 
205 al., 2020 and references therein). A common approach to this objective relies on applying an 
206 upscaling filter to the flow equation (1), thus viewing hydraulic head and conductivity as the sum of 
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207 their upscaled counterparts (which are typically smoother in space than the reference values) and 
208 zero-mean fluctuations around these (see e.g., Dykaar and Kitanidis, 1992; Noetinger 2000; Attinger 
209 2003; Eberhard et al., 2004). This typically leads to a flow equation for the upscaled head distribution 
210 which is associated with an increased level of complexity (including, e.g., the appearance of non-
211 local integro-differential terms). Additional sets of equations are also required to solve the exact 
212 (upscaled) flow model. This issue is typically referred to as the closure problem. The (otherwise 
213 exact) upscaled equation can possibly be simplified (through, e.g., localization) leading to compact 
214 expressions for a so-called effective hydraulic conductivity distribution. We recall that, as the size of 
215 the coarsening (or upscaling) length scale increases, the ensuing effective hydraulic conductivity 
216 fields tend to be more spatially uniform. As the upscaling length increases, so does the level of spatial 
217 correlation of the resulting effective conductivity field, while its overall variance decreases. Such a 
218 pattern is similar to the effect that increasing the lower cutoff scale of the TPV has on the conductivity 
219 field.

220 It is also noted that in the context of the present study we aim at directly assessing the influence 
221 of variations in the support/observation scale of conductivity on the resulting Darcy flux fields as 
222 governed by (1) (i.e., we do not pursue an upscaling of the mathematical model describing the flow 
223 problem). In this sense, hydraulic conductivity drives a coarsening of the resolution in a manner 
224 consistent with typical measurement devices.

225 Table 1. Variance and integral scale of  for the values considered for coefficient A and the lower 'Y
226 cutoff scales ( ) in (3)-(7).i

l

 = 11
l  = 22

l  = 43
l  = 64

l
A = 0.082 2

' ( )i
Y l  0.5 0.41 0.34 0.25

A = 0.205 2
' ( )i

Y l  1.25 1.04 0.85 0.63
A = 0.410 2

' ( )i
Y l  2.5 2.07 1.71 1.25

' ( )i
Y lI  11.3 12.7 14.8 18.1

227

228 We generate 1000 Monte Carlo samples for each combinations of A and  values reported in l
229 table 1, which were sufficient to ensure convergence of the results illustrated in Section 3. Note that 
230 our collections of realizations corresponding to a given value of A and differing values of  are l
231 designed upon preserving the initial seed number in the random generation process. This ensures that 
232 the n-th realizations of  included in the collection of Monte Carlo realizations with a given A and 'Y
233 related to various  differ solely as a result of the change in the lower cutoff scale of the underlying l
234 TPV. Hydraulic conductivity fields are generated at the centers of blocks forming a regular spatial 
235 grid composed of 300 square elements along each side of the domain. Numerical solution of the flow 
236 problem (1) is grounded on a grid composed by triangular elements (i.e., isosceles triangles) with a 
237 unit length base (see Fig. 2), each square block characterized by a given (generated) conductivity 
238 value being discretized by 2 triangles. This ensures that, for the smaller lower cutoff scale considered, 
239 approximately 11 grid elements are placed across each integral scale of the conductivity field, i.e., 
240  (see Table 1). This enables us to obtain a reliable representation of the heterogeneity of the 1

' ( )Y lI 
241 hydraulic conductivity field, in terms of variogram, as well as a sufficiently accurate solution of the 
242 flow problem (1). As the lower cutoff scale increases, so does the number of mesh elements per 
243 integral scale (see Table 1), thus ensuring a satisfactory level of accuracy in the ensuing Darcy flux 
244 fields. As an additional test to assess the accuracy of our results with respect to the size of the 
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245 numerical mesh employed, we evaluate the metrics introduced in Section 2.3 (and linked to the results 
246 illustrated in Section 3) considering a smaller domain (i.e., L = 150) and employing three numerical 
247 grids, characterized by an increased level of refinement obtained upon placing (i) 2, (ii) 8, and (iii) 
248 18 triangles for each conductivity block, respectively. Considering, for example, the setting 
249 associated to the highest conductivity variance (i.e., A = 0.41, see Table 1) and results obtained with 
250 100 Monte Carlo realizations, we find that the IT metrics we analyze (see Section 2.3 and 3) differ 
251 (at most) only by a few percentage points, the largest discrepancy being limited to about 6 - 7 % (for 
252 some metrics) when comparing grids (i) and (iii). The results of this analysis support the use of the 
253 selected numerical mesh as a compromise between numerical accuracy and computational cost.

254 Note that settings with  = 1 correspond here to test cases associated with the smallest value 1
l

255 of the support available (as identified by the lower cutoff scale and corresponding to the size of the 
256 log-conductivity generation blocks). For this reason, in the following we quantify the reference level 
257 of system heterogeneity by , which corresponds to the fields characterized by the highest 2 1

' ( )Y l 

258 degree of descriptive details,  (with i > 1) being related to the (partial) knowledge of the 2
' ( )i

Y l 
259 (reference) heterogeneity one can capture by using measurement devices associated with increased 
260 support scales ( ).i

l

261 2.3 Information Theory

262 The Shannon Entropy (Shannon, 1948) of the probability mass distribution of a discrete random 
263 variable  can be used to quantify the expected amount of information related to an event (or TX
264 outcome) of  and is defined asTX

265 , (8)1

1
( ) ln( )

N

T i i
i

H X p p 



 
266 where  is the number of bins employed to discretize the outcomes of ;  is the probability N TX ip

267 mass function, and  is the (so-called) information  associated with the i-th bin. The quantity 1ln( )ip 

268  in (8) corresponds to the degree of surprise for an outcome of  to be in the i-th bin, i.e., 1ln( )ip 
TX

269 the higher (lower) the value of , the lower (higher) the associated surprise for an outcome related ip
270 to the i-th bin. Note that in this study we rely on the natural base for the logarithm in (8), thus leading 
271 to nats as unit of measure for Shannon entropy and for all of the IT metrics described in the following, 
272 other choices being fully compatible with our framework of analysis (e.g., logarithm in base two, 
273 leading to bits). The Shannon entropy can be interpreted as a metric quantifying the uncertainty 
274 associated with , i.e.,  is largest and equal to  in case  is uniform across all bins TX ( )TH X ln( )N ip
275 (i.e., ), while vanishing when outcomes of  fall only within a single bin. In our study we 1/ip N TX
276 identify the random quantity  with either (i) one of Darcy flux components or (ii) . Thus, TX 'Y
277 Shannon entropy can also be interpreted as a measure of the degree of spatial heterogeneity of a target 
278 quantity, i.e., in case samples of a given quantity collected across the physical domain of interest are 
279 associated with values that fall into one (or only a few) bin(s) (i.e., ), this can be viewed ( ) 0TH X 

280 as a signature of spatial homogeneity. Fig. 3a depicts the concept of Shannon entropy relying on Venn 
281 diagrams, i.e., the radius of a circle in Fig. 3a is proportional to .( )TH X
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282 Given two random quantities, i.e.,  and , the information shared between them is TX
1SX

283 quantified by the bivariate mutual information, i.e.,

284 , (9)
1

,
,

1 1
( ; ) ln

N M
i j

S T i j
i j i j

p
I X X p

p p 

 
   

 


285 where  and  are the number of bins associated with  and , respectively;  and  are N M TX
1SX ip jp

286 the marginal probability mass function of  and , respectively; and  is the joint probability TX
1SX ,i jp

287 mass function of  and . The bivariate mutual information (9) quantifies the average reduction TX
1SX

288 of uncertainty (as defined through the Shannon entropy) about one variable stemming from 
289 knowledge on the other variable (see, e.g., Gong et al., 2013 and references therein). In this sense, 
290 the bivariate mutual information shared between two variables represents a reduction of uncertainty. 
291 For example, one can then see that  (a) is null for two independent variables or (b) is equal 

1
( ; )S TI X X

292 to the entropy of either  or , i.e. , if one variable fully explains TX
1SX

1 1
( ) ( ) ( ; )T S S TH X H X I X X 

293 the other one. Note that  is symmetric, i.e., the amount of information that  shares with 
1

( ; )S TI X X TX
294  is equal to that shared by the latter with the former. Fig. 3b depicts the concept of mutual 

1SX

295 information between  and  in terms of Venn diagrams, i.e., the overlapping region is TX
1SX

296 proportional to .
1

( ; )S TI X X

297 Considering a triplet of discrete random variables, it is possible to quantify the amount of 
298 information that two of these (hereafter identified as sources, i.e.,  and ) provide to the third 

1SX
2SX

299 one (identified as target variable, i.e., ) through the multivariate mutual information, i.e.,TX

300 . (10)
1 2

, ,
, ,

1 1 1 ,

( , ; ) ln
N M W

i j k
S S T i j k

i j k i j k

p
I X X X p

p p  

 
   

 


301 Here, N, M, and W represent the number of bins associated with ,  and , respectively;  
1SX

2SX TX kp

302 is the marginal probability mass function of ;  is the joint probability mass function of  TX ,i jp
1SX

303 and ; and  is the joint probability mass function of ¸ , and . Here, we follow a 
2SX , ,i j kp

1SX
2SX TX

304 typically employed notation according to which (i) the symbol ‘;’ is used to demarcate the sets of 
305 variables that share information (e.g.,  and  in (9) are the two sets sharing information; 

1
( )SX ( )TX

306 while  and  are such sets in (10)) and (ii) symbol ‘,’ is used as a separator in the list 
1 2

( , )S SX X ( )TX
307 of variables belonging to the same set (e.g.,  in (10)). We note that the multivariate mutual 

1 2
( , )S SX X

308 information shared by the source variables with the target variable is also a measure of the average 
309 reduction in the uncertainty of the latter due to the simultaneous knowledge of the sources. For 
310 example, there is no multivariate mutual information shared between the sources and the target, i.e., 
311 , and there is no reduction in the uncertainty about  by the knowledge of both 

1 2
( , ; ) 0S S TI X X X  TX

312  and  when  is independent from both  and . Otherwise, if the value of  is 
1SX

2SX TX
1SX

2SX TX
313 determined by only that of  and  the multivariate mutual information in (10) is equal to the 

1SX
2SX

314 Shannon entropy of , i.e., , so that the simultaneous knowledge of both TX
1 2

( , ; ) ( )S S T TI X X X H X

315 sources allows determining the value of the target variable. 
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316 Considering partial information decomposition or information partitioning concepts (see e.g., 
317 Williams and Beer, 2010),  can be partitioned/decomposed into unique, redundant, 

1 2
( , ; )S S TI X X X

318 and synergetic contributions, i.e.,

319 . (11)
1 2 1 2 1 2 1 2

( , ; ) ( ; ) ( ; ) ( , ; ) ( , ; )S S T S T S T S S T S S TI X X X U X X U X X R X X X S X X X   

320 Here,  and  represent the information that is uniquely provided to the target 
1

( ; )S TU X X
2

( ; )S TU X X

321  by  and , respectively (i.e., the information  is uniquely provided to  by TX
1SX

2SX
1

( ; )S TU X X TX

322 knowledge on  and cannot be provided by knowledge on , a corresponding observation 
1SX

2SX

323 holding for ); the redundant contribution  is the information that both 
2

( ; )S TU X X
1 2

( , ; )S S TR X X X
324 sources provide to the target, the emergence of some redundancy of information being typically 
325 expected when the two sources are correlated; and the synergetic contribution  is the 

1 2
( , ; )S S TS X X X

326 information about  that the simultaneous knowledge on  and  (possibly) brings in a TX
1SX

2SX
327 synergic way. The synergetic contribution emerges when the information provided to the target by 
328 the ‘whole’, i.e., considering  and  simultaneously, is larger than the information provided 

1SX
2SX

329 by considering the sum of the ‘parts’, i.e., summing the information provided to the target by the  
1SX

330 and  individually (see e.g., Griffith and Koch, 2014). Note that all components in (11) are positive 
2SX

331 (Williams and Beer, 2010). Fig. 3c illustrates these concepts upon relying on Venn diagrams.

332 The bivariate mutual information shared by  and each source is then seen asTX

333 , (12)1 1 1 2

2 2 1 2

( ; ) ( ; ) ( , ; )

( ; ) ( ; ) ( , ; )
S T S T S S T

S T S T S S T

I X X U X X R X X X

I X X U X X R X X X

 

 

334 where the information shared between each source and the target variable can be composed only by 
335 the corresponding unique and redundant contributions, as it is information shared with the target when 
336 the sources are taken separately (i.e., no synergy may emerge).

337 One can then define the interaction information, i.e.,

338 . (13)
1 2 1 2 1 2 1 2

( ; ; ) ( ; | ) ( ; ) ( ; | ) ( ; )S S T S T S S T S T S S TI X X X I X X X I X X I X X X I X X   

339 Here,  is the bivariate mutual information shared by source  (i =1, 2) and the ( ; | )
i jS T SI X X X

iSX

340 target, conditional to the knowledge of the other source  (j = 2, 1). We remark that the interaction 
jSX

341 information is the information shared by three sets of variables, each set being here demarcated 
342 through ‘;’ according to our notation, and comprising a single variable, i.e., , , or . 

1
( )SX

2
( )SX ( )TX

343 The quantity  is evaluated through (10) and employing the conditional probability ( ; | )
i jS T SI X X X

344 mass function for . Williams and Beer (2010) show thatTX

345 . (14)
1 2 1 2 1 2

( ; ; ) ( , ; ) ( , ; )S S T S S T S S TI X X X S X X X R X X X 

346 Thus, interaction information could be either negative, i.e., the amount of redundant information 
347 provided by the two sources overcomes the synergetic effects, or positive, i.e., the synergetic 
348 interactions due to the simultaneous knowledge on the two sources provides more information (to the 
349 target) than what is redundantly provided by the two sources. 
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350 Evaluation of all components in (11) requires an additional equation (further to (12)-(14)) and 
351 various strategies have been proposed to this end (e.g., Williams and Beer, 2010; Harder et al., 2013; 
352 Bertschinger et al., 2014; Griffith and Koch, 2014; Olbrich et al., 2015; Griffith and Ho, 2015). In 
353 this study we rest on the recent partitioning strategy proposed by Goodwell and Kumar (2017), in 
354 light of its ability to consider possible dependences between sources when evaluating the unique and 
355 redundant contributions. The rationale at the heart of this approach is that (i) even as the two sources 
356 are correlated, each can provide a unique contribution of information to the target, and (ii) redundancy 
357 should be lowest in case of independent sources. The redundant contribution is then evaluated as 

358 (15a)
1 2 1 2 1 2 1 2min min( , ; ) ( , ; ) ( , ; ) ( , ; )S S T S S T s MMI S S T S S TR X X X R X X X I R X X X R X X X    

359 with

360    (15b)

1 2 1 2

1 2 2 1

1 2

1 2

min ( , ; ) max 0, ( ; ; ) ;

( , ; ) min ( ; ), ( ; ) ;

( ; )
.

min ( ), ( )

S S T S S T

MMI S S T S T S T

S S
s

S S

R X X X I X X X

R X X X I X X I X X

I X X
I

H X H X

   
   


  

361 Goodwell and Kumar (2017) propose (15) as a rescaled measure of redundancy whereas (i) 
362  is the lowest bound for redundancy, following the rationale that the minimum 

1 2min ( , ; )S S TR X X X

363 value of redundancy must at least be equal to  in case  < 0, also 
1 2

( ; ; )S S TI X X X
1 2

( ; ; )S S TI X X X

364 guaranteeing the positiveness of the synergy, see (14)) (ii)  is the upper bound for 
1 2

( , ; )MMI S S TR X X X
365 redundancy, according to the idea that the weakest source provides only redundant information; and 
366 (iii)  accounts for the degree of dependence between the sources, i.e.,  and sI 0sI 

367  for independent sources, while  and redundancy in (12) 
1 2 1 2min( , ; ) ( , ; )S S T S S TR X X X R X X X 1sI 

368 attains its upper limit value, , in case of a complete dependency between the 
1 2

( , ; )MMI S S TR X X X
369 sources. After redundancy is evaluated through (15), all remaining contributions in (11) can be 
370 determined with (12)-(14).

371 It is important to observe that, despite some additional complexities, exploring information 
372 partitioning yields valuable insights on the way information is shared among diverse variables. As a 
373 final remark, we note that the theoretical elements summarized here refer to discrete variables. While 
374 corresponding counterparts for continuous variables are available, these are associated with a less 
375 intuitive and immediate interpretation (e.g., entropy could be negative, see e.g., Stone, 2015).

376 3. Results

377 The results illustrated in this section are grounded on the analyses of the values of the Darcy 
378 flux components stemming from the collections of MC-based conductivity fields described in Section 
379 2.2 and sampled within an inner region of the domain that is identified upon disregarding simulation 
380 results within strips of width  = 50 (i.e.,  for , respectively) along each edge (see Fig. cl [1; 2; 4; 6]l 

381 2), to avoid effects of the imposed boundaries conditions (this has been verified upon increasing lc 
382 from 0.0 to 50, with increments of 5, finding negligible discrepancies in the results after lc = 40).

383 Evaluation of the Shannon entropy in (8) is obtained by pooling all samples of each target 
384 variable in a unique set, i.e., we quantify the average information content (i.e., Shannon entropy) 
385 associated with observations of a given variable collected within the region of the physical domain 
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386 of interest identified as above. We follow the same rationale in the evaluation of the bivariate and 
387 multivariate mutual information, as well as its partitioning. For example, considering the bivariate 
388 mutual information shared by two variables that are associated with two distinct lower cutoff scales 
389 (e.g.,  and ), we define a two-column vector of samples in which each pair of entries 1 1l  2 2l 

390 correspond to: (i) the first variable of interest sampled at a given spatial location (e.g., x = (x*; y*)) 
391 and in a specific MC realization (e.g., the 100th) within the set of realizations related to a given lower 
392 cutoff scale (e.g., ) and (ii) the second variable of interest sampled at same spatial location 1 1l 

393 (e.g., x = (x*; y*)) considering the corresponding MC realization (e.g., the 100th) within the collection 
394 associated with the other lower cutoff scale (e.g., ). Leveraging on this two-dimensional vector 2 2l 

395 of samples, we evaluate the bivariate probability mass function in (9) and quantify the bivariate 
396 mutual information shared between two variables that have been collected over a given region of the 
397 physical domain of interest. A corresponding procedure is also considered for the evaluation of the 
398 multivariate mutual information (note that here the vector of samples is structured across three 
399 columns).

400 For each type of variable (i.e., either Darcy flux component or hydraulic conductivity) binning 
401 is performed upon discretizing through 100 bins of uniform width the range delimited by the lowest 
402 and largest value obtained considering the results associated with the lowest , i.e.,  (which gives l 1

l
403 rise to the largest range of variation of the results; not shown). The same binning is then employed to 
404 discretize the samples of the corresponding variables associated with a diverse lower cutoff scale. 
405 This binning design facilitates the assessment of the impact of , in terms of the investigated IT l
406 metrics. An analysis on the robustness of the results with respect to the number of (i) bins (upon 
407 varying these from 40 to 200, according to regular increments of 10) and (ii) number of Monte Carlo 
408 realizations (which are varied from 100 to 1000, through regular increments of 100) yields only 
409 negligible variations of the results (with relative percentage errors of the order of a few percent, 
410 depending on the investigated quantity). 

411 Note that, we introduce a superscript to clearly identify (when needed) the corresponding 
412 lower cutoff scale of the MC-based sample of a quantity (e.g.,  is the longitudinal component of 

i
l

yq

413 Darcy flux associated with  fields generated by setting the lower cutoff scale equal to ).'Y i
l

414 Fig. 4a depicts the Shannon entropy of  for the set of four  considered, and various 
i
l

yq i
l

415 degrees of system heterogeneity as quantified by  = 0.5 (red symbols), 1.25 (blue symbols), 2 1
' ( )Y l 

416 2.5 (black symbols). Note that values of the Shannon entropies included in Fig. 4a are normalized by 
417 the Shannon entropy of , i.e., , to facilitate comparison among the 

1
l

yq 1*( ) ( ) / ( )
i i
l l l

y y yH q H q H q  

418 results. Fig. 4a also depicts the corresponding (normalized) Shannon entropy for the log-conductivity 
419 fields ,  (green symbols and dashed curve). One can see that '

i
lY  1*( ' ) ( ' ) / ( ' )

i i
l l lH Y H Y H Y  

420  does not depend on . This behavior descends from the observation that (i) variations 
1*( ' )lH Y  2 1

' ( )Y l 

421 of  only contribute to rescale the observed lower and upper limits of the range of variability 2 1
' ( )Y l 

422 of  and (ii) a consistent binning rule (see details above) is employed for all values of . As 
1

' lY  2 1
' ( )Y l 

423 a consequence, the discretized probability mass functions of  associated with differing values of '
i
lY 

424  are similar for a given , their entropies being virtually indistinguishable. Inspection of Fig. 2 1
' ( )Y l  i

l

425 4a indicates that  decreases as  increases, i.e., there is a homogenization of the values of *( )
i
l

yH q i
l
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426  as the lower cutoff scale of the TPV increases. This result is consistent with the decreasing trend 
i
l

yq

427 of  with . Our results also show a generally similar qualitative pattern of the dependence *( ' )
i
lH Y  i

l

428 of  and of  on  for all values of . Otherwise, one can note that the rate at *( )
i
l

yH q *( ' )
i
lH Y  i

l 2 1
' ( )Y l 

429 which  decreases with increasing lower cutoff tends to be more marked for the set of fields *( )
i
l

yH q

430 characterized by the largest  (i.e.,  = 2.5) than for its low and moderate counterparts 2 1
' ( )Y l  2 1

' ( )Y l 

431 (i.e.,  = 0.5 and 1.25). This suggests that the degree of spatial homogenization of the values 2 1
' ( )Y l 

432 of  tends to be enhanced as  is increased in the presence of a high level of the reference system 
i
l

yq i
l

433 heterogeneity. 

434 Despite the observed reduction with , values of  and  remain higher than i
l *( )

i
l

yH q *( ' )
i
lH Y 

435 0.9 in all cases here analyzed, i.e., there is not a dramatic reduction of the average information in the 
436  and  fields as  increases (for the set of parameters here considered).'

i
lY  i

l
yq i

l

437 We then proceed to assess the way the information content of the  (with i > 1) fields relates 
i
l

yq

438 to that of , which is the one corresponding to the richest degree of descriptive details. We do so 
1
l

yq

439 by relying on Fig. 4b which depicts the bivariate mutual information shared between  and  
1
l

yq i
l

yq

440 normalized by the Shannon entropy of , i.e., , for the various 
1
l

yq 1 1 1*( ; ) ( ; ) / ( )
i i

l l l l l
y y y y yI q q I q q H q    

441 degrees of system heterogeneity, i.e., associated with  = 0.5 (red symbols), 1.25 (blue 2 1
' ( )Y l 

442 symbols), 2.5 (black symbols). Corresponding results for  are also included (green symbols). '
i
lY 

443 Values of  represent the fraction of the information of the reference field, i.e., , that ,1 ,*( ; )l l i
y yI q q  1

l
yq

444 is also included in the fields related to larger lower cutoff scales. As such, one can interpret a given 
445 value of  as a measure of the level of representativeness of  with respect to . When 

1*( ; )
i

l l
y yI q q  i

l
yq 1

l
yq

446 ,  is totally representative of , i.e.,  contains all of the information about  
1*( ; ) 1

i
l l

y yI q q  
i
l

yq 1
l

yq i
l

yq 1
l

yq

447 (in terms of Venn diagrams, see Section 2.3 and Fig. 3b, this case would correspond to a scenario 
448 where the circle associated with  coincides with that of ). From a physical 

1

i
l

S yX q
1
l

T yX q

449 standpoint,  can be interpreted as an average measure of the possibility to rend the 
1*( ; )

i
l l

y yI q q 

450 variability of the values of  (across the set of Monte Carlo samples) through the variability of  
1
l

yq i
l

yq

451 (e.g., when , values of  in each realization are completely independent from those 
1*( ; ) 0

i
l l

y yI q q  
i
l

yq

452 of , thus resulting in the lack of representativeness). For completeness, Fig. 4b also reports values 
1
l

yq

453 of  (right axis), which is a measure of the amount of information about  that is not 
1*1 ( ; )

i
l l

y yI q q 
1
l

yq

454 captured by . Following the terminology of Gong et al. (2013) and Nearing et al. (2018), we refer 
i
l

yq

455 to  as a measure of uncertainty (in terms of Venn diagrams, there is uncertainty when 
1*1 ( ; )

i
l l

y yI q q 

456 there is a fraction of the circle associated with  that is not covered by that of , see 
1
l

T yX q
1

i
l

S yX q

457 Fig. 3b). From a physical standpoint,  can be viewed as the average mismatch resulting 
1*1 ( ; )

i
l l

y yI q q 
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458 from attempting to represent the variability of  (across the set of Monte Carlo realizations) through 
1
l

yq

459 .
i
l

yq

460 Fig. 4b suggests that the fields of  exhibit a continuously decreasing level of 
i
l

yq

461 representativeness with respect to the reference field as  increases, i.e.,  decreases with i
l

1*( ; )
i

l l
y yI q q 

462 . Obviously, this is mirrored by the corresponding increase of the uncertainty about  when the i
l

1
l

yq

463 latter is approximated through , i.e.,  increases with . Inspection of the results for 
i
l

yq 1*1 ( ; )
i

l l
y yI q q  i

l

464 the various values of  considered reveals a consistency in the trends of  (and of 2 1
' ( )Y l 

1*( ; )
i

l l
y yI q q 

465 ). A similar decreasing trend is detected for  (and for ), 
1*1 ( ; )

i
l l

y yI q q 
1*( ' ; ' )

i
l lI Y Y  1*1 ( ' ; ' )

i
l lI Y Y 

466 whereas values of mutual information related to  are smaller than their counterparts related to '
i
lY 

467 . This result suggests that propagation of information about  onto  through (1) tends to 
i
l

yq '
i
lY  i

l
yq

468 enhance the possibility that knowledge of  (with i > 1) provides information about , as 
i
l

yq 1
l

yq

469 compared to what can be observed with reference to hydraulic conductivity.

470 We further note here that, due to the normalization employed, metrics such as  and 
1*( ; )

i
l l

y yI q q 

471  place emphasis on the field associated with the smallest lower cutoff scale, i.e., , 
1*1 ( ; )

i
l l

y yI q q 
1
l

yq

472 in the sense that they assess how each of the various  (with i > 1) fields is informative (or not) 
i
l

yq

473 with respect to . It is also of interest to quantify the fraction of information in  that is shared 
1
l

yq i
l

yq

474 with . We do so by evaluating  and we refer to   as 
1
l

yq 1 1**( ; ) ( ; ) / ( )
i i i

l l l l l
y y y y yI q q I q q H q    

1**( ; )
i

l l
y yI q q 

475 a measure of efficiency of . When  a total efficiency is obtained, i.e., all the 
i
l

yq 1**( ; ) 1
i

l l
y yI q q  

476 information in  is shared with . In terms of Venn diagrams (see Section 2.3 and Fig. 3b) this 
i
l

yq 1
l

yq

477 case would correspond to having the circle associated with   completely included in that of 
1

i
l

S yX q

478 , the former being then smaller that the latter, i.e., . We also evaluate 
1
l

T yX q
1

( ) ( )
i
l l

y yH q H q 

479 , the latter being a measure of the fraction of information in  that is not pertinent 
1**1 ( ; )

i
l l

y yI q q 
i
l

yq

480 to , and we refer to  as inefficiency (in terms of Venn diagrams there is inefficiency 
1
l

yq 1**1 ( ; )
i

l l
y yI q q 

481 when the circle associated with  is not completely immersed within that of ). Fig. 
1

i
l

S yX q
1
l

T yX q

482 4c depicts  (left axis) and  (right axis) for all systems analyzed. For 
1**( ; )

i
l l

y yI q q  1**1 ( ; )
i

l l
y yI q q 

483 completeness, corresponding values associated with  are depicted (green symbols). Inspection of '
i
lY 

484 these results reveals that the efficiency, i.e., , of  to contribute to knowledge of  
1**( ; )

i
l l

y yI q q  i
l

yq 1
l

yq

485 decreases with . At the same time, the inefficiency (i.e., ) of the  fields increases i
l

1**1 ( ; )
i

l l
y yI q q 

i
l

yq

486 with . The overall patterns displayed by these results is similar to what can be noted in Fig. 4b (i.e., i
l
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487 general similarity in the decreasing trends depicted and values of mutual information related to  '
i
lY 

488 smaller than their counterparts linked to ) and corresponding observations hold.
i
l

yq

489 Joint inspection of Fig. 4a and of Fig.s 4b-c reveals that, even as there is a moderate decrease 
490 of the information content of  as  the lower cutoff scale increases (see Fig. 4a), the decrease of the 

i
l

yq

491 representativeness (i.e., ) and the corresponding increase of the uncertainty (i.e., 
1*( ; )

i
l l

y yI q q 

492 ), as well as the decrease of the efficiency (i.e., ) and the increase of 
1*1 ( ; )

i
l l

y yI q q 
1**( ; )

i
l l

y yI q q 

493 inefficiency (i.e., ) are quite marked. From a practical perspective, these findings 
1**1 ( ; )

i
l l

y yI q q 

494 suggest that: (i) if one is interested to the quantification of the degree of variability of  (as rendered 
i
l

yq

495 through ), replacing the results associated with  by way of those related to larger lower *( )
i
l

yH q 1
l

496 cutoff scales does not yield marked differences; (ii) otherwise, if it is relevant that local values (and 
497 not only the global information rendered in terms of entropy) of  are preserved as the lower cutoff 

i
l

yq

498 scale increases (e.g., if the ensuing flow field are then employed for solute transport studies), one 
499 should be cautious in relying on conductivity fields associated with increased values of the lower 
500 cutoff scale, due to the marked decrease of the representativeness and of the efficiency observed with 
501 increasing such a scale. From a physical standpoint, these results suggest that, even as  and its 

1
l

yq

502 various counterparts  are characterized by (approximately) the same level of variability (see e.g., 
i
l

yq

503 Fig. 1e-h), there is a nonnegligible mismatch between their local values and such a mismatch 
504 increases with . These observations are consistent with Fig.s 1i-m, which document (absolute) i

l

505 values of relative percentage difference between Darcy flux modules that increase with .i
l

506 The results illustrated above are focused on the analysis of the information content of  and 
i
l

yq

507 on aspects about the way information is shared between pairs of  (or ) related to differing 
i
l

yq '
i
lY 

508 values of . We consider now the analyses of triplets of , each associated with a given lower l
i
l

yq

509 cutoff scale. In this context, relevant research and practical questions include ‘How is information on 
510  related to two support scales shared with corresponding fluxes associated with a third support? 

i
l

yq

511 Would it be more beneficial to consider  related to two, rather than to just one, lower cutoff scales 
i
l

yq

512 in terms of information shared with a third ?’. Answers to these kinds of questions can be provided 
i
l

yq

513 upon leveraging on the information partitioning framework detailed in Section 2.3.

514 Fig. 5 depicts the results of the information partitioning considering (i) the triplet 

515  (with i = 1, 2) and (ii) the triplet  (with i = 3, 4). For ease of comparison 
1 2

( , ; )
i i i
l l l

y y yq q q    2 1

( , ; )
i i i
l l l

y y yq q q   

516 between the results, we normalize the unique, synergetic and redundant contributions by the 

517 multivariate mutual information of the corresponding triplet, i.e.,  =  / *( , )
i j i
l l

y yU q q 

( , )
i j i
l l

y yU q q 

518 with j = 1, 2;  =  / ; and 
1 2

( , ; )
i i i
l l l

y y yI q q q    1 2*( , ; )
i i i
l l l

y y yR q q q    1 2

( , ; )
i i i
l l l

y y yR q q q    1 2

( , ; )
i i i
l l l

y y yI q q q   
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519  =  / . Fig. 5 depicts results for the cases related 
1 2*( , ; )

i i i
l l l

y y yS q q q    1 2

( , ; )
i i i
l l l

y y yS q q q    1 2

( , ; )
i i i
l l l

y y yI q q q   

520 to  = 2.5, similar results being observed for the other systems analyzed (see SM1).2 1
' ( )Y l 

521 Results of Fig. 5a suggest that, considering  and : (i) most of the information that 
1i

l
yq  2i

l
yq 

522 these two variables provide to  is redundant; (ii) only the unique contribution associated with  
i
l

yq 1i
l

yq 

523 is non-negligible; (iii) the unique contribution of  and (iv) the synergetic contribution of  
2i

l
yq  1i

l
yq 

524 and  are practically null. These results indicate that if one would represent  through its 
2i

l
yq  i

l
yq

525 counterpart observed at a larger scale, i.e., , upon disregarding , there is a significant amount 
2i

l
yq  1i

l
yq 

526 of information that is still retained (i.e., the redundant contribution), due to the level of similarity 

527 between  and  with  (see also Fig.s 1e-h). At the same time, there is also a non-negligible 
2i

l
yq  1i

l
yq  i

l
yq

528 amount of information that will be lost (corresponding to the unique contribution associated with 
1i

l
yq 

529 ). From a physical standpoint, this result suggests that fluxes  are more similar to  than  
1i

l
yq  i

l
yq 2i

l
yq 

530 (i.e.,  > ), this finding being also consistent with Fig.s 1i-m. It is then noted 
1*( , )

i i
l l

y yU q q  2*( , )
i i
l l

y yU q q 

531 that the simultaneous knowledge on both  and  appears to have only a marginal benefit, 
2i

l
yq  1i

l
yq 

532 following the observation that both the synergetic and the unique contribution associated with  
2i

l
yq 

533 are practically zero. 

534 These sets of results are conducive to answer questions of the kind ‘How much information is 

535 lost (or retained) when one would substitute  associated with the smallest support scale in a triplet 
i
l

yq

536 with its counterparts associated with larger supports, i.e.,  and ?’. Otherwise, it is also of 
1i

l
yq  2i

l
yq 

537 interest to focus on questions such as ‘How does knowledge on  and , i.e., the longitudinal 
2i

l
yq  1i

l
yq 

538 flow components linked to the smallest and intermediate supports in a triplet, provide information to 

539 , i.e., their counterpart associated with the largest support?’. Inspection of the results in Fig. 5b 
i
l

yq

540 reveals that, when considering triplets of the kind : (i) the largest contribution is the 
2 1

( , ; )
i i i
l l l

y y yq q q   

541 redundant information provided by  and  to ; (ii) the unique contribution of  is non-
2i

l
yq  1i

l
yq  i

l
yq 1i

l
yq 

542 negligible; while null values are observed for (iii) the unique contribution of  and (iv) the 
2i

l
yq 

543 synergetic component associated with simultaneous knowledge of  and . This set of results 
1i

l
yq  2i

l
yq 

544 indicates that it is convenient to focus on the variable associated with the intermediate lower cutoff 

545 scale (in a triplet), i.e., , to maximize the information content with respect to the variable related 
1i

l
yq 

546 to the larger lower cutoff scale, i.e., . At the same time, the simultaneous knowledge on both  
i
l

yq 1i
l

yq 

547 and  does not bring any additional benefit, given that  and  
2i

l
yq  2*( ; )

i i
l l

y yU q q  1 2*( , ; )
i i i
l l l

y y yS q q q   
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549 The analysis of information partitioning associated with triplets of the kind  
1 2

( , ; )
i i i
l l l

y y yq q q   

550 and  has the potential to be employed to guide the selection of the optimal 
2 1

( , ; )
i i i
l l l

y y yq q q   

551 support/observation scale (according to some selected criteria involving the analyzed IT metrics, see 
552 e.g., Abellan and Noetinger, 2010) within the context of the design of sampling strategies in the 
553 presence of data associated with multiple scales. 

554 The analysis for the transverse flux component, i.e., , which is patterned after the one 
i
l

xq

555 performed for , provides very similar results to what illustrated above (see SM1).,l i
yq

556 4. Conclusions

557 We treat the logarithm of hydraulic conductivity as a random field characterized by a truncated 
558 power law variogram which involves the definition of a lower cutoff scale. The latter is linked to the 
559 size of the support/measurement scale of hydraulic conductivity. We then assess the impact that 
560 variations of the lower cutoff scale, i.e. of the log-conductivity support scale, have on (i) the 
561 information content of the Darcy flux components and (ii) the information shared by pairs and triplets 
562 of observations of Darcy flux components associated with differing supports. We investigate various 
563 degrees of system heterogeneity in a two-dimensional set-up under uniform in the mean flow. Our 
564 study leads to the following major conclusions:

565 1. An increase in the lower cutoff scale leads to a reduction of the Shannon entropy of the Darcy 
566 flux components. This is in line with the observed homogenization in the spatial distribution 
567 of Darcy flux as the support scale increases.
568 2. The bivariate mutual information shared by the Darcy flux components associated with the 
569 smallest support,  and larger supports,  (i = 2, 3, 4), decreases in a regular fashion as  1

l i
l i

l
570 increases regardless of the degree of system heterogeneity, once results are normalized by 
571 the Shannon entropy of the fields associated with . This result provides a quantification of 1

l

572 how representative, with respect to the fields characterized by , are the counterparts 1
l

573 associated with increased supports. 
574 3. Trends which are similar to what observed above are documented for the normalized mutual 
575 information evaluated between pairs of log-conductivity values characterized by differing 
576 support scales. In this case, values of mutual information are smaller than their counterparts 
577 related to Darcy fluxes. This result suggests that propagation of information about 
578 conductivity onto Darcy flux through the flow and mass balance equation tends to enhance 
579 the possibility that flux observations at larger scales provide more information about 
580 (unknown) fluxes at smaller scales, as compared to what can be observed with reference to 
581 hydraulic conductivities.
582 4. Considering the Darcy flux components associated with (i) small (here denoted as target 
583 variable), (ii) intermediate and (iii) large support scales, evaluation of the information 
584 partitioning of the multivariate mutual information shared by such triplets of variables reveals 
585 that results associated with the intermediate and large scales provide mostly redundant 
586 information about the target variable while only the results at the intermediate scale provide 
587 a unique contribution. Correspondingly similar results are observed when considering triplets 
588 formed by the Darcy flux components associated with (i) large (denoted as target variable), 
589 (ii) small and (iii) intermediate support scales. Such a pattern is observed for all reference 
590 levels of system heterogeneity investigated.
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591 The IT-based analysis detailed here can be readily employed in a variety of settings (e.g., solute 
592 transport scenarios where system properties are parameterized on a series of block-scale grids with 
593 diverse levels of refinement) where multi-scale (and/or multi-model) representations of a system are 
594 taken into consideration in order to assess: (i) the level of representativeness (and uncertainty) as well 
595 as the efficiency (and inefficiency) related to considering pairs of variables; and (ii) the way 
596 information is shared among triplets of variables of interest. The ensuing results could guide the 
597 selection of the most relevant system representation(s) or serve as a tool to quantify the uncertainty 
598 associated with a given representation, as compared to a reference one. In this view, the assessment 
599 of the information content (and corresponding uncertainty) that diverse system representations (e.g., 
600 diverse mathematical formulations or level of model parametrization) share with a set of available 
601 data (collected at either the pore, laboratory or field scale) will be the subject of a future study. These 
602 types of analysis could provide new insights in the context of model benchmarking and diagnostic 
603 for subsurface related analysis (see, e.g., Nearing et al., 2016, 2018, 2020; and Ruddell et al., 2019 in 
604 the context of surface hydrology).
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Figures 

Fig. 1. Spatial distribution of the (natural) logarithm of hydraulic conductivity (first row) and 
associated distribution of the logarithm of Darcy flux module (second row), for increasing sizes of 
the lower cutoff scale  (left to right), i.e., (a)-(e) , (b)-(f) , (c)-(g)  and (d)-(h)  (with  l 1

l 2
l 3

l 4
l 1

l

<  <  < , see also Sec. 3). Spatial distribution of relative percentage differences between the 2
l 3

l 4
l

module of the Darcy flux related to the smallest log-conductivity support scale (i.e., ) and its 1
l

counterparts associated with (i) , (l)  and (m) .2
l 3

l 4
l



Fig. 2. Sketch of the two-dimensional square domain and boundary conditions associated with the 
flow problem in (1). The black triangular and blue square mesh correspond to the numerical 
discretization adopted for the solution of (1) and to the grid across which generation of hydraulic 
conductivity fields is performed, respectively. The square box (delimited by grey lines) corresponds 
to the inner spatial region where Darcy fluxes are sampled.



Fig. 3. Venn diagram depictions of the Information theory metrics described in Section 2.3 
considering a target, i.e., , and two source, i.e.,  and , variables. The size of each circle is TX

1SX
2SX

proportional to the corresponding Shannon entropy (e.g., in (a) Shannon entropy for the target 
variable ). The overlapping region in (b) reflects the amount of mutual information shared ( )TH X
between pairs of variables, e.g., mutual information shared between  and , i.e., . TX

1SX
1

( ; )S TI X X
The multivariate mutual information (i.e., ) shared between the two sources and the 

1 2
( , ; )S S TI X X X

target variable is the region demarcated by the black thick curve in (c), whereas the unique (i.e., 
 and ), synergetic (i.e., ), redundant (i.e., ) 
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( ; )S TU X X

2
( ; )S TU X X

1 2
( , ; )S S TS X X X

1 2
( , ; )S S TR X X X

contributions, and interaction information (i.e., ) are highlighted.
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Fig. 4. (a) Normalized Shannon entropy, i.e., ; (b) representativeness, i.e.,  (left *( )
i
l

yH q 1*( ; )
i

l l
y yI q q 

axis), and uncertainty, i.e.,  (right axis); and (c) efficiency, i.e.,  (left axis), 
1*1 ( ; )

i
l l

y yI q q 
1**( ; )

i
l l

y yI q q 

and inefficiency, i.e.,  (right axis), for the longitudinal Darcy flux component 
1**1 ( ; )

i
l l

y yI q q 

considering (i) four differing sizes of the lower cutoff scale, i.e.,  <  <  < , and (ii) three 1
l 2

l 3
l 4

l
degree of reference heterogeneity of the system, i.e.,  = 0.5 (red symbols), 1.25 (blue 2 1

' ( )Y l 
symbols), 2.5 (black symbols). Corresponding results associated with the logarithm of hydraulic 
conductivity, i.e., , are also depicted (green symbols and dashed curves).'Y



Fig. 5. Information partitioning of the multivariate mutual information considering the triplets (a) 

 (with i = 1, 2) and (b)  (with i = 3, 4). For ease of comparison between 
1 2

( , ; )
i i i
l l l
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the results, we normalize the unique, synergetic and redundant contributions by the multivariate 
mutual information of the corresponding triplet. Results are depicted for the setting related to 
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Fig. SM1. Truncated power law variogram,  (see (3)-(4)), versus spatial lag, s, computed 2
' ( ; , )i

Y l us  

for four values of the lower cutoff scale ( , , , ) and setting A = 0.41, H = 1 1l  2 2l  3 4l  4 6l 

0.15, . 32u 

It is remarked that an increase in the lower cutoff scale of the variogram of  yields: (i) a decreased 'Y
strength of the spatial variability of , as expressed in terms of the variogram sill (see (5)-(6) and 'Y
Tab. 1); (ii) an increase in the spatial correlation of log-conductivity values, as expressed in terms of 
the integral scale (see (7) and Tab. 1). These elements contribute to a spatial homogenization of log-
conductivity values as the lower cutoff scale increases. 



Fig. SM2. Information partitioning of the multivariate mutual information considering the triplets (a) 

 (with i = 1, 2) and (b)  (with i = 3, 4). For ease of comparison between 
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the results, we normalize the unique, synergetic and redundant contributions by the multivariate 
mutual information of the corresponding triplet. Results are depicted for the settings related to (a)-
(b) , and (c)-(d) .2 1

' ( ) 0.5Y l   2 1
' ( ) 1.25Y l  



Fig. SM3. (a) Normalized Shannon entropy, i.e., ; (b) representativeness, i.e.,  *( )
i
l

xH q 1*( ; )
i

l l
x xI q q 

(left axis), and uncertainty, i.e.,  (right axis); and (c) efficiency, i.e.,  (left 
1*1 ( ; )

i
l l

x xI q q 
1**( ; )

i
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axis), and inefficiency, i.e.,  (right axis), for the longitudinal Darcy flux component 
1**1 ( ; )

i
l l

x xI q q 

considering (i) four differing sizes of the lower cutoff scale, i.e.,  <  <  < ,, and (ii) three 1
l 2

l 3
l 4

l

degree of reference heterogeneity of the system, i.e.,  = 0.5 (red symbols), 1.25 (blue 2 1
' ( )Y l 

symbols), 2.5 (black symbols). Corresponding results associated with the logarithm of hydraulic 
conductivity, i.e., , are also depicted (green symbols and dashed curves).'Y



Fig. SM4. Information partitioning of the multivariate mutual information considering the triplets 

(a), (c), (e)  (with i = 1, 2) and (b), (d), (f)  (with i = 3, 4). For ease of 
1 2
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comparison between the results, we normalize the unique, synergetic and redundant contributions by 
the multivariate mutual information of the corresponding triplet. Results are depicted for the settings 
related to (a)-(b) , and (c)-(d) , and (e)-(f) .2 1
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