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Abstract: Network operators must continuously explore new network architectures to satisfy
increasing traffic demand due to bandwidth-hungry services, such as video-on-demand (VoD).
A promising solution which enables offloading traffic consists of terminating VoD requests locally
through deploying caches at the network edge. However, deciding the number of caches to deploy,
their locations in the network and their dimensions in terms of storage capacity is not trivial and
must be jointly optimized, to reduce costs and utilize network resources efficiently. In this paper, we
aim to find the optimal deployment of caches in a hierarchical metro network, which minimizes the
overall network resource occupation for VoD services, in terms of number of caches deployed across
the various network levels, their locations and their dimensions (i.e., storage capacity), under limited
storage capacity. We first propose an analytical model which serves as a tool to find the optimal
deployment as a function of various parameters, such as popularity distribution and location of
metro cache. Then, we present a discrete-event simulator for dynamic VoD provisioning to verify the
correctness of the analytical model and to measure the performance of different cache deployment
strategies in terms of overall network resource occupation. We prove that, to minimize resource
occupation given a fixed budget in terms of storage capacity, storage capacity must be distributed
among caches at different layers of the metro network. Moreover, we provide guidelines for the
optimal cache deployment strategy when the available storage capacity is limited. We further show
how the optimal deployment of caches across the various metro network levels varies depending on
the popularity distribution, the metro network topology and the amount of storage capacity available
(i.e., the budget invested in terms of storage capacity).

Keywords: video-on-demand; cache deployment; edge

1. Introduction

Online video streaming, especially video-on-demand (VoD), has been the main driving force
for the recent escalation in the overall Internet traffic. To cope with traffic growth, operators are
continuously exploring network architectural solutions which provide users with more capacity and
improved quality of service (QoS) while keeping network-resource occupation low and avoiding
excessive costs.
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A promising solution consists of enhancing nodes at the edge of the network with storage and
computing capabilities [1], allowing edge nodes to deliver services from locations close to end users. In
particular, VoD content caching enables storing video content, preferably the most popular, in storage
elements (i.e., caches) and delivering them from proximity to end-users, thereby offloading from the
network, a substantial amount of traffic [2]. Caching also grants further benefits, such as improved
quality of experience (QoE) for the end-users [3] and reduced overall network energy consumption [4].
However, a cache deployment consisting of a high number of large-capacity caches in edge nodes
requires a very large economic investment. For instance, a content-centric router with a cache size of
10 TB using flash-based solid-state drives (SSDs) is estimated to cost around $300,000 and consume 500
Watts of power [5]. Thus, it is decisive that network operators, for a given investment, or in other words,
under a limited storage capacity, choose the cache deployment strategy which significantly minimizes
network resource occupation. With cache deployment strategy, we refer here to choosing the number of caches,
their locations (where in the network) and their sizes (how much storage capacity). An effective deployment
strategy must take into consideration network topology, users’ requirements and characteristics of the
service (e.g., size and the popularity distribution of the video content catalog). In this work, we aim to
find the optimal cache deployment that minimizes network resource-occupation; i.e., the amount of
capacity occupied in the network to perform VoD content delivery, for a given investment in terms of
storage capacity (i.e., under limited storage capacity available). Here, we note that recent debates about
network-neutral-caching [6] have also addressed a similar problem: regulations of network neutrality
force content providers to utilize a specific amount of storage capacity to perform caching [7,8]. In that
case, however, network operators aim to minimize network resource occupation, subject to constraints
given by network neutrality regulations, instead of by a limited monetary investment.

We focus our analysis on hierarchical optical metro-area networks. Current metro networks
feature several hierarchical layers, and, when deploying caches, it is not a trivial task to decide the
number of caches to be deployed; where they should be located; and how to distribute the available
storage capacity among the caches of the different network layers, specifically if constrained by
storage capacity. In our previous work [9], we addressed the problem through developing a discrete
event-based simulator for dynamic VoD provisioning. The simulator generates VoD content requests
according to VoD-content popularity model, and based on network status (e.g., available bandwidth
on links) and cache deployment strategy, provisions the VoD content requests. As an output, the
simulator provides the overall network resource (i.e., capacity) occupation and the blocking probability,
allowing one to measure the efficiency of a cache deployment strategy. Results demonstrated that,
given a budget in terms of storage capacity, the cache deployment that minimizes the overall network
capacity occupation is not achieved by deploying all the available storage capacity in the nearest cache
locations but by deploying part of the storage capacity in caches at higher network levels. As an
extension, we analytically model the optimal cache deployment for a given network topology and
a given distribution of popularity of a VoD-content catalog, and then derive a closed-form formula
which serves as a tool to optimally distribute storage capacity among caches of the various levels
of a hierarchical metro-area network. The analytical model takes as an input the number of caches
deployed at each network level, the amount of storage capacity available, the number of VoD items in
the content catalog and the average VoD content size, and provides as an output the number of items
to be stored in caches of each hierarchical level; the overall amount of network resources occupied
for VoD content request provisioning is minimized. We verify the correctness of the analytical model
using the dynamic VoD provisioning simulator, and then, having validated the analytical model, we
provide a framework to identify the most effective cache deployments along the various levels of the
metro network by varying factors which are later proven decisive, such as the location of the metro
cache, the popularity distribution and the available storage capacity.

Contributions and Organization

We summarize the contributions of this work as follows:
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• We propose an analytical model that, given the network topology, a budget in terms of storage
capacity and characteristics of the video content catalog, identifies the optimal number of caches
to deploy in the network and the optimal distribution of the storage capacity among caches at
different network levels, with the aim of minimizing the overall amount of network resources
(i.e., capacity) occupied due to VoD content request provisioning.

• To verify the correctness of the analytical model, we perform extensive simulations using a
discrete, event-based dynamic simulator for VoD-content caching and distribution (presented in
our previous work [9]).

• We perform a sensitivity analysis of the effects of the popularity distribution, the location of metro
cache with respect to end-users and the total available storage capacity, on the optimal cache
deployment strategy. We summarize the takeaways of the analysis and provide guidelines to
identify the optimal cache deployment among the hierarchical levels of a metro network.

The rest of the paper is organized as follows. Section 2 discusses some relevant related works.
Section 3 describes the network and VoD-content catalog models. Section 4 states the problem at
hand and presents the analytical model proposed to solve it. In Section 5 we describe the event-based
simulator developed to perform dynamic VoD-content caching and distribution. Section 6 reports
analytical and simulation results. Section 7 concludes the paper.

2. Related Work

Several studies addressed the problem of cache deployment in telecommunication networks with
the objective of maximizing the benefits of caching. For example, [10,11] address the problem focusing
on offloading traffic to guarantee a more energy-efficient VoD-content distribution; and reference [12]
presents an intelligent, content placement approach considering a trade-off between size of caches
and network bandwidth. These works, however, consider static network scenarios. Moreover, they
either assume the location or assume the dimensions of the cache are given and do not account for an
investment budget to deploy caches. Other works, such as [13,14], qualitatively evaluate the impact of
content caching inside telecommunication networks in terms of cost and throughput improvement;
however, no budget-constraint is considered in these studies. Recent works, such as [15], investigated
the content placement problem for resilience against link-cut attacks in a data center network.

Similarly to our work, [16] solves the cache deployment optimization problem considering a
trade-off between the cost of the cache deployment and that of bandwidth and energy resources
in a static scenario while meeting end-user performance requirements. In our work, however, the
problem is significantly different, as we aim to jointly find the locations and dimensions of the caches
at the various hierarchical network levels that minimize the overall network resource consumption.
Moreover, we consider a dynamic network scenario where both the number of VoD content requests
(and the VoD content requested) are not known a priori. Furthermore, [17] presents an optimization
model whose objective is to decide where to deploy caches, in order to minimize costs and maximize
the bandwidth saved, but in a hierarchical tree network. In our work the problem is different, since we
consider ring-based hierarchical metro networks.

Complementing our work, prior works have investigated real time operations of content-delivery
networks via aspects such as load balancing [2]. While such works consider the cache deployment as a
given, in our work we focus on the cache-deployment planning phase and then perform simulations
under dynamic VoD traffic to capture network limitations, such as link bandwidth.

3. Network and VoD Content Modeling

3.1. Network Model

We consider a hierarchical metro-area network spanning over four levels, the (i) core, (ii) metro-core,
(iii) metro-access and (iv) access, as depicted in Figure 1, with three main categories of metro nodes: the
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access-metro edge nodes (AMENs), the metro-core edge nodes (MCENs) and the metro nodes (MNs).
The AMENs and MCENs represent edge nodes equipped with storage and computing capabilities
which are capable of storing and delivering VoD content. In between the mentioned nodes are the MNs
that are nodes supporting pure metro transport (no cloud capabilities). Overall, the four hierarchical
levels of the network are:
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Figure 1. Network topology considered in our study.

3.2. VoD Content Catalog Modeling

3.2.1. Catalog Size and Popularity

We consider a catalog size of 20.000 items assumed to follow a Zipf -like VoD-content popularity
distribution, as in [16,18,19], meaning that a small percentage of the content accounts for a high portion
of the total requests. The popularity of an item i is

P(i) =
1
iα

∑N
j=1

1
jα

(1)

and the cumulative probability of the most popular f items is

f

∑
i=1

P(i) =
∑

f
i=1

1
iα

∑N
j=1

1
jα

(2)

where N represents the total number of items and α is the popularity distribution skew parameter.
Note that the quantity ∑N

j=1
1
jα represents the normalization constant of the Zipf distribution. As an

example, we show a calculation of the cumulative probability utilizing Equation (2) with N = 20,000
and α = 0.8. For f = 2000 (the most popular 10% of the content catalog), Pr.(f = 2000) is 0.6, showing that
most popular 10% of video content accounts for 60% of the requests, whereas the rest of the content
(the remaining 90% of the content catalog) accounts for only 40% of the requests. In fact, the popularity
distribution of VoD content is the main driving force behind caching popular content near end-users,
as a small cache permits serving a significant number of the VoD-content requests. Note also that α

defines the skewness of the curve, and thus the popularity distribution itself. As an example, Figure 2
plots the popularity distribution curves for a content catalog of 100 items for α = 0.8, 0.9 and 1, showing
that for lower values of α, popular items become slightly less popular, whereas items belonging to the
long tail have more popularity. It follows that α is a decisive parameter to be considered when finding
the optimal storage-capacity distribution.
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Figure 2. Effect of the popularity skew parameter α on the popularity distribution of a content catalog
of 100 items for α = 0.8, 0.9 and 1 for the most popular 25 items.

3.2.2. VoD Content Characteristics

A video item is described by i) its popularity, ii) its duration and iii) its size. The popularity is
defined as the rank of the video in the content catalog; i.e., item #1 is the most popular, while the last
item, item #20000, is the least popular. The duration of VoD content follows a power-law distribution
in which short videos are more common than large ones, and the duration ranges between 1200 and
8400 s. Moreover, we assume that each VoD item can be streamed at three different bit-rates, i.e.,
3 Mbps, 6 Mbps and 12 Mbps, and that a VoD item is stored in its best format [20,21]. The size of a VoD
content is simply the product of its duration and best bit-rate possible. In addition, we consider the
chunk-nature of video content, where each item is made up of a number of small video-chunks [22].
Each chunk has a fixed duration of 1.5 s, and the number of video-chunks in a video item can be
determined by dividing its duration by the chunk duration.

4. Analytical Model For Optimal Cache Deployment

4.1. Problem Statement

The problem of optimal cache deployment in a hierarchical metro network can be stated as
follows. Given a maximum overall amount of storage capacity, a certain metro network topology, the
potential locations of caches and the characteristics of the content catalog (catalog size, popularity
distribution), we must find the optimal storage capacity distribution such that the overall average
resource occupation (RO) is minimized. To solve this problem, we derive an analytical model which
returns the amount of storage to be utilized in the caches at various levels with the objective of
minimizing the RO. Similar to previous works (e.g., [16]), we assume the average hop-count as a main
metric to estimate the overall RO, where the RO is assumed to be the product of the average hop-count
and the average bit-rate.

For sake of clarity, Figure 3 shows two possible cache deployments for a case in which 160,000 GB
are available to be distributed among caches: deployed at AMENs, (i.e., at the access network level),
and among the MCENs (i.e., at the metro network level). The example considers eight AMEN caches
and one MCEN cache. The content catalog considered has 20,000 items. In the first example (cache
deployment #1), AMEN caches are allocated 12,000 GB of storage capacity to store the most popular
1500 VoD items; meanwhile, the MCEN cache is allocated 64,000 GB of storage capacity to store the
next most popular 8000 items. Consequently, items ranked from 9500 to 20,000 are not cached; i.e.,
they remain at the remote video server. In the second example (cache deployment #2), the AMEN
caches are allocated more storage capacity than those in cache deployment #1: 15,000 GB to store the
most popular 1875 items. Consequently, the MCEN cache is allocated 40,000 GB of storage capacity,
less than the MCEN cache in cache deployment #1, and therefore, it stores fewer of items—only 5000.
Each cache deployment results in different storing of items in caches at AMENs and at MCEN (or left
at the distribution video server), and therefore, in a different network resource utilization; however, it
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is not obvious which cache deployment results in a lower network resource occupation. For a more
detailed description of this example, we refer the reader to [9].
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Figure 3. Example of two random storage capacity distribution approaches, each leading to a cache
deployment.

4.2. Analytical Model

4.2.1. Notation and an Example

We summarize the parameters and variables considered in our study in Table 1. N represents
the total number of items in the catalog, whereas T is the total amount of storage capacity (GB) that
can be deployed in caches at the various network levels. haccess, hmetro and hserver represent the average
hop-distances from caches at AMENs, MCENs and the video server, respectively. Note that hmetro

defines how distant the MCEN cache is from end-users, and thus it is a decisive when planning cache
deployment. A low value of hmetro means the MCEN is close to the access edge nodes, whereas a high
value signifies that a request needs to traverse the metro transport network to reach end-users. naccess

represents the number of caches utilized at the metro-access level. Note that it is not necessary that
all AMENs are equipped with storage capacities. For example, it is possible that 16 AMEN caches
are utilized having naccess = 16 while the topology consists of 32 AMENs. In such a case, caches at
AMENs are placed such that the maximum number of hops between an end-user and an AMEN cache
is minimized. k is the index of the last item stored in the access caches. Equivalently, k also represents
the number of items stored in the access caches, as the caching is popularity-based. Note that we
assume the same item cannot be cached at caches of two network levels simultaneously while all
caches of the same level are assumed to store the same items. For example, if the last item stored in
the access caches has rank 100 (k = 100), it means that all items with rank less than 100 are stored in
the access caches. Then, for a given value of k and according to the remaining storage capacity, the
number of items to be stored in the cache located in metro level (i.e., at MCEN) is simply calculated
given the average video size Sa as follows:

T
Sa
− naccess · k (3)

For example, given T = 160,000 GB and Sa = 8, if k = 400 and naccess = 32 (400 items are stored in
each of the 32 caches at AMENs), the number of items to be stored in the cache located at the MCEN is
7200 ( 160,000

8 − 32 · 400).
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Table 1. Notation considered in the analytical model.

Parameter/Variable Description

N Number of items in catalog
T Total allowed storage capacity (GB)

ROavg/req Average RO per second per VoD request
Sa Average content size

haccess Average hop-distance from AMEN caches
hmetro Average hop-distance from MCEN cache
hserver Average hop-distance from video server
naccess Number of AMEN caches utilized

k Index of last content stored in AMEN caches
br Average bit-rate of all VoD requests

4.2.2. Formula Derivation

We denote by ROavg/req the average resource occupation of a video request per second under a
given storage capacity distribution. ROavg/req is the product of the average number of hops and the
average bit-rate of all video requests. Equation (4) represents ROavg/req corresponding to storing k
items in the AMEN caches, where the three terms represent the average RO to deliver the content stored
at the AMEN caches, the MCEN cache and the data center, respectively. Note that the denominator of
Equation (1) which represents the normalization factor of the Zipf distribution is omitted here, it being
a constant value. Moreover, we note that the number of items which could be stored in the metro cache
(given that k items are stored in naccess access caches) is b T

Sa
− naccess · kc, where T

Sa
is the maximum

number of items which could be stored and naccess · k is the total storage capacity (represented by
number of items) in the naccess access caches. Therefore, the rank of the last item stored in the metro
cache is k + T

Sa
− naccessk.

ROavg/req(k) = haccess

k

∑
j=1

(
1
j

)
+ hmetro

k+ T
Sa −(naccess)k

∑
j=k+1

(
1
j

)
+ hserver

N

∑
j= T

Sa −(naccess−1)k+1

(
1
j

)
(4)

We now focus on the objective of the analytical model, which is to find the value of k which
minimizes the ROavg/req of all VoD requests. As seen in our previous work through simulative results,
the value of ROavg/req initially decreases as k increases until a certain value of k, at which ROavg/req
increases again. Mathematically, the "optimal" k value (i.e., the value of k guaranteeing the optimal
storage capacity utilization, and thus the minimal RO) is the value of k that, if stored in the caches of the
access segment, leads to ROavg/req lower than that if k + 1 items are stored in the caches of the access
segment. Hence, we represent the equation for ROavg/req if k + 1 items are stored in the caches of the
access segment in Equation (5). Note that by storing k + 1 items in the caches of the access segment
instead of k items, the amount of storage remaining for the cache of the metro segment decreases by
Sa · naccess. For this reason, the indexes of the sum at the second and third terms change accordingly.

ROavg/req(k + 1) = haccess

k+1

∑
i=1

(
1
i

)
+ hmetro

k+2+ T
Sa −(naccess)(k+1)

∑
j=k+2

(
1
j

)

+ hserver

N

∑
j=k+2+ T

Sa −(naccess)(k+1)+1

(
1
j

) (5)

Thus, we need to find the lowest value of k which satisfies the Equation (6).

ROavg(k) < ROavg(k + 1) (6)
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Solving for k, we obtain Equation (7) where p = T
Sa
− (naccess − 1)k − (naccess − 2). By

approximating the value of the summation we get Equation (8).

(hmetro − haccess)
1

k + 1
− (hserver − hmetro)

p+(naccess−2)

∑
j=p

(
1
j

)
≤ 0 (7)

(hmetro − haccess)
1

k + 1
− (hserver − hmetro)(naccess − 1)

1
p
≤ 0 (8)

By substituting the value of p and solving for k, we obtain the Equation (9) where k∗ is the index
of the last item to be stored in AMEN caches. Note that once the value of k∗ is obtained, we can simply
find the amount of storage capacity to deploy in the AMEN caches and the MCEN cache such that the
overall RO is minimized.

k∗ =
(hmetro − haccess)

T
Sa
− (hmetro − haccess)(naccess − 2)− (hserver − hmetro)(naccess − 1)

(naccess − 1)(hserver − haccess)
(9)

As previously mentioned, this derivation to Equation (9) is performed for the specific case for
α = 1. However, for values of α 6= 1, further steps are required to obtain the desired value of k. For this
aim, we first derive Equation 10, which is Equation (8) but for α 6= 1, and then, in order to solve it, i.e.,
to find the value of k, we derive its first derivative, Equation (11). We further apply Newton’s iterative
method through approximating the value of kn+1, the root of Equation (10), where kn+1 = kn - f (k)

f ′(k)
and kn is an initial first guess of the root of Equation (10). Note that for all the case studies tested, the
process to approximate the root of Equation (10) always converged in two or three iterations.

f (k) =
(hmetro − haccess)

(k + 1)α
− (hserver − hmetro)(naccess − 2)

pα
(10)

f ′(k) =
−(hmetro − haccess)α

(k + 1)α+1 − (hserver − hmetro)(naccess − 2)(naccess − 1)
( T

Sa
+ (naccess − 1)k− (naccess − 2))α+1

(11)

4.2.3. Example of the Analytical Model

This section provides an example for calculating the value of k∗ using the closed-form formula
for a case study with 16 AMEN caches (naccess = 16) out of 32 AMEN nodes (meaning that haccess =
1.5), and a content catalog of N = 20,000 VoD items with an average VoD item size of Sa = 6 Gb and
a popularity-skew parameter α = 1. We consider the available amount of storage capacity to be T =
120,000 GB; hmetro, i.e., the average hop-distance from the MCEN cache, to be 4.5; and hserver, i.e., the
average hop-distance from the remote server, to be 8. Substituting these values in Equation (9) we get
a value of k∗ = 614, meaning that the most-popular 614 items will be stored in AMEN caches. This also
means that the AMEN caches will be allocated a storage capacity = 3684 GB (614 items /times 6 Gb)
and that the MCEN cache will be allocated a storage capacity = 61,056 GB. By repeating the calculation
for T = 160,000 GB, we get a value of k∗ = 818, and therefore, the amounts of storage to be allocated for
AMEN and MCEN caches are 4917 GB and 81,323 GB, respectively.

5. Discrete Event-Based Simulator for Dynamic VoD Content Distribution

The overall functionality of the simulator is as follows. Given as input, the network topology; the
content catalog characteristics (number of VoD items, their sizes and the popularity distribution); and
the locations and capacities of the caches (note that given the capacity of a cache also means the list
of VoD items cached, as we consider a popularity-based caching strategy), the simulator provisions
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the dynamically-arriving VoD requests, based on current network status, and gives as an output the
overall amount of network resources occupied to provision VoD content requests, requests served by
each cache and blocking probability. We describe a VoD-content request by the tuple r = (ts, Dr, m, br,
dr), where ts is its arriving time, Dr defines the user requesting the content, m is the content requested
with bit-rate br and a chunk duration dr. Moreover, as each item consists of a number of chunks and
the chunks are provisioned one by one, the simulator allows one to deliver different chunks of the
same VoD request from different caches. In addition, adopting the chunk-nature of the VoD request
also allows one to degrade or upgrade, depending on the status of the network—the bit-rate assigned
to a VoD request.

The provisioning and deprovisioning process of a VoD chunk is described in Algorithm 1. First,
when a request is generated for an item m from a user Dr, a list of all the caches storing item m
(including the video server) is identified. We assume that access nodes (ANs) act as HTTP proxies for
users so that a TCP connection request is originated from them towards the caches every time a VoD
content chunk is download through, e.g., an HTTP stream. The nearest cache storing item m, assuming
a path with available bandwidth at least equal to the br, is identified, and it delivers the content to
user Dr, allocating a bandwidth equal to br along the shortest path from the cache to the access node
AN aggregating user Dr. Note that in a realistic network scenario, the choice of path is not necessary
based on the shortest path, as a network operator/content provider may optimize content delivery
based on other metrics; e.g., congestion avoidance, network/cache load balancing or desired user
quality. If no path with bandwidth greater than or equal to br can be found, the provisioning process
degrades the quality of the video delivery, i.e., setting the value of br to that corresponding to a lower
video definition (described in Section 3.2.2), and then tries to provision the request. If no path can
be found in this case, the VoD request is blocked. If a path is found, request r is provisioned for the
duration of the chunk of content, and then it is deprovisioned at time ts + dr, deallocating the assigned
bandwidth from the utilized path. Simultaneously, a request for the successive chunk of the content
request is initiated. Note that since the provisioning/deprovisioning process is performed for every
chunk of a VoD request, different chunks can be delivered at different provisioning bit-rates, thereby
imitating the functionality of the adaptive bit-rate streaming technique. For example, if a chunk is
delivered with a bit-rate lower than br, due to unavailable network resources, the successive chunk
shall be allocated bit-rate br if network resources become available. Note that the in-network bit-rate
adaptation approximates a realistic scenario in which the low-quality adaptation is performed at the
user-side. The computational time of the algorithm considering the system used is around 10 ms per
VoD chunk request.
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Algorithm 1 Video-on-demand (VoD)-chunk provisioning

Input: Network status: cache locations, stored content per cache and available bandwidth on links; VoD content request
r(ts,Dr,m,br,dr): arriving time ts, user Dr, requested content m, requested bit-rate br, chunk duration dr.
Output: VoD provisioning (per chunk)
————————————————————————————
path = f alse;
bandwidth = 0;
Allocate list of caches C storing content m;
path = shortest path between Dr and nearest cache with available bandwidth ≥ br;
if path = true then

bw = br;
else

path = shortest path between Dr and nearest cache with available bandwidth ≥ min. bandwidth;
if path = true then

bw = min. bandwidth;
end if

end if
if (path = true) then

provisionn r over path with bandwidth bw;
schedule next video-chunk event at ts + dr;
schedule deprovisioning event at time ts + dr;

else
Block r;

end if
End;

6. Numerical Results

In this section, we first verify the analytical model by comparing it with simulated results. Then,
utilizing both the analytical model and the dynamic simulator, we analyze the impacts of different
network and content catalog characteristics on the optimal storage distribution among caches of
different network levels.

6.1. Verification of the Analytical Model

We verify the analytical model by comparing it with simulation results over the case studies
whose parameters are reported in Table 2. We consider a network topology (similar to the one depicted
in Figure 1) consisting of one MCEN, four metro nodes, 32 AMENs and 96 ANs distributed over four
different access rings. VoD content requests originate uniformly from all 96 ANs with probabilities
0.5, 0.25 and 0.25 of choosing bit-rates of 3 Mbps, 6 Mbps or 12 Mbps, respectively. Consequently, the
average bit-rate of all requests is 6 Mbps. We consider that all 32 AMENs, 16 AMENs or 8 AMENs
host caches. Note that the number of AMENs which host caches differs from one case study to another.
Moreover, note that if all AMENs are equipped with caches (naccess = 32), the average hop-distance
from the AMEN caches haccess is equal to 1, whereas if half of the AMENs are equipped with caches,
(naccess = 16), meaning that not all ANs are directly connected to an AMEN which hosts a cache, the
average hop-distance haccess becomes equal to 1.5. Moreover, the average hop-distance from users to
the MCEN, hmetro, in this case is 4.5, whereas hserver, the average hop-distance from users to the remote
data center, is 8.

Table 2. Simulation settings for the considered case studies.

Case Study # α Sa (GB) T AMENs naccess haccess

1 0.9 8 160,000 32 32 1
2 1 6 120,000 32 16 1.5
3 1.1 8 160,000 32 32 1

To find the optimal storage distribution for each case study, we perform an extensive set of
simulations considering all possible storage distributions for a given cache deployment. Specifically,
in each simulation, we vary the number of items stored in caches deployed at AMENs, k. k ranges
from 0 (the case where all the storage capacity is utilized in the cache located at the MCEN), to the
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maximum possible number of items to be stored in each of the AMEN caches T
naccess ·Sa

. We refer to
these cache deployments as Only MCEN and Only AMENs, respectively. Note that when a certain
amount of storage capacity is deployed in caches of AMENs, only the remaining amount of the
available storage capacity can be deployed in the cache located at the MCEN. We simulate the arrival
of 500,000 VoD requests for each case; i.e., for each value of k considered. The VoD requests are
Poisson-distributed. Specifically, we set an arrival rate guaranteeing negligible blocking probability to
provide a fair comparative analysis between the different cache deployment strategies.

Figure 4 shows ROavg/req (i.e., the average resource occupation per VoD request) as a function
of k, for all the three case studies considered. Results show that ROavg/req initially decreases as k
increases (as more items being stored in the caches located at AMENs enables serving more requests
from locations near end-users) until a certain value of k, at which RO increases again (as it becomes
less-advantageous to deploy more storage capacity in the caches of the AMENs and more-advantageous
to deploy the storage capacity in the MCEN cache). One might argue: why is the optimal solution
not deploying all available storage capacity at AMENs? This is due to the fact that, when the storage
capacity is limited, it becomes more-advantageous not to store duplicates of a number of popular items
at AMENs, but rather store one copy of a larger set of items, thereby pulling more items from the origin
server into the network. Certainly, in a scenario when the storage capacity is not limited, deploying
more caches in proximity to end users and/or increasing their capacity allows one to significantly
decrease the amount of network resources occupied to perform VoD content caching. However, in the
scenario under consideration, the case is different, as storing (and duplicating) one additional item in
the naccess AMEN caches means removing naccess VoD items from the MCEN cache and having them
consequently delivered, when requested, from the origin server. Moreover, we highlight that the value
of k, i.e., the number of items stored in AMEN caches, which guarantees the minimum amount of
network resource occupation, significantly differs from one case to another. This is to be expected,
as it strictly depends on the available amount of storage capacity, the number of caches deployed,
the content catalog size and the popularity distribution. In particular, we focus our comparison on
cases 1 and 3 that only differ in the skew parameter of the popularity distribution (for Case #1, α = 0.9,
while for Case #3 α = 1.1). The value of k which guarantees minimum resource occupation is 267 for
Case #1, whereas it is 377 for Case #3. This shows the significant impact the popularity distribution
has on the optimal cache deployment. We further investigate the impact of α on the optimal cache
deployment in Section 6.3. In Table 3 we compare the simulative and analytical results with those of
the analytical model. We denote by ksim the value of k that guarantees the optimal storage distribution
found through simulations, and by kmodel the value calculated utilizing the closed-form formula. With
a negligible percentage error, the results prove the correctness of the closed-form formula.
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Figure 4. ROavg/req with respect to k, the number of items stored in the access-metro edge node
(AMEN) caches for each of the three case studies.

Table 3. Values of kmodel and ksim for each case study.

Case Study # kmodel ksim Error

1 266.475 267 1.9 · 10−3

2 614.415 615 9.5 · 10−4

3 376.228 377 2.05 · 10−3

6.2. Optimized Cache Deployment vs. Baseline Strategies

After having cross-validated our analytical and simulative approaches, we evaluate the advantage
of having an optimized cache deployment, referred to as k-optimized, through comparing it to two
baseline strategies (Only MCEN and Only AMENs) in terms of percentage of requests served from each
network level and overall RO.

Table 4 shows the percentage of requests served from the AMEN caches, the MCEN cache and the
data center (DC) for the three cases in Table 2 under the three cache deployments; namely, the Only
MCEN, Only AMENs and k-optimized. In all cases, for Only MCEN cache deployment, all the content is
pulled from the DC and stored in the MCEN, as the available storage capacity enables storing and
serving all of the content from the MCEN cache. This cache deployment, however, results in the
highest overall network RO. This shows that not utilizing the AMEN caches has a drastic effect on the
overall network RO. For the Only AMENs, all the storage capacity is distributed uniformly among
the AMEN caches, storing the most popular items. This cache deployment enables serving a high
percentage of the requests (ranging between 58% and 78%) from locations in proximity to end-users;
however, it does not utilize the MCEN cache, leaving a significant percentage of VoD content, and
therefore, a significant percentage of requests (ranging between 22% and 42%), to be served from the
DC, consequently increasing the overall network RO. This confirms that deploying all storage capacity
in cache locations near end-users is not an optimal way to perform VoD content caching, especially
when the amount of storage capacity is limited. Conversely, for the k-optimized cache deployment,
we see that it reveals a lower percentage of requests served from the AMEN caches with respect to
that of the Only AMENs cache deployment, but a much higher percentage of requests served from the
MCEN cache than for Case #1. Consequently, only a low percentage of requests are served from the
DC, resulting in the minimal overall network RO.
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Table 4. Percentage of requests served from the video server, the metro-core edge node (MCEN) cache
and the AMEN caches, and the average resource occupation (RO) for each cache deployment in the
three case studies.

Case Study #1

Cache Deployment DC MCEN Cache AMENs Caches RO

Only MCEN 0 100% 0 27

k− optimized 9% 46% 45% 19

Only AMENs 42% 0 58% 24.43

Case Study #2

Cache Deployment DC MCEN Cache AMENs Caches RO

Only MCEN 0 100% 0 27

k− optimized 4% 27% 69% 16.21

Only AMENs 27% 0 73% 19.32

Case Study #3

Cache Deployment DC MCEN Cache AMENs Caches RO

Only MCEN 0 100% 0 27

k− optimized 5% 22% 73% 12.57

Only AMENs 22% 0 78% 15.06

6.3. Analysis of Optimal Cache Deployments

Utilizing the analytical model, in this section we investigate how the optimal distribution of the
available storage capacity changes while varying:

• The location of the MCEN cache, i.e., hop-distance of users from MCEN, hmetro;
• The content catalog popularity skew parameter α;
• The total allowed storage capacity T.

6.3.1. The Effects of the Location of Metro Edge Cache (hmetro) and the Popularity Skew Parameter (α)

We now focus on the impact of the location of the MCEN, represented by hmetro and the skew
parameter α. In Figure 5 we show the ROavg/req utilized with naccess = 8, 16 or 32, while changing
hop-distance of the MCEN cache hmetro in the topology and using four different values of α. In this
evaluation we fix T at 160,000 GB. First, we notice that, for all values of α (except for α = 1.1), when
the MCEN cache is near to end-users (hmetro ≤ 4.5), the minimum ROavg/req is achieved when all the
32 AMEN caches are utilized. However, when the MCEN cache is relatively farther (hmetro ≥ 5.5),
the cache deployment which yields the minimum ROavg/req is when only eight AMEN caches are
utilized. This demonstrates that utilizing all caches locations in access is not always the optimal cache
deployment. For the case where α = 1.1, the minimal ROavg/req is achieved when utilizing 32 AMEN
caches. This is because for such a value of α, a very small number of items become extremely popular
while moderately-popular items lose their popularity, making it more useful to store the popular items
in nearest cache locations and to avoid storing less popular content. On the contrary, for lower values
of α, the curve representing the popularity distribution is more skewed (see Figure 2), meaning that a
significant number of VoD items have similar popularity, and therefore, it becomes more advantageous
to pull more of these VoD items from the server into the MCEN cache.
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network for different values of α with respect to hmetro, the average hop-distance between the MCEN
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deployment when utilizing 8, 16 or 32 caches for different values of α and hmetro.

We now focus on the size of AMEN caches obtained for the optimal cache deployment for different
values of hmetro and α. Figure 6 shows the storage capacity in each AMEN cache returned by our
formula for naccess = 8, 16 and 32 and for hmetro = 3.5, 5.5 and 7.5. When a high number of AMEN caches
is utilized (naccess = 32), the optimal solution consists in deploying relatively small capacity caches,
while, when a low number of caches is utilized (naccess = 8), larger caches are preferred. Furthermore,390

we see that for the case where hmetro ≤ 4.5, the cache deployment that yields the minimum ROavg/req
is the one with higher naccess (i.e., 32) and relatively small caches (between 1000 and 5000 GB), whereas,
when hmetro is distant from end-users, the preferred cache deployment is the one with 8 caches of
relatively high storage capacity (ranging between 3500 and 20000 GB). This is due to the fact that,
when the location of the MCEN cache is near to end-users, it becomes more advantageous to deploy
more storage capacity at the MCEN cache, thus pulling many contents from the DC, whereas when
the MCEN location is farther, it is preferable to deploy the storage capacity at AMEN caches while
utilizing a low number of caches (naccess = 8) thus pulling a high number of contents from the DC
into the AMEN caches. In conclusion, the dimension of the metro network impacts the optimal cache
deployment strategy.400

Furthermore, we notice that for a given value of hmetro, the cache deployment for lower values
of α reveals AMEN caches of smaller size with respect to when the value of α is higher. For example,
for hmetro = 3.5, the size of the AMEN caches in the case when 8 and 32 AMEN caches are utilized for

Figure 5. ROavg/req for cache deployments with different numbers of AMEN caches utilized in the
network for different values of α with respect to hmetro, the average hop-distance between the MCEN
cache and end-users.

We now focus on the size of AMEN caches obtained for the optimal cache deployment for different
values of hmetro and α. Figure 6 shows the storage capacity in each AMEN cache returned by our
formula for naccess = 8, 16 and 32, and for hmetro = 3.5, 5.5 and 7.5. When a high number of AMEN caches
is utilized (naccess = 32), the optimal solution consists of deploying relatively small capacity caches,
while when a low number of caches is utilized (naccess = 8), larger caches are preferred. Furthermore,
we see that for the case where hmetro ≤ 4.5, the cache deployment that yields the minimum ROavg/req
is the one with higher naccess (i.e., 32) and relatively small caches (between 1000 and 5000 GB), whereas
when hmetro is distant from end-users, the preferred cache deployment is the one with eight caches
of relatively high storage capacity (ranging between 3500 and 20,000 GB). This is due to the fact that,
when the location of the MCEN cache is near to end-users, it becomes more advantageous to deploy
more storage capacity at the MCEN cache, thereby pulling many items from the DC, whereas when
the MCEN location is farther, it is preferable to deploy the storage capacity at AMEN caches while
utilizing a low number of caches (naccess = 8), thereby pulling a high number of items from the DC
into the AMEN caches. In conclusion, the dimensions of the metro network impact the optimal cache
deployment strategy.
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Figure 6. The amounts of storage capacity for the AMEN caches corresponding to the best cache
deployment when utilizing 8, 16 or 32 caches for different values of α and hmetro.

Furthermore, we notice that for a given value of hmetro, the cache deployment for lower values of
α reveals AMEN caches of smaller size with respect to when the value of α is higher. For example, for
hmetro = 3.5, the sizes of the AMEN caches in the case when 8 and 32 AMEN caches are utilized for α =
0.8 are 3000 GB and 900 GB, respectively. For α = 1, the caches are of greater size—7000 GB and 2000
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GB, respectively. This is because for higher values of α, the popularity distribution is characterized by
a shorter head (as shown in Figure 2), meaning that popular items are more popular with respect to
the case where the value of α is lower, and thus it becomes more significant to deploy larger caches
close to end-users so as to deliver the most popular items from a close location. This shows that the
optimal cache deployment (number of caches and their storage capacity) which guarantees the minimal
utilization of the network resource occupation hugely depends on the existence and the location of
a centralized cache in the metro segment of the network, and on the content catalog characteristics
(size and popularity distribution) of the content provider. In Table 5 we summarize the important
takeaways on the deployment of caches in different network levels.

Table 5. Best cache deployment (number of caches and their storage capacities) among different
network levels based on location of MCEN cache (hmetro) and value of the popularity distribution skew
parameter α.

hmetro ≤ 4.5 4.5 < hmetro < 6.5 hmetro ≥ 6.5

α < 1
AMENs: High number, small capacity
MCEN: Large capacity

AMENs: Low number, medium capacity
MCEN: Medium capacity

AMENs: Low number, large capacity
MCEN: no cache

α = 1

α > 1
AMENs: High number, large capacity
MCEN: Small capacity

AMENs: High number, small capacity
MCEN: no cache

6.3.2. Effects of the Location of the Metro Edge Cache (hmetro) and the Available Storage Capacity (T)

Finally, we investigate how useful it is to increase the total amount of storage capacity T in the
network. We study the variation of the ROavg/req as a function of T and for different values of α and
hmetro, as shown in Figure 7.
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Figure 7. Average resource occupation ROavg/req for increasing value of total allowed storage capacity
for α = 0.9 and 1.

We observe that when T increases and becomes much higher than the size of the content catalog
(in this case 160,000 GB), the curve asymptotically saturates, revealing only a slight improvement in
ROavg/req. In other words, once popular items are already stored in network caches, it becomes very
costly to further improve the ROavg/req, as it requires allocating huge amounts of storage capacity
in order to store many unpopular items. However, when the MCEN cache is not utilized (due to its
location being far from end-users), increasing T leads to a significant decrease in the ROavg/req per
VoD request, as it allows AMEN caches to store more popular items.

More specifically, for hmetro = 3.5 and for all values of α, the results show and confirm that utilizing
32 AMEN caches has the best performance (i.e., leads to the lowest ROavg/req), independently of
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the amount of storage capacity granted. On the contrary, for hmetro = 7.5, the results confirm that for
a relatively lower value of α (Figure 7a,b), the utilization of small number of large-capacity caches
yields the minimum ROavg/req per VoD request. For a larger value of α (Figure 7b), it becomes more
beneficial to utilize many small-capacity caches, since in such a popularity distribution, the popular
items gain more popularity, making it decisive to deliver them from the nearest locations possible. In
conclusion, the ideal amount of storage capacity to deploy in the network heavily depends on both the
dimensions of the metro network and the popularity distribution.

7. Conclusions

In this paper we addressed the problem of finding the optimal cache deployment in terms
of number of caches, their location and their size (in terms of storage capacity) in a hierarchical,
optical metro network, which minimizes the overall network resource occupation under limited
storage capacity. We provide an analytical model that serves as a tool to calculate the optimal storage
distribution according to several features, such as the dimension of the metro network and the size
and the Zipf popularity distribution of the VoD-content catalog. The model, given a fixed budget in
terms of storage capacity, finds the number of caches to deploy at each network level and distributes
the storage capacity available to minimize the overall network resources used for VoD-content delivery.
To cross-validate our analytical model and to evaluate VoD-content delivery under dynamic traffic, we
use a discrete-event simulator for dynamic VoD-content caching and distribution. Numerical results
show that in a case where the storage capacity is limited, the optimal cache deployment requires an
intelligent distribution of the the available storage capacity among caches of various network segments.
Moreover, we also show that the optimal cache deployment depends on the location of the metro cache
(how far it is from end-users and how wide is the metro network) and the skewness of the popularity
distribution. Our model also helps with identifying when deploying an excessive amount of storage
capacity in the network does not further improve network resource utilization .
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