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ABSTRACT Application requirements in High-Performance Computing (HPC) are becoming increasingly
exacting, and the demand for computational resources is rising. In parallel, new application domains are
emerging, as well as additional requirements, such as meeting real-time constraints. This requirement,
typical of embedded systems, is difficult to guarantee when dealing with HPC infrastructures, due to the
intrinsic complexity of the system. Traditional embedded systems static analyses to estimate the Worst-
Case Execution Time (WCET) are not applicable to HPC, because modeling and analyzing all the system’s
hardware and software components is not practical.Measurement-based probabilistic analyses for theWCET
emerged in the last decade to overcome these issues, but it requires the system to satisfy certain conditions
to estimate a correct and safe WCET. In this work, we show the emerging application timing requirements,
and we propose to exploit the probabilistic real-time theory to achieve the required time predictability. After
a brief recap of the fundamentals of this methodology, we focus on its applicability to HPC systems to check
their ability to satisfy such conditions. In particular, we studied the advantages of having heterogeneous
processors in HPC nodes and how resource management affects the applicability of the proposed technique.

INDEX TERMS Heterogeneous computing, high performance computing, real-time systems, statistical
timing analysis.

I. INTRODUCTION
High-Performance Computing (HPC) aims at providing
computing infrastructures capable of fulfilling the increasing
performance requirements of modern applications, in both
scientific and industrial domains. Figure 1 provides a simpli-
fied example of the hardware architecture of an HPC system.
The infrastructure is a large distributed system, in which
some servers (nodes) are devoted to specific management
tasks, such as login, authentication, diagnostic, and entry
point services. The core of the infrastructure consists of
clusters of thousand of computing and parallel storage nodes
interconnected by a network based on technologies such
as Ethernet or Infiniband. To achieve high performance,
computing nodes typically include multiple processors and
multiple cores, because of the barrier of the single-core
performance, mainly caused by power and thermal limits.
More in detail, by looking at the evolution of the processors,
the breakdown of the Dennard scaling [21] in 2005 triggered
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a change of paradigm, because we can no longer ignore the
other side of the coin, i.e., power consumption. Chip design
moved from pushing the single-core clock frequency to intro-
ducing the parallelism at the CPU-level, through multi-core
architectures, instruction-level parallelism, and many other
techniques. As a consequence of the end of Dennard scaling,
maximizing energy efficiency has become the primary goal
of the evolution of high-performance processors. To achieve
this goal, processor manufacturers added many advanced fea-
tures (e.g., pipelines, multi-level caches, vector instructions).
In this picture, having both a distributed topology and high-
performance multi-core processors, HPC systems offer the
possibility of scaling the performance of the applications by
leveraging on both inter-node and intra-node parallelisms.
To effectively exploit such parallelisms, proper software
frameworks are required [1]. On the one hand, the appli-
cations usually rely on well-known programming models
(e.g., MPI, OpenMP); on the other hand, the HPC
infrastructure needs to run a certain number of services
and management frameworks on top of the operating
system. These frameworks include at least a job scheduler
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FIGURE 1. Simplified example of the architecture of an HPC system.

(or queue/resource manager) responsible for the management
of the execution requests, i.e., it is in charge of assigning
scheduling priorities and dispatching the runnable applica-
tions/jobs onto a selected set of computing nodes. The job
scheduler is a critical component of the software stack since
it directly impacts the occupancy of computing resources and
the application execution time.

A. HETEROGENEOUS HPC
The hardware of HPC systems is traditionally uniform and
homogeneous across the whole cluster and inside each node.
In this way, management costs are reduced, and it makes
software development easier because only one version of
the application is needed. Moreover, the exploitation of
parallelism is less challenging than having heterogeneous
computational resources [16]. Nevertheless, from the 2010s,
an increasing number of HPC systems started to include
heterogeneous resources, as depicted in Figure 2 that shows
the number of clusters in the TOP500 list exploiting hetero-
geneity. The achievement of exascale capabilities in HPC
requires not only adequate computational performance but
also the meeting of power and energy budget constraints.
Heterogeneous architectures are a natural energy-efficient
solution in this scenario [59].

B. PAPER ORGANIZATION
In this article, we propose to exploit a technique from
the embedded world – i.e., probabilistic real-time – for
addressing emerging challenges in HPC application timing
requirements. The next Section II discusses the evolution of
such requirements, the motivations behind this work, and the
gap of the current state-of-the-art solutions. The necessary

FIGURE 2. The increasing number of heterogeneous platforms in the
TOP500 list.2

background is then provided in Section III, and how to
apply the proposed technique to the HPC scenario is pre-
sented in Section IV. The subsequent Section V provides a
qualitative analysis of the HPC infrastructure in connection
with the applicability conditions of probabilistic real-time,
followed by a quantitative experimental evaluation of a real
HPC platform in Section VI. Finally, from the experimental
results, we derive some recommendations to effectively per-
form resource management in such a scenario. These con-
siderations and the conclusions of the paper are reported in
Section VII.

II. THE EVOLUTION OF APPLICATION TIMING
REQUIREMENTS IN HPC
The performance of HPC systems is typically measured in
terms of throughput, i.e., the amount of work completed in

2Data source: https://www.top500.org/statistics/list/
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a given time unit. The most common measurement unit for
the throughput is the FLOPS (Floating-Point Operations per
Second). Currently, the top supercomputers in the world offer
performance in the petaFLOPS (1015) order of magnitude.
On the other hand, the research community is striving towards
Exascale compliant solutions [60], taking into account the
power consumption envelope and trying to go beyond the
scalability limits of current infrastructures.

A. THE CURRENT PERFORMANCE GOALS
The throughput is not the only metric considered in HPC,
especially from the users’ standpoint: they are usually more
interested that their jobs complete successfully and in a short
time. Two surveys, [29] and [62], provide an overview of
the current state-of-the-art strategies to deal with application
requirements and resources availability, in both HPC and
Cloud computing. The common goal of such techniques is
to optimize or to fulfill a Quality-of-Service (QoS) metric
defined by the user. The actual QoS definitions may vary, but
they usually include system throughput, average execution
time, infrastructure cost, reliability, and availability metrics.
However, all the QoS or performance metrics are mostly
considered in an average sense, i.e., the violation of user
requirements is just a Service Level Agreement degradation.
When a user issues a request to execute a given applica-

tion, the time he/she needs to wait until the output is called
turnaround time. This is mainly composed of thewaiting time
and of the actual execution time. In fact, in large HPC infras-
tructure, the wait time introduces a significant component of
the turnaround time. To make the HPC center cost-effective,
the maximization of its utilization is usually a commercial
goal. The waiting time may span from a few seconds to days,
and a value of waiting time less than 25% of the execution
time is considered acceptable by users [58]. The actual value
depends on the availability of resources and on the priority.
The priority, in turn, depends on many factors, and it can be
dynamic. Usual metrics affecting the priority are the number
and type of resources, the user privileges, the waiting time,
and the past history of requests.

B. THE EMERGING TIMING REQUIREMENTS
New application domains that require an HPC infrastructure
to run are emerging. These include, for instance, use cases
from automotive, smart city, healthcare, environmental, and
infrastructure monitoring [24]. Application requirements in
such domains include specific timing constraints, similar to
real-time applications running on embedded systems. The
concept of timing constraint is well-expressed by the time-
utility function proposed by Jensen et al. [31]. To each task,
a time-utility function representing the satisfaction of the
timing requirements is assignedwith respect to its completion
time and a defined deadline. This characterization is the
generalization of soft- or hard- real-time system concepts.
Three common examples are depicted in Figure 3. Case (c)
is typical of soft real-time systems, while Case (a) is typical
of a hard real-time system where deadlines cannot be missed

FIGURE 3. Three examples of utility functions with respect to the
deadline Di : (a) hard constraint, the system is failed immediately if the
task overruns its deadline; (b) soft constraint, the system is considered
functioning for a certain period of time, in degraded mode, for a given
time frame after the deadline; (c) soft constraint, the system is
considered functioning with a decreasing level of utility.

at all. Case (b) is, instead, a mixed-case: deadline can be
missed, and the task exposes degraded performance, but only
for a short and well-defined time interval.

EXAMPLES OF REAL WORLD APPLICATIONS
The automotive world, with the Autonomous Vehicles (AV)
horizon, provides probably the most straightforward and one
of the most challenging examples. From the computational
perspective, an AV is equipped with a sensing system, which
provides a large amount of data on the environment, nearby
vehicles, pedestrians, and other objects. Such data must be
processed to carry out prompt control actions (e.g., steer-
ing or braking). This processing requires the execution of
a large number of computationally intensive tasks, which
could hardly be executed as a whole by the local computing
system of the vehicle. Consequently, the need for offload-
ing part of the workload on a remote HPC infrastructure
has been proposed [44]. This challenging approach demands
strict requirements on the maximum latency that must be
considered in a worst-case sense rather than in average-case
sense.

Another large class of use cases is the one including appli-
cations for monitoring. For example, in the environmental
context, we can mention the rainfall forecasting models or,
more in general, the disaster prediction applications [46],
where we need to process a large amount of data and make a
prediction by a specific deadline. This is necessary in order to
generate an alert signal in a useful time frame and, thus, trig-
ger suitable emergency plans. Similarly, large infrastructures
also need efficient health monitoring systems. For example,
some bridge monitoring systems [66] require the collection
and the real-time processing of data from sensors on a large
scale. When a dangerous situation is detected, an alert should
be raised as soon as possible to stop the road traffic. The
necessity of having a worst-case requirement is justified by
the fact that a late alert may compromise the bridge safety
and, then, lead to human loss.
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Currently, several research projects are addressing the chal-
lenges introduced by these emerging use cases. It is the
case of recent EU H2020 projects, like MANGO [23] and
RECIPE [24]. In the former, the three use-cases – a real-
time medical imaging application, a video transcoder, and a
network digital signal processing algorithms – need a large
amount of computational power to process a highly variable
amount of input data, with guarantees in terms of maximum
response time or latency. For example, the medical applica-
tion receives data from a large set of tomographic sensors,
performs the proper transformations to create a human body
rendering, and recomposes them to create a streaming video.
Since the video is played and observed by the medical per-
sonnel in real-time, its reproduction has low-latency require-
ments. The latter project, RECIPE, includes three use-cases:
a weather forecast and environmental monitoring system,
real-time analysis of health bio-signals in a big-data con-
text, and a geophysical imaging tool. For the first use case,
the application needs to collect data from a weather forecast
model and a wide range of sensors, located by rivers and
basins, to monitor the water levels. Then, suitable algorithms
are required for analyzing data and detecting risky conditions,
in a short time frame, so that a proper emergency proce-
dure could be implemented. Similarly to the previous bridge
monitoring, in this case, worst-case timing requirements are
necessary to ensure people’s safety.

Many of the previously described applications can be con-
sidered mission- or safety-critical. These categories expose
the systems to authority regulations and, in particular, to cer-
tification processes. Even if we are not aware of any certi-
fication requirement for HPC applications related to timing
requirements at the time of writing, we expect that in the
future, it may become a legal requirement.

Overall, all of these use cases can benefit from the scal-
ability capabilities of HPC platforms but, at the same time,
they need solutions that could also provide timing constraints
guarantees. Current HPC resource management solutions
are focused on maximizing the throughput, or maintaining
the best average Quality-of-Service (QoS), whatsoever it
is defined. However, the requirements of timing-sensitive
applications are usually expressed in the form of maximum
response time. Guaranteeing a maximum response-time is a
trade-off against guaranteeing the maximum throughput. For
instance, the scheduler of a general-purpose operating system
tends to control the number of process context-switches to
reduce the overhead and maximizing the system through-
put. However, the response time is negatively affected in
this case. To guarantee the real-time requirements, we need
a combination of design-time effort and run-time resource
management strategies. The former’s goal is to characterize
the applications accurately and, in particular, their timing
profiles. On the other hand, the latter needs to develop the
knowledge of the target platform at run-time – and this is
crucial for HPC platforms that are too complex to be ana-
lyzed and characterized at design-time – in order to tune
the resource management policies [45]. In this regard, it is

worth noting that the number of papers dealingwith response-
time driven resource management is only 15% of the total
amount reported in the survey by Singh et al. [62]. However,
in such papers, the response-timemetrics are considered in an
average sense only, and the violation of the deadlines is con-
sidered a degradation of the Service Level Agreement (SLA),
similar to soft real-time systems of Figure 3c. Unfortunately,
the use of the utility function, and in particular the analysis of
the case of Figure 3a, is uncommon in HPC research. Even if
the hard real-time on parallel architectures has been widely
studied in recent decades [13], the applicability of the pro-
posed techniques to HPC applications is limited, due to both
the complexity of HPC infrastructure and the necessary use
of COTS (Commercial-Off-The-Shelf) components to reduce
the cost of the clusters. A recent work [17] proposed a
real-time scheduler for a COTS ×64 architecture, capable
of dealing with the System Management Interrupts (SMIs).
SMIs are, in fact, one of the most critical sources of timing
unpredictability of COTS platforms [51]. However, SMIs are
just one of the numerous hardware and software mechanisms
that make an HPC cluster unpredictable in time.

C. THE CHALLENGES FOR TIME PREDICTABILITY
The increase in complexity of computing architectures dis-
cussed in Section I makes the problem of computing the
Worst-Case Execution Time (WCET) of a job or task, running
on anHPC system, a challenging problem. TraditionalWCET
static analyses are based on control-flow graph and archi-
tectural timing specifications to detect the worst-case con-
ditions and compute the WCET value. Unfortunately, these
analyses failed to progress sufficiently fast to get reliable and
tight WCET estimation in modern processors. They require
either an unfeasible computational complexity or produce an
overpessimistic WCET estimation, which would make the
obtained value useless [36]. However, the computation of
WCET for timing-sensitive applications, having the previ-
ously described timing requirements, is mandatory if we have
to provide any sort of guarantee for mission- and safety-
critical systems. Performing such analyses for HPC infras-
tructures is even more complicated or almost impossible,
due to the extensive use of COTS hardware, general-purpose
operating systems, and unpredictable inter-node networking
infrastructure. These factors affect the predictability of the
task execution time [63] and make the exploration of the
hardware states too large to be computed in a reasonable
time [49]. On the other hand, moving computing resources
towards specialized components and custom real-time operat-
ing systems would be a possible solution to the predictability
problem, allowing the use of traditional WCET analyses.
At the same time, this solution in HPC is not only hardly fea-
sible from the cost standpoint, but it would probably reduce
the overall system utilization. With specialized components,
the general-purpose capability of the architecture is lost,
reducing the number of executed jobs and requiring applica-
tions to be specifically developed for the specialized architec-
ture. Moreover, real-time software and hardware components
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would sacrifice the overall average performance, which is not
acceptable for sharedHPC systems, where the throughput and
the system capacity are the flagship performance metrics.

D. THE PROPOSED SOLUTION AND CONTRIBUTIONS
To guarantee the timing predictability of the applications,
without impacting the HPC infrastructure and its overall
average performance, we propose relying on an approach
that has come out recently in the real-time Cyber-Physical
System (CPS)3 world: Probabilistic Real-Time Computing.
This paradigm is based on the computation of the WCET
by using statistical frameworks applied to measurement-
based techniques. From the industrial perspective, this is
very attractive because it is easy to develop and does not
require complex analyses of the application code and the
platforms. However, Probabilistic Real-Time Computing is
still immature due to a large number of open challenges [32]
that have stimulated scientific research in recent years. Most
of these challenges are related to the necessity to prove the
safety of the approach. In HPC, the safety requirements are
less tight than embedded applications because a full certi-
fication process is not required. Moreover, for several HPC
applications, the scale of the time constraints is typicallymore
coarse-grained compared to embedded systems: the order
of magnitude of the execution time of typical HPC job is
minutes or hours. Conversely, in embedded systems, typical
applications include tasks with deadlines below one second.
In practice, this means that missing a deadline for few pro-
cessor cycles is negligible for HPC requirements – while it
may not be for some embedded scenarios. For these reasons,
the HPC scenario can still benefit from probabilistic real-
time approaches, despite the work-in-progress status of its
theoretical framework.

Finally, it is worth considering that accurate WCET
estimations are not only needed for satisfying application
requirements, but they can be very attractive to support the
run-time resource management and job scheduling system.
Suitable resource allocation and scheduling policies may,
in fact, benefit from the possibility of knowing in advance
the number of computing resources to allocate to a ready
task in order to guarantee a given WCET (or vice versa).
This strategy would implicitly minimize the resource over-
provisioning and costs whilemaximizing the utilization of the
system.

To summarize, in this manuscript, we:

1) showed, in the current section, the emerging time-
critical application requirements in the HPC environ-
ment and which are the gaps in the current approaches;

2) propose to use the probabilistic real-time theory on the
HPC applications instead of the embedded systems,
and we introduce the necessary background of this
technique for the reader;

3For the sake of readiness, in this paper, we use the term CPS to refer to
the real-time class of embedded systems.

3) identify the barriers for the exploitation of probabilistic
real-time in HPC systems, and we discuss how hetero-
geneous computingmay be helpful to solve such issues;

4) analyze, both qualitatively and quantitatively, the sat-
isfaction of the probabilistic real-time hypotheses for
different resource management choices, basing the
evaluation on experiments performed on a real HPC
cluster;

5) discuss the different benefits of this technique in
improving not only the meeting of the application
requirements, but also themanagement of the job queue
and, in general, the HPC resources.

III. BACKGROUND ON PROBABILISTIC REAL-TIME
Probabilistic real-time has been a hot topic since the begin-
ning of the 2000s. The early works in applying EVT to
WCET estimation are the paper by Edgar et al. [20] pub-
lished in 2001, and the article by Bernat et al. [7] published
in 2002. The concept of Measurement-Based Probabilistic
Timing Analysis (MBPTA) was instead formalized about a
decade later, in 2013, by Cucu-Grosjean et al. [11]. The
MBPTA is a very convenient technique, because it makes the
WCET computation possible without much effort, regardless
of the hardware complexity. This method estimates a statis-
tical distribution of the WCET directly from the execution
time observations of the applications running on the real
system. No complex control-flow analyses or details about
the hardware configuration are needed, provided that some
hypotheses, later presented in Section III-D, are satisfied.

A. PROBABILISTIC-WCET
The goal of the MBPTA estimation method is to compute
the so-called probabilistic-WCET (pWCET). The pWCET
is not a single scalar value like the outcome of classical
WCET analysis tools. Instead, the pWCET is a probability
distribution, and it is usually expressed with the following
formula:

p = P(X > WCET ) = 1− F(WCET )

where X is the random variable representing the execution
time, p the probability of observing execution times larger
than WCET , and F(·) the cumulative distribution function
(cdf). We informally call p the violation probability. Depend-
ing on the requirements, the developer can set a value for p
and compute the related WCET or, vice versa, set a value
forWCET and compute the violation probability p. Provided
that it is possible to guarantee that the violation probability
is not underestimated, its value can be added to the fault
analysis process of a safety-critical system. In embedded
safety-critical systems, the required probability of failure
can be very low: For instance, the aviation standard DO-
178C [56] requires a probability of failure for themost critical
systems to be p = 10−9. In order to guarantee the safety
of probabilistic real-time, the cdf F(·) must be estimated
correctly. The simplest way to estimate the F(·) function
is to compute the ecdf (Empirical Cumulative Distribution
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Function) directly from the time measurements. However,
even if all the statistical hypotheses of ecdf are satisfied,
to use the pWCET with such low probability values with a
high degree of confidence, we need to collect a large number
of samples. The confidence is formally defined as the prob-
ability of having estimated an unsafe pWCET distribution:
ζ = P[F(WCET ) > F∗(WCET )], where F∗ is the real (and
unknown) cdf. This is not a run-time property but rather the
probability of having computed a wrong distribution in the
offline EVT analysis of the pWCET distribution. For exam-
ple, according to the Dvoretzky-Kiefer-Wolfowitz inequal-
ity [19], to estimate the ecdf directly from timing samples,
with a violation probability p = 10−9 and confidence of
ζ = 10−10, we need to collect ≈ 1020 time measurements,
which is clearly not practical. For this reason, the statistical
theory described in the following paragraph has been created
and can be used for our purposes.

B. EXTREME VALUE THEORY
TheExtreme Value Theory (EVT) has been developed to study
the so-called tails of the distribution, and it is used for rare
events predictions, especially for the forecasting of natural
disasters. This statistical theory goes in the opposite direction
with respect to the well-known central limit theorem, which
instead focuses on the behavior of the distribution around its
mean value.

Given a sequence of independent and identically dis-
tributed (iid) random variables X1,X2, . . . ,Xn, the EVT
provides the limit distribution at the extremes, i.e. the
max(X1,X2, . . . ,Xn) or min(X1,X2, . . . ,Xn). In our scenario,
X1,X2, . . . ,Xn is a sequence of execution times of a given
program or task. Consequently, by excluding themin because
we are interested in the maximum value (WCET), we can
formalize the probability of not incurring in an execution
time longer than a certain value x (deadline missing) as
follows:

P(max(X1,X2, . . . ,Xn) ≤ x)

= P(X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x)
iid
= P(X1 ≤ x)P(X2 ≤ x) · · ·P(Xn ≤ x)

= Fn(x) (1)

where F(x) is the cumulative distribution function of Xi.
Without going into the statistical details, it is possible to
demonstrate that [9]:

∃an, bn s.t. lim
n→∞

Fn(anx + bn) = G(x) (2)

where G(x) is the cdf of the so-called Extreme Value Dis-
tribution. The form of this distribution is well-known and
can be estimated from the samples through appropriate
and well-assessed methods. According to the Fisher-Tippett-
Gnedenko theorem [22], G(x) converges to the General-
ized Extreme Value Distribution (GEVD) or, asymptotically
equivalently, to the Generalized Pareto Distribution (GPD).

Their probabilistic distribution functions are respectively:

G(x) =

e−(1+ξ (
x−µ
σ

))
−
1
ξ

ξ 6= 0

e−e
−
x−µ
σ

ξ = 0
G∼GEVD(µ,σ,ξ ) (3)

G(x) =

1− (1+ ξ
x − µ
σ

)−
1
ξ ξ 6= 0

1− e−
x−µ
σ ξ = 0

G∼GPD(µ,σ,ξ )

(4)

Both distributions have three parameters4: the location µ,
the scale σ , and the shape ξ . While the first two parameters
are a similar concept to the average and standard deviation,
the third parameter has an important role when consider-
ing pWCET distributions. Depending on the sign of this
parameter, the tails of the distribution significantly change,
as shown in Figure 4. The tail has a critical effect on pWCET,
as discussed later in detail in Section III-E.

FIGURE 4. The three different tails of the Complementary Cumulative
Distribution Function of extreme value distributions.

Provided that some hypotheses are satisfied (presented in
Section III-D), the EVT ensures that the maxima (or the
minima) values of the observed phenomenon, no matter
what the original distribution is, are distributed according to
the GEVD or GPD distribution. This is a key property of
our purposes: since we are interested in the WCET values,
the pWCET distribution we are searching for is distributed
according to GEVD or GPD. The fundamental advantage,
since we do not need to know the original distribution of the
execution time, is that we do not need to know the timing
model of the platform. This simplifies the problem of com-
puting the pWCET for a given task or application compared
to traditional static analyses. In fact, to statically estimate
the WCET, it would have been necessary to know a detailed
timing model of the system’s hardware and software.

4For completeness, the GPD distribution is sometimes presented with two
parameters only, assuming µ = 0. This difference has no relevance in this
work.
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C. THE ESTIMATION PROCESS
Two possible estimation methods exist to fit the GEVD or
GPD. The first is called Block-Maxima (BM): the follow-
ing filter is applied to the sequence of observations X1,
X2, . . . ,Xn:

Yi = max(XB·(i−1)+1,XB·(i−1)+2, . . . ,XB·i) (5)

where B is a parameter called block size. In other words,
the set of observations is divided into blocks of fixed size
B, and for each block, the maximum value is taken. The
sequence Y1,Y2, . . . ,Ydn/Be represents the maxima of the
blocks. The second approach is called Peak-over-Threshold
(PoT), and it is a simple threshold filter:

Y = {Xi > u} (6)

where u is a predefined threshold. The sequence Y1,
Y2, . . . , Ym represents the measurements that are greater than
the threshold u, discarding all the values under this threshold.
Then, any traditional parameter estimation algorithm can
be used to fit the distribution, e.g., the Maximum Likeli-
hood Estimator (MLE) or Probabilistic Weighted Moments
(PWM). When BM is used, the resulting distribution is the
GEVD. Vice versa, when PoT is used, the resulting distribu-
tion is the GPD.

The whole pWCET estimation process can be summarized
in the following steps:

1) acquire the time measurements X1,X2, . . . ,Xn;
2) check the EVT hypotheses on inputs (see

Section III-D);
3) apply BM or PoT filtering to the time measurements

to obtain a new set of execution times Y1,Y2, . . . ,Yn
representing the WCET behaviors;

4) run the estimator (e.g. MLE or PWM);
5) compare the obtained distribution with the original

samples thanks to a Goodness-of-Fit (GoF) test. This is
to verify the last EVT hypothesis (see Section III-D);

6) compute the WCET given the desired violation proba-
bility by using the cdf of the estimated pWCET.

By following these steps, it is possible to estimate the pWCET
distributionwith a certain degree of confidence. Steps 2 and 5
are performed with proper statistical tests. To be effective
in the detection of a violation, these tests require a suffi-
cient number of samples, i.e., a minimum value for n. The
estimator is able to run with a very low number of samples
but, depending on the required safety level, the statistical
tests usually require a larger number of samples to achieve
sufficient confidence. Two recent works [54], [55] already
addressed the problem of computing the minimum amount
of time measurements to capture in order to obtain reliable
results from the tests and how to deal with estimation errors.

D. APPLICABILITY
The possible applications of the probabilistic theory, shown
in the previous section, rely on the fact that the pWCET is
correctly computed. The EVT produces reliable results only

if three assumptions are satisfied: the input representativity,
the independent and identically distributed condition, and
the maximum domain of attraction hypotheses [53]. Such
conditions are analyzed in detail in the following paragraphs.

INPUT REPRESENTATIVITY
In general, the execution time of the jobs also depends on the
input data. In anymeasurement-based approach, the observed
execution time must be generated by an input set represen-
tative of the real-world scenario. This hypothesis usually
requires all the paths in the control-flow-graph of the program
to be covered, leaving the probabilistic theory to deal with
the uncertainty related to the hardware state. If covering all
the paths is too expensive, at least a representative subset
of them should be selected and covered. The verification of
this hypothesis depends mainly on the application code, and
making general statements on its validity is not possible.

INDEPENDENT AND IDENTICALLY
DISTRIBUTED CONDITION
The input sequence of EVT, i.e., the time trace in our sce-
nario, must be independent and identically distributed (iid).
In CPS, the hardware effects, such as the presence of a cache
memory, are the main causes of violation of the iid condition,
making the execution times dependent on the subsequent
job executions. This condition can be split into stationarity,
short-range, and long-range dependence hypotheses [57]. The
stationarity sub-hypothesis requires the execution times to be
generated by the same statistical process. In the computer
science scenario, this hypothesis is guaranteed if the job has
no abrupt behavior change (in timing sense). The short-range
requires that the elements of the sequence of execution times
do not present a statistical dependencywith the near elements.
The long-range dependence, instead, requires that the job
execution time does not present seasonality, i.e., they have
no long periodicity.

MAXIMUM DOMAIN OF ATTRACTION HYPOTHESIS
The last hypothesis is related to a more statistical detail: the
distribution of the execution times must be in the Maximum
Domain of Attraction (MDA) of an extreme value distribution.
This condition is almost always true if the timemeasurements
are considered as continuous samples, while in the discrete
case (e.g., number of clocks), this cannot be assumed true
and must be verified. In any case, to check the validity of the
MDA hypothesis, a goodness-of-fit statistical test is usually
performed [53] a posteriori of the pWCET analysis. This
goodness-of-fit test also helps to identify any error in the
estimation phase due to its ability to detect the discrepancies
between the estimated pWCET distribution and the real mea-
sured data.

E. THE CRITICAL PARAMETER: ξ

Both distributions GEVD and GPD include the so-called
shape parameter ξ . This parameter defines which subclass of
GEVD or GPD the distribution actually is. The sub-classes
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TABLE 1. Extreme value theory distributions.

for the GEVD case and the GPD case are summarized in
Table 1 and their tails are depicted in Figure 4.

There are important differences from the real-time com-
puting perspective: if ξ < 0, it means that a finite WCET
value exists because the cdf is finite, and it has an upper-
bound: ∃x : F(x) = 1. In other cases (ξ ≥ 0), the WCET
value is infinite. However, for the ξ = 0 case, the cdf goes
to 1 extremely fast, so we can easily consider a finite WCET
with an extremely high level of confidence.

On the contrary, the ξ > 0 is a critical case: the cdf of the
pWCET curve is slowly going to one and it does not have
a finite maximum, i.e. @x < ∞ : F(x) = 1. Even worse,
if ξ ≥ 1, the mean value of the distribution is unbounded.
This means that we may be in one of the following cases:
(1) the architecture or the job has this silly behavior or
(2) the estimation procedure has been incorrectly performed.
The first case is quite uncommon but not impossible. For
example, some architectures may generate a distribution with
ξ > 0 because they cannot provide an upper-bound for
memory latencies [35], theoretically making memory access
to require an unlimited time, even if this is highly improbable.

If the distribution passes all the statistical tests, it means
that it adheres to the original execution time samples; thus,
we have to consider it valid, even if it may turn out to be
unusable from the scheduling and resource management per-
spective. For this reason, one of the goals of the experimental
evaluation of this work is to assess if different computing
configurations can affect the value of the parameter ξ and,
consequently, the tightness of the estimated pWCET.

IV. FROM CYBER-PHYSICAL SYSTEMS TO HIGH
PERFORMANCE COMPUTING
The use of probabilistic real-time techniques in CPS differs
from the HPC case. This section presents the difference in
the task models, the current status and limits of probabilistic
real-time research in CPS, and the advantages of using this
technique for HPC.

A. THE DIFFERENCES OF SYSTEM MODELS
Before proceeding with the following discussion, it is neces-
sary to clarify a difference in the terminology currently used
in the respective contexts: CPS and HPC. In real-time CPS,
a task is part of an application and it is characterized, in its
simplest form, by a period or minimal interarrival time Ti,

a relative deadline Di, and a WCET Ci: τi = (Ti,Di,Ci).
The task ‘‘spawns’’ jobs at (a)periodic intervals, that are
usually considered single-thread and they are characterized
by an arrival time ai,j and a finishing time fi,j. A schedule
is said to be feasible if fi,j ≤ ai,j + Di for any job. In a
non-preemptive system, since Ci is the WCET, the condition
becomes ai,j+Di ≥ si,j+Ci, where si,j is the starting time of
the j-th job spawned by the i-th task. The difference si,j− ai,j
represents the waiting time for the job.

In HPC, a job is a different concept: the user sends a
request to the resource manager to run a particular job with
pre-defined resource requirements, such as the number of
nodes and processing cores. Once the resources are avail-
able, the resource manager launches the job execution on
one or more nodes. The HPC job is much more complex
than the CPS one. It usually consists of multiple threads
and/or multiple processes that usually need to synchronize
and share data. Regarding the timing properties, similar to
CPS, a job has an arrival time ai,j, a starting time si,j, and
a finishing time fi,j that should be fi,j ≤ ai,j + Di. The
difference fi,j−ai,j represents the turnaround time previously
defined in Section II-A. The finishing time in the HPC, and
consequently the turnaround time, depends on many factors,
even considering the job to be non-preemptible. The starting
time si,j is equal for all the processes and threads composing
the job,5 but the (worst-case) execution time depends on the
interaction among the processes and threads. If we consider
the unusual case of having the execution of processes and
threads not synchronizing or sharing data among each other,
the WCET Ci is defined as the maximum WCET among
all the threads/processes. Otherwise, synchronization and
data sharing have to be taken into account in the model.

To summarize, the job in the CPS sense is a simple single
execution of a single thread, while the job of in the HPC
sense is a single execution of a complex entity, composed
of multiple threads and/or processes, possibly interacting
with each other, likely running on different processors and
nodes. While the CPS timing properties are easy to formal-
ize, the HPC scenario presents several challenges even in
the formal modeling, due to the interactions among threads,
processes, and computational resources. From now on, any
reference to jobmeans the HPC definition: the single applica-
tion instance (possibly running on multi-cores and/or multi-
nodes) (a)periodically launched by the resourcemanager onto
the computing nodes. The waiting time in HPC depends
not only on the scheduler itself but also on external factors,
such as administrative decisions and the availability of nodes.
For this reason, in this paper, we focus on the probabilistic
estimation of the WCET Ci only.
A recent work by Fusi et al. [25] studied the applicabil-

ity of probabilistic real-time techniques for a geophysical
exploration HPC application. In particular, they employed

5Network delays and other overheads may delay the starting of the exe-
cution on some nodes, making the starting time si,j to be slightly variable
across the nodes.
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a memory-placement randomization technique in software to
reduce the cache interference and improve the satisfaction
of the iid hypothesis. The paper is the most similar work
to ours and the only one applying probabilistic real-time to
HPC. However, there is an essential difference in the two
works: In the cited paper, the authors assumed the task to run
several jobs in the same process execution, i.e., they assumed
the traditional CPS concept of job. For this reason, the two
papers are pursuing different goals: the paper by [25] studied
the applicability of probabilistic real-time on the executions
spawned by a single HPC job, while our paper deals with
execution times across job executions. In our work, the cache
randomization has no effect because no cache data is main-
tained across job executions, as detailed later in Section V-B.

B. PROBABILISTIC REAL-TIME IN CPS
Research in probabilistic real-time has focused on different
aspects that can be categorized into two classes: methodol-
ogy studies and architectural enablers. Two recent surveys,
[10] and [14], provided a general overview of probabilistic
real-time in CPS. The methodology papers focused on the
application of the EVT to the pWCET problem. Applying
the statistical theory to real-world scenarios is, in fact, not
trivial and requires methods and procedures designed to
fit the specific problem domain. In a previous work [52],
we investigated the adherence of such hypotheses for embed-
ded systems by running WCET benchmarks on different
platforms, from a simple microprocessor to a complex
embedded Linux system. A detailed description of the esti-
mation process and statistical tests is available in the paper by
Santinelli et al. [57] and by Lima et al. [41]. Instead,
the research on the architectural aspects is mostly focused
on building computing architectures able to satisfy the iid
requirement of the EVT theory, such as the randomized archi-
tectures [48]. The idea behind these architectures is to make
the execution time independent across different executions by
randomizing the hit/miss cache behavior. The problem has
been faced with both hardware [27], [37], [64] and software
solutions [38], [39]. Other randomized hardware components
were proposed, for instance, memory buses [30]. However,
the use of randomized architectures falls outside the scope
of this work: similar to the last paragraph of Section IV-A,
the dependency on the overall execution time of a traditional
HPC application is not influenced by the initial state of the
caches, making the use of randomized architecture at node-
level less relevant for achieving EVT compliance in HPC.
Instead, we will show that a randomized behavior can be
instead advantageous if applied at a larger scale VII-A.

Research on probabilistic real-time theory for CPS is still
ongoing and very active in both categories. The scientific
community has not reached a consensus yet on the prac-
tical exploitation of this theory in real safety-critical sys-
tems and particular skepticism has been expressed as to
whether these results can be compliant for the certification
processes.

C. ON THE ADVANTAGES OF USING pWCET IN HPC
The novel idea proposed is to apply the probabilistic WCET
analyses for CPS to HPC environments, as a solution to
address the timing requirements of new emerging application
domains. The availability of a new WCET metric in HPC
systems would open the resource management research field
to new possibilities, i.e., to investigate policies aiming at
guaranteeing minimal latency or task completion time in
HPC. In this section, we introduce the potential benefits of
using the probabilistic WCET approach in HPC, followed by
a discussion on the applicability barriers that may prevent it
from actually being adopted.

While the development process of CPS is focused on
certifications, in HPC the focus is entirely on performance
metrics. It is then possible to explore more innovative
approaches, even if they are not mature enough to be able
to pass rigorous certification processes. For this reason,
the employment of probabilistic-WCET approaches in HPC
would also open the door to novel improvements: (1) obtain-
ing real-time guarantees on the worst-case rather than the
usual QoS average-case requirements for HPC applications;
(2) improving the resourcemanagement policies; (3) optimiz-
ing non-functional metrics (e.g., energy consumption).

The first goal aims at providing a way to specify the
application time constraints. The typical example is a max-
imum response-time latency constraint, where a task must
provide an output within a certain time frame. As previously
discussed, this can be a critical requirement for some HPC
applications, e.g., imminent disaster detection or real-time
medical imaging.

The second goal aims at providing the resource manager,
both at node-level and at cluster-level, with an estimation of
the WCET value with a higher level of confidence. In most
current resource managers – e.g., SLURM [68] – the WCET
value is usually provided by the user and used to assign
job priorities. Frequently, the user either underestimates this
value, leading to the forced termination of the application
and, consequently, waste of the resources or overestimates
this value, leading to unfair resource allocation. Comput-
ing the WCET thanks to a measurement-based approach
can enable the resource manager to autonomously infer the
WCETwhen the same application (or job) is executed several
times, instead of asking the user to provide an estimate of it,
which is usually inaccurate.

Finally, the last goal can be seen in several aspects. For
example, from the WCET it is possible to compute other
non-functional metrics such as the Worst-Case Energy Con-
sumption (WCEC) and its probabilistic version pWCEC [50].
Similar reasoning can be applied for power or thermal behav-
iors. Another different possible use case scenario can be
the evaluation of time budgets of HPC users. Novel time
accounting mechanisms can be studied, for instance, by giv-
ing latency-sensitive applications higher priority on resource
allocation, but also a larger budget cost with respect to non-
time-sensitive applications.
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V. QUALITATIVE ANALYSIS OF HPC SYSTEMS
The complexity of HPC infrastructure makes it practically
impossible to formally verify the EVT hypotheses previously
described. In this section, we qualitatively discuss the gen-
eral applicability of such conditions to HPC systems. Then,
in Section VI, we show experimental results collected by exe-
cuting benchmark applications on a real HPC infrastructure.

A. GENERAL CONSIDERATIONS
As discussed in Section I, modern HPC systems are
composed of an extensive set of computing nodes con-
nected through a high-speed network. Each node usually
includes multiple multi-core processors. In most of the cases,
the hyper-threading configuration of such processors is dis-
abled, because it is not always favorable to HPC appli-
cations [40], [47]. Some nodes may include, other than
general-purpose processors (CPUs), a heterogeneous set of
processing units, like GPUs or specialized hardware acceler-
ators. The use of such resources requires the application to
use specific programming models, like OpenCL or CUDA,
to enable the heterogeneous computing paradigm, which
offers more chances of improving performance and energy
efficiency.

From the user perspective, the goal is to minimize the job
turnaround time, as previously defined in Section IV-A. This
time span includes the overall time spent by the application
in the waiting queue of the job scheduler and the actual time
spent on running. While the former contribution depends on
the availability of resources and, consequently, the contention
due to the need to serve other users, the execution time
depends mainly on the application itself and how much it can
scale on parallel architectures. However, there is a variability
degree in execution times, which depends on several factors.
First, a multi-threaded job is potentially affected by higher
uncertainty. This is because threads concurrently running on
the same multi-core processor can cause contention while
accessing shared resources (e.g., cache memories, peripher-
als, memory buses). Second, the general-purpose operating
systems and other background services are a further source
of variability, even if the real-time task is set at the maximum
priority. This effect is also observed even applying the real-
time PREEMPT_RT patch of Linux [15], [51]. Third, modern
COTS motherboards and CPUs may run unpredictable, and
non-maskable interrupt routines, to manage the occurrence
of low-level hardware events [34]. This problem becomes
worse when we move from an intra-node to inter-node par-
allelism. This is because network latencies are substantially
unpredictable and affected by several factors: the operating
system drivers, network congestion, hop distance between
nodes, packet loss, network devices’ internal logic, etc.

B. EVT HYPOTHESES
In order to apply the pWCET and EVT process to the HPC
scenario, the hypotheses described in Section III-D must be
verified. Guaranteeing such hypotheses a priori is not easy

and probably not practical on HPC systems due to their
complexity. For this reason, in the subsequent experimental
evaluation, we use statistical test procedures to verify the
hypotheses. In the following paragraphs, instead, we identify
the possible barriers that may hinder their satisfaction.

REPRESENTATIVITY
The representativity hypothesis depends directly on the appli-
cation itself. The developer must make sure to have cov-
ered all the application behaviors, so the time measurement
samples must be acquired from all the possible statistical
distributions that we can observe. This hypothesis does not
depend on the HPC infrastructure itself, but on the user ability
to stress all the possible application behaviors.

THE IID HYPOTHESIS
The second hypothesis is iid. As we have already explained,
it can be divided into three sub-hypotheses: stationarity, short-
dependence, and long-dependence. The stationarity hypoth-
esis is the major problem in HPC systems. Let us consider
a single-node job execution; if the job does not occupy the
whole node, other jobs running on the same node can affect
its execution time. Thus, in general, observing the execu-
tion times on a non-shared node with respect to a shared
node means observing two different distributions, and the
execution times can potentially be a non-stationary statistical
process. The same happens if nodes are not homogeneous
in terms of configuration, e.g., different processor models,
current cores frequency, or disk latencies. However, super-
computing facilities are often composed of homogeneous
nodes. Therefore, the hardware could be a not a real issue
in practice. The management software, instead, may repre-
sent a critical component, e.g., energy-saving strategies may
perform Dynamic Voltage Frequency Scaling (DVFS) while
jobs are in execution.

Regarding the two dependency requirements, it is hard to
make any general conjecture. The jobs are spawned poten-
tially on different nodes of the HPC cluster, thus short-
or long-range dependence among them is difficult to imagine.
Traditional problems, such as cache locality dependence,
do not affect our scenario because the goal is to estimate
the pWCET at the job-level. A job instance is unlikely to
exploit the cached data of a previous job, which is a different
fully-fledged process. Moreover, there is no guarantee that
a job is spawned on the same node of the previous one.
The inability to exploit the caches across the job executions
(but only inside each job) removes the necessity of custom
architectures implementing randomized caches: the overall
job’s execution time is independent on processor caches.
On the other hand, network and data locality may still play
a role, depending on the resource manager’s decision. For
example, if the resource manager assigns the same node to
all the jobs of our application, it is possible that some data
might already be available in subsequent executions. The
Storage Area Network (SAN) plays a role here: as shown by
Unat et al. [65], recent SAN strategies are created to
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guarantee data locality in HPC. The locality may hinder
our independence hypothesis. Luckily, independence is not a
strict requirement because, as shown by previous works [12],
EVT can correctly estimate pWCET distribution even in the
presence of moderate dependency.

THE MDA HYPOTHESIS
Finally, we consider the MDA hypothesis: This requirement
has no direct correlation with hardware or software features,
it is rather a statistical property. From previous statistical
works, it is known that most of all continuous distributions
satisfy this hypothesis, provided that the measurements are
correctly acquired [61]. During the real measurements of
our system, we clearly need to discretize the elapsed time.
However, if the time sampling has a sufficient resolution, this
hypothesis can be considered valid with a reasonable degree
of confidence, as also shown by the subsequent experimental
evaluation.

C. HETEROGENEOUS HARDWARE AND PREDICTABILITY
Despite the increasing complexity of the HPC infrastructures,
discussed in II-C, we believe that the presence of a hetero-
geneous set of computing devices can offer some opportu-
nities, in terms of allocation of tasks or jobs with real-time
requirements.

The use of GPUs and hardware accelerators has become an
opportunity to increase the total throughput by leveraging the
device’s hardware architecture, which is specifically designed
for parallel computing. A dedicated memory hierarchy and
a minimal and efficient interconnect intrinsically minimize
the resource contention side-effects. However, since they
mainly focus on throughput, the overall latency is not often
considered in GPU hardware design [3]. On the software
side, GPU kernels are usually smaller and simpler than
their CPU counterparts to exploit the parallel programming
models effectively. Predictable GPU scheduling algorithms
based on priority and isolation are available [33], and custom
accelerators may not even require a scheduler. These unbal-
anced hardware and software effects require proper investiga-
tions to assess the overall predictability of the heterogeneous
hardware.

The research on static WCET analyses for GPUs has
been recently very active. While the well-defined parallel
model and the simple kernel software make attractive the
use of traditional WCET analysis [42], recent studies showed
how GPUs hide many details that can negatively affect the
execution time [2] and that it is necessary to develop ded-
icated WCET analyses [28]. In the opposite view, other
works noticed a substantial improvement in the real-time
capability of the heterogeneous solution [67], [69]. A hybrid
static and measurement-based solution to WCET estima-
tion for GPU was proposed by Betts et al. [8] in 2013,
while the first pWCET approach was presented in 2014 by
Berezovskyi et al. [6] and its extension [5] in 2016. The
authors mainly analyzed the iid hypothesis and computed the
pWCET estimation, obtaining good results in the satisfaction

of the iid hypothesis and a satisfactory pWCET estimation.
However, no indications were provided regarding the MDA
hypothesis, and the considered workload was a rather simple
custom benchmark. None of the previous works considered
the interaction of CPU–GPU, which is an essential com-
ponent of our analysis for HPC because it is a source of
unpredictable overheads [43].

Given this scenario, we formulate the following hypothe-
sis: the presence of heterogeneous processors in the infras-
tructure can help the fulfillment of the EVT hypotheses and
minimize the WCET overestimation. In the following exper-
imental section, we aim to verify, through statistical testing
procedures, this hypothesis and the whole the discussion
proposed in this section.

VI. EXPERIMENTAL EVALUATION
The previous section focused on a qualitative empirical anal-
ysis of the applicability of EVT to the HPC domain. The goal
of this section is to experimentally verify: (1) how differ-
ent parallelization strategies affect the result; (2) the degree
of fulfillment of the hypotheses of probabilistic real-time,
by running appropriate statistical tests; (3) the tightness and
usability of the estimated pWCET distributions. This section
is structured as follows: the first two subsections describe
the experimental setup and the analyzed metrics; the last two
subsections describe the results and discuss the applicability
of probabilistic real-time techniques to HPC.

A. BENCHMARKS AND PLATFORM
For the tests, we used the NAS Parallel Benchmarks (NPB)
suite, which is a very common choice for HPC perfor-
mance estimation [4]. For each benchmark application dif-
ferent implementations are available: MPI, OpenMP and
CUDA [18]. Among these, we selected the three pseudo-
applications6: bt, lu and sp. This choice was based on two
main reasons: first, the availability of stable and tested MPI,
OpenMP and CUDA versions of the benchmarks, and second
because the pseudo-applications better emulate real appli-
cations, rather than simple kernels triggering very specific
hardware responses. The three benchmarks can leverage both
intra-node and inter-node parallelism, by sharing data and
synchronizing among OpenMP threads, CUDA kernels, and
MPI processes. They also contain correctness checks that
ensure the validity of the output and, consequently, the execu-
tion time. The time value is measured as wall-clock time via
the Time Stamp Counter register, with a theoretical resolution
of 1ns.7

We ran the benchmarks on the computing nodes of
the GALILEO HPC cluster located at the CINECA

6Please refer to the cited technical report for a detailed description of these
benchmarks.

7The accuracy and precision is definitely worse when measured in soft-
ware. Themeasurement error can be in the order of hundreds of nanoseconds.
In any case, conversely to many CPS applications, a lower resolution is
acceptable because the HPC tasks duration is usually in terms of several
minutes or hours.
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TABLE 2. Execution conditions of the benchmarks running during the
experimental evaluation.

supercomputing facility. Each node is equipped with a
2*18-core Intel Xeon E5-2697 v4 @ 2.30GHz, 128 GB
RAM, and a Linux-based operating system. In addition,
some nodes include an NVIDIA K80 GPUs for General-
Purpose GPU computing. The nodes are connected via an
InfiniBand Intel OmniPath (100Gb/s) multi-switch network.
For each benchmark, we tested several different configura-
tions, including CPU vs. GPU computing (CUDA frame-
work), single-node vs. multi-node (MPI framework, running
on 8 nodes for a total of 288 cores), the presence of stressers to
introduce artificial interference (stress-ng program), and the
different benchmark classes B or C. The execution conditions
are summarized in Table 2. We refer to the C class of NPB
benchmarks with the term Extended Data Size.
For each execution condition, each benchmark was exe-

cuted 500 times by using the default resource manager
SLURM [68], which randomly selects the nodes according to
the resource requirements selected by us for each experiment.
This large number of executions made it possible to estimate
the pWCET and run the statistical tests with a reasonable
degree of confidence. According to [54], the statistical power
of the KS test and AD test is, respectively, greater than
1− 10−3 and greater than 1− 10−8. This guarantees that the
GoF test performed after the pWCET estimation has a low
false-negative probability.

Regarding the other parameters of the EVT process,
we selected the Block-Maxima approaches with a block size
of B = 20, coherent with previous works in probabilistic real-
time. The traditional value of α = 0.05 was chosen as the
critical value for the statistical tests.

B. METHODS AND METRICS
Defining the correct metrics to be used for comparison is
crucial in an experimental evaluation based on a statistical
framework. The metrics have been divided into three cate-
gories, to identify three different characteristics to explore:
the variability, the adherence to EVT hypotheses, and the
quality of the final pWCET outcome.

GENERAL STATISTICAL INFORMATION
The first set of computed metrics is the traditional statistical
measures: average and standard deviation. Instead of provid-
ing these direct absolute values that would have had little
significant informative content, we computed the coefficient

of variation (CV) in order to make it possible to compare
different benchmarks and different execution conditions. This
is because the CV is an indicator of the variability of the
execution time, independently of its magnitude. The CV indi-
cator is computed as follow:

CV =

√
VAR[X ]
E[X ]

Even if the CV value does not have a measurable impact on
the EVT hypotheses satisfaction, it gives us away to compare,
in a rough manner, the predictability of different benchmarks
and computing platforms.

COMPLIANCE WITH EVT HYPOTHESES
The second set is composed of four metrics representing three
different statistical tests to test the EVT hypotheses. In this
experimental evaluation, we did not need to check the input
representativity hypothesis: as previously discussed, its valid-
ity depends on the specific application, and the NPB bench-
marks fulfill it by design. This because their inputs are already
based on random uniformly distributed data. The iid hypoth-
esis was checked by using three tests: the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test to verify the stationarity
sub-hypothesis, the Brock-Dechert-Scheinkman (BDS) test
for short-range independence and the ReScaled range (R/S)
test for long-range dependence. Finally, the Kolmogorov-
Smirnov (KS) and the Anderson-Darling (AD) tests were
used to check the MDA hypothesis. The choice of these tests
was made based on previous state-of-the-art works [53].

TIGHTNESS OF THE pWCET DISTRIBUTION
The last set of metrics contains the three parameters of the
estimatedGEV distribution.Whileµ and σ strictly depend on
the benchmark itself, ξ is extremely interesting for whatever
concerns understanding the ability of the EVT process to
obtain a distribution that can effectively be used in practice,
as previously explained in Section III-E. To make its effect
clear to the reader, instead of providing the absolute values
of µ, σ , and WCET, we computed the difference between the
estimated WCET at violation probability p = 10−6 and the
Worst-CaseObserved Time (WCOT), presenting to the reader
the percent increment: INC = 100WCET−WCOT

WCOT . This value
is not affected by the absolute values of the execution time
of the particular benchmark, and it makes the comparison of
different scenarios and benchmarks easy.

C. RESULTS
In the following discussion and the presentation of the data,
we voluntarily omitted the absolute values of execution
times, including average, variance, or maximum values. This
because it is not our goal to perform an analysis of the
platform and the benchmark itself. Instead, we are interested
in their statistical metrics previously discussed. All the raw
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TABLE 3. Result of the statistical tests used to check the iid EVT hypotheses, for each benchmark and for each execution condition of Table 2. A statistical
test fails when the value of its statistic is greater than the critical value (cells in red).

FIGURE 5. The Coefficient of Variation for the three NAS benchmarks
running with the different execution conditions of Table 2. These data are
not affected by the absolute value of execution times.

data of such experiments is made available online for any
further analyses.8

GENERAL STATISTICAL INFORMATION
Figure 5 shows the Coefficient of Variation for the three
benchmarks. We can easily notice that the GPU version
of the benchmarks presented much less variability than the
other ones. This result was expected, as we said, since GPU
threads are usually less affected by external interference,
as we hypothesize in V-C. Regarding the other scenarios,
it is not possible to find a general trend. On average, net-
work communications contributed to a larger variation, but
this was not true for all the benchmarks, e.g., the case
of the sp.
Finding 1: The execution time variability whenGPU com-

putational units are used is considerably lower than using
CPU.

COMPLIANCE WITH EVT HYPOTHESES
The adherence of the measured execution time datasets to
EVT hypotheses is presented in Table 3 and Table 4. Starting
from the stationary property, both theGPU scenarios (4 and 5)

8Repository URL: https://doi.org/10.5281/zenodo.3743352

TABLE 4. Result of the statistical tests used to check the MDA hypothesis,
for each benchmark and for each execution condition of Table 2.
A statistical test fails when the value of its statistic is greater than the
critical value (cells in red).

TABLE 5. The estimated pWCET for each benchmark and for each
execution condition of Table 2. Only the ξ parameter and the WCET
increment with respect to the WCOT are shown. The green cells indicate
Weibull distributions, the red cells indicate a Fréchet distributions, and
the yellow cells indicate Gumbel distributions.

were able to pass the test and fulfill the stationary hypothesis
with a good result (mostly all under 0.1 over a critical value
of 0.46). We can also see that the presence of stresser tasks
(2 and 7) had a positive effect on the stationarity hypothesis,
making the CPU version also compliant. This is due to the fact
that the interference caused by the stressers reduced the effect
of spurious latencies, as discussed in Section V-B. Previous
works on cyber-physical systems showed similar results [26].
Finding 2: The stationarity property of EVT is satisfied

for all benchmarks of GPU scenarios and when stresser tasks
are present. It is found to be invalid for at least one benchmark
in the other scenarios.

Looking at the raw data and resource manager logs,
we observed how the network latencies affected the execution
time, depending on the topological location of the node: the
distribution of execution times when the jobs were scheduled
on nodes under the same network switch was significantly
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TABLE 6. Summary of the qualitative and quantitative analysis performed related to the satisfaction of EVT hypotheses.

different from the distribution of execution times when the
jobs were scheduled on far nodes. This made the stationarity
hypothesis harder to be achieved.
Finding 3: The stationarity property is negatively affected

by a complex and hierarchical network topology.
The dependency tests, both short- and long-range, failed

in several cases. The cause was mainly the resource manager
choices: jobs were often spawned on the same nodes, thus
causing the network storage locality to create a dependency.
This locality was initially observed in GPU datasets (4 and 5)
because the resource manager was configured with a strict
policy that always provided the same node for the same user.
After eliminating this limitation, the obtained results, shown
in Table 3, are definitely compliant with the dependency
hypothesis.
Finding 4: The two dependency properties are affected by

the data locality of the SAN.
Finding 5: If data locality is removed, the GPU scenarios

pass the dependency tests for all the benchmarks.
It should be noted that in any case, the scenarios that

resulted in a statistical test reject, have low or moderate
dependency (the value of the statistic is not too far from
the critical value). It was then possible to estimate a correct
distribution even in the presence of dependency, as shown
by the goodness-of-fit tests in Table 4. In fact, the resulting
distribution is valid for any scenarios according to KS and
failed in only one scenario (6/sp) with the AD test. The
rejection of the case 6/sp is due to several possible reasons,
including the MDA hypothesis being indeed false in this
case. Another possibility is a false negative: in fact, the test
level of significance was set to 5%, so it is possible that
it was a spurious test failure. The non-rejection of most of

the final distributions makes us confident that the estimation
process was correctly executed and that the final pWCET
distributions match the real data.
Finding 6: KS and AD tests do not reject any distribution

(with one exception), corroborating the MDA hypothesis.

TIGHTNESS OF THE pWCET DISTRIBUTION
The pWCET distribution parameter ξ , estimated for the
different scenarios, is shown in Table 5. Weibull distribu-
tions are highlighted by green cells (ξ < 0), near-Gumbel
distribution with the yellow cells (ξ ≈ 0), and Fréchet
distributions with red cells (ξ > 0). The two GPU ver-
sions generated a clear Weibull distribution, which in turn
provided a very tight WCET than the worst-case observed.
In particular, the computed WCET, at the probability of
violation p = 10−6, for all the three benchmarks had a
very low overestimation (≤ 1%), that made the estimation
very tight. Conversely, all the Fréchet distributions gener-
ated large values for WCETs, with the worst for scenario
no. 8 benchmark sp that has about +58000% of overestima-
tion. So large values would make the duties of the resource
manager very difficult, since the estimated worst-case time
is far from the observed ones and probably the real one.
Finally, the two near-Gumbel distributions were able to over-
estimate the WCET by less than 10%, which is definitely
acceptable.
Finding 7: GPU scenarios and a few CPU scenarios gen-

erated a Weibull distribution, which allows us to estimate a
tight WCET. In the other scenarios, a Fréchet distribution has
been estimated, making it difficult to obtain a tight and non-
pessimistic WCET.
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D. DISCUSSION
From the experimental results we notice that there is no direct
correlation between the three groups of metrics: for example,
8/lu has a lower CV than 3/lu, but 8/lu failed in both
stationarity and R/S tests, while 3/lu is compliant with all the
tests. The same scenarios show that the relation is not valid
for the ξ metric as ξ > 0 for 8/lu and ξ < 0 for 3/lu, but
this is the opposite for 4/bt and 1/bt.
The introduction of heterogeneous computing is winning

for all the metrics: the GPU benchmarks presented the lowest
variation, satisfied all the EVT hypotheses, and produced
a tight estimation for the WCET, even in the presence of
stressers. The stressers have beneficial effects on the CPU
cases because they can mask the variation caused by exter-
nal factors, such as the operating system or different node
configuration. They also improved the final distribution ξ
value, even if not sufficient in all the cases (the overestimation
in 2/sp and 7/lu is still very high).

The introduction of network communications did not pro-
vide a clear answer to the hypotheses’ satisfaction: the spe-
cific benchmark and scenarios must be considered and tested.
We noticed that in some cases, even if the short- and/or the
long-range independence hypotheses are not satisfied, it is
possible to obtain good pWCET estimations (cases 2/lu,
3/sp, 7/sp). Some CPU benchmarks (3/lu, 7/bt) satisfied
all the hypotheses and produced a tight pWCET. This result
suggested that, in any case, proper statistical tests must be
run during, before and after the estimation of the pWCET,
to verify that the system is compliant with the EVT hypothe-
ses. Besides the evident improvements of exploiting hetero-
geneous computing, no general conclusions can be drawn for
CPU-only computing, and each case must be verified.

Table 6 summarizes, for each hypothesis, the qualitative
discussions, the experimental method and the results obtained
on the real platforms.

VII. FUTURE WORKS AND CONCLUSION
The experimental results of the previous section showed us
how the resources are allocated to HPC applications impact
the ability to satisfy the EVT hypotheses and the impor-
tance of heterogeneous resources for probabilistic real-time.
Assigning proper resources to the jobs is essential to estimate
a correct pWCET and consequently guarantee the constraints
of time-sensitive applications.

A. JOB SCHEDULING AND RESOURCE
MANAGEMENT EXPLOITATION
In a heterogeneous scenario, the decisions of the resource
allocation strategy, performed by the job scheduler/resource
manager or by the operating system, play a key role in
the WCET characterization of the applications, and, conse-
quently, in the satisfaction of their timing requirements. It is
possible to summarize the following guidelines for future
resource management policies based on pWCET:
• the resource manager should avoid spawning jobs of the
same applications on the same nodes in a row, to avoid

the introduction of data locality and dependency due to
the SAN network; a randomized behavior, in a similar
fashion of CPS cache randomization, can also be con-
sidered for reducing the SAN data locality;

• the network topology can introduce significant latencies
in node-to-node communications, and a non-uniform
allocation of the jobs may produce different timing
behaviors due to the interconnection hierarchy, and con-
sequently invalidate the stationarity hypothesis of the
pWCET;

• the heterogeneous non-CPU resources should be pre-
ferred because they are less affected by uncontrollable
latencies;

• a promiscuous allocation of different jobs on the same
node can be considered as masking the system-level
(software and hardware) interference, provided that the
average performance degradation is an acceptable price;

• an a priori evaluation of the pWCET hypotheses satis-
faction is not easy in complex HPC systems, making
mandatory the verification of the statistical properties
of the timing measurements to ensure the correctness,
reliability, and tightness of the pWCET distribution.
A non-tight pWCET distribution makes resource man-
agement or job scheduling policies ineffective.

B. CONCLUSIONS
In HPC centers, resourcemanagement is a strategic activity to
improve resource utilization and application performance sat-
isfaction. This aspect becomes critical with emerging applica-
tions having timing requirements beyond the simple average
QoS guarantees, as shown in Section II.

In this paper, we proposed to exploit the probabilistic
real-time theory, in particular the Measurement-Based Prob-
abilistic Timing Analysis (MBPTA), by applying it to appli-
cations running on an HPC infrastructure. We discussed the
advantages and limitations of this analysis when applied
to HPC and the possible benefits for heterogeneous plat-
forms. The experimental evaluation showed the degree of
applicability of probabilistic approaches to HPC configured
in different execution conditions. This paper opens several
possible future works. Possible improvements in hardware
and software architectures can be considered with the goal
of fulfilling the EVT hypotheses. In addition, the considera-
tions of this work can lead to the development and study of
resource management policies aiming to guarantee the mixed
timing requirements of the applications. Finally, the effect of
applications themselves can be the subject of possible future
studies: how to guarantee the representativity hypothesis and
how the interaction between different processes of the same
job affects the pWCET analysis?
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