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Abstract
The aim of this study is to compare numerical methods for the simulation of single-phase flow and transport in fractured
media, described here by means of the discrete fracture network (DFN) model. A Darcy problem is solved to compute
the advective field, then used in a subsequent time-dependent transport-diffusion-reaction problem. The numerical schemes
are benchmarked in terms of flexibility in handling geometrical complexity, mass conservation, and stability issues for
advection-dominated flow regimes. To this end, two benchmark cases, along with an additional one from a previous work,
have been specifically designed and are here proposed and investigated, representing some of the most critical issues
encountered in DFN simulations.

Keywords Discrete fracture network · Benchmark · Discretization methods · Domain decomposition · Non-matching
grids · Polygonal grids
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1 Introduction

The movement of liquids in the underground is heavily
influenced by the presence of fractures and their relative
intersections [25, 27, 28, 30, 41]. Fractures are discontinu-
ities (here assumed planar) along which a rock has been
broken, mainly due to geological movements or to artifi-
cial stimulation [48]. In this work, we are considering only
open structures, characterized by a geometrical aperture,
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that allow a liquid to flow through [28]. Possibilities are
actual fractures, faults, and joints. We are thus excluding
low permeable (closed/impervious) objects such as veins or
dykes. For particular underground compositions (e.g., gran-
ite, shale, or sandstone), the rock permeability is several
orders of magnitude smaller than the fracture permeability.
It is a common choice and a reasonable approximation to
ignore the rock matrix effect in the simulations and rely only
on the fractures. The framework is the discrete fracture net-
work model (DFN), where the aperture is not a geometrical
constraint but a parameter in the bidimensional representa-
tion of the fractures by reduced models; see [47] and the
forthcoming references.

The geometrical complexity of natural fracture networks
may impose difficulties in the numerical simulations, due
to the presence of small intersections between fractures,
different intersection configurations (e.g., Y-type or L-type),
small angles of intersection, and small distances between
intersection lines. In the literature, three main approaches
are developed to overcome these difficulties.

The first approach considers rather standard numerical
scheme for the discretization of the physical equations,
and relies on robust grid generation software. The coupling
conditions among fractures are imposed via Lagrange
multipliers on a representation of the interfaces conforming
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with the computational mesh on all sides. To be specific,
the edges of the computational elements have to match at
the intersections. This approach, called conforming-mesh
discretization, may suffer, for example, when intersections
lines are very close to each other; see [26, 42, 43, 49, 50].
To partially overcome these problems, a possibility is to
consider the class of polytopal methods, like mimetic finite
difference and polytopic discontinuous Galerkin (DG) that
allow grid elements of general shapes. Numerical methods
of this type are introduced in [2, 3, 7, 9, 10, 29, 34, 35]. A
recent work [58] extends the use of the enriched Galerkin
(EG) approach [46] to mixed-dimensional problems in poro-
fractured domains.

A second possibility is to keep the intersections explicitly
represented, but relaxing the conformity of the edges.
This approach, named non-conforming mesh discretization,
requires more advanced numerical schemes based on the
mortar technique. In this case, we relax the actual generation
of the fracture meshes which usually gives fewer discrete
elements than the conforming mesh approach [6, 22, 23,
51–53]. This method may still suffer in the presence of
severe geometries. Also, in this case, the virtual element
methods are an interesting option to further decrease the
computational cost; see [60, 62].

A third family of schemes comprises the so-called non-
matching-mesh discretizations. In terms of mesh generation,
in this case, the intersections do not place any constraints,
as the fractures are meshed independently and the coupling
conditions are imposed by an optimization procedure. A
functional that measures the mismatch in the coupling
conditions is minimized iteratively, where only the degrees
of freedom involved in the intersections (the cut region) are
considered [5, 16–19]. This procedure is independent on the
actual numerical schemes, which might take advantage of
ad hoc strategies to enrich the solution in the cut region.
Extended finite elements are a successful example; see, for
example, [24, 31, 38, 39]. An alternative, based on the cut
finite element method, is proposed in [21].

The present work extends and enriches the one proposed
in [37] to more complex physical phenomena. The
concepts previously discussed are applied to Darcy and
heat transport-and-diffusion models. The Darcy velocity is
computed first and then used as an advective field for the
heat equation. High-quality computation or reconstruction
of the Darcy velocity may significantly impact the
temperature distribution. Moreover, in the heat equation,
the transport part usually dominates the diffusion (Péclet
number greater than 1) and stable or stabilized schemes are
needed to avoid or limit spurious oscillations that might
compromise the accuracy of the solution. In the numerical
tests, we are considering several numerical schemes, a
subset of the previously cited papers that are in the expertise
of this work authors, for the comparison to cover most of the

combinations discussed and try to assess their performance.
The aim of this work is thus twofold: establish a set of
benchmark cases and give guidance in the development of
more advanced numerical schemes to solve this problem.

The paper is organized as follows. In Section 2, the
Darcy and heat models are introduced and discussed, with
particular focus on the coupling conditions. Section 3
is devoted to the description of the proposed numerical
schemes. Three numerical examples are presented and
discussed in Section 4, comparing the performances of
the considered numerical schemes. Finally, in Section 5,
we draw some conclusions and suggestions for future
developments.

2Mathematical model

In this section, we introduce the mathematical model used
to describe the hydraulic head and Darcy velocity profiles in
a discrete fracture network. Once this problem is solved, the
Darcy velocity is considered an advective field to simulate
the transport and diffusion of heat in DFNs.

Fractures are considered non-overlapping planar poly-
gons, which can be connected to other fractures through
intersection segments, also called traces. We consider NΩ

fractures Ωi ⊂ R
3 with boundary ∂Ωi , which compose the

discrete fracture network Ω = ∪NΩ

i=1Ωi , and we denote its
boundary as ∂Ω with outward unit normal next, defined on
each fracture plane as the unit vector normal to the fracture
boundary pointing outward from the fracture polygon.

Given two distinct and intersecting fractures Ωi and Ωj ,
with i �= j , we denote their intersection (trace) by Γk =
Ωi ∩ Ωj . For simplicity, we assume that a trace is formed
only by two distinct fractures; however, this assumption can
be relaxed. A natural order of indexes can be introduced to
numerate the traces Γk from 1 to NΓ , the latter being their
cardinality. We consider also the function t : {1, . . . , NΩ }×
{1, . . . , NΩ} → {1, . . . , NΓ } such that k = t (i, j) with
Γk = Ωi ∩Ωj . We have t (i, j) = t (j, i) and its inverse t−1

is well defined such that (i, j) = t−1(k) where i < j . We
denote by Γ = ∪NΓ

k=1Γk the union of all the traces and by
ΓΩi

the set of traces belonging to the fracture Ωi . Moreover,
consider a fracture Ωi and a trace Γk , with k ∈ ΓΩi

. Γk

naturally subdivides Ωi in two sub-regions, indicated by
Ωk

i,+ and Ωk
i,−, such that Γk ⊂ (∂Ωk

i,+ ∩ ∂Ωk
i,−). To each

of these sub-regions, we associate an outward unit normal
perpendicular to Γk , denoted by ni,+ and ni,− (with ni,+ =
−ni,−) and a trace operator, respectively denoted by trki,+
and trki,−. Generic trace operators on fracture Ωi are denoted
by tri . An example of a simple DFN with the introduced
nomenclature is given in Fig. 1.

We present the Darcy problem in strong and weak form
in Section 2.1, to compute the hydraulic head and Darcy
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Fig. 1 Representation of two fractures Ωi and Ωj intersecting in Γk

velocity, whereas the heat equation is introduced along with
its weak formulation and functional setting in Section 2.2.

2.1 The Darcymodel

This section is devoted to a brief presentation of the
mathematical models used to describe the hydraulic head
field h and Darcy velocity u: further details being available
in [16, 17, 34, 37] and references therein. Unknowns and
parameters restricted to a fracture Ωi are denoted by a
subscript i.

For clarity in the exposition, we start considering a single
fracture Ωi . The Darcy model on Ωi reads: find (ui , hi)

such that:

ui + Ki∇hi = 0

∇ · ui = fi

in Ωi \ Γ (1a)

Variables, data, and differential operators are defined on
the tangent plane of the fracture. Ki is the effective
hydraulic conductivity tensor, which is symmetric and
positive definite, and fi is a scalar source/sink term. In our
applications, following lubrication theory [4, 56, 63], we
consider the intrinsic fracture permeability, obtained by the
cubic law, scaled by the aperture: ki = ε2i /12, where εi

is the fracture aperture. Moreover, the effective hydraulic
conductivity in Eq. (1a) is isotropic and defined as:

Ki = εikiρwg

μ
I ,

with ρw the fluid density, g the gravity acceleration, and μ

the dynamic viscosity of the fluid.
The boundary conditions on Ωi are:

tr∂i hi = hi on ∂Ωi,D

tr∂i ui · next = 0 on ∂Ωi,N

(1b)

where ∂Ωi,D and ∂Ωi,N are a partition of ∂Ωi and tr∂i is the
trace operator on ∂Ωi . The boundary conditions considered

here are chosen to be coherent with the examples in
Section 4. The generalization to other boundary conditions
is straightforward. We assume that ∂Ωi,D �= ∅ for at
least one i. Equations (1a) and (1b) are well studied in the
literature; refer to the aforementioned references.

Let us now consider two distinct fractures Ωi and
Ωj forming an intersection Γk . On both fractures (1a)
and (1b) are considered and we assume continuous coupling
conditions for the hydraulic head and the normal component
of the Darcy velocity at the trace. The coupling conditions
between two fractures Ωi and Ωj such that t (i, j) = k,
read:

∑

l∈{i,j}
trkl,+ ul · nl,+ + trkl,− ul · nl,− = 0

trki,+ hi = trki,− hi = trkj,+ hj = trkj,− hj

on Γk . (1c)

The case of multiple fractures follows immediately from our
assumptions. The Darcy equation can be formalized in the
following problem.

Problem 1 (Darcy equation on a DFN–mixed formulation)
Given the set of fractures Ω and traces Γ , find (u, h) such
that (1a)–(1b)–(1c) are satisfied.

Let Q = ⊕NΩ

i=1 L2(Ωi) and suppose fi ∈ L2(Ωi),

Ki ∈ L∞(Ωi) and hi ∈ H
1
2 (Ωi), ∀i. It is known that

solving Problem 1 is equivalent to solve one of the following
two weak problems, corresponding to the mixed and primal
formulations, respectively.

Problem 2 (Darcy equation on a DFN–mixed weak
formulation) Let us define the functional space V as

V = {
v : vi ∈ H∇·(Ωi) , tr∂i vi · next = 0 on ∂Ωi,N ∀i ,∑

l∈{i,j} trkl,+ ul · nl,+ + trkl,− ul · nl,− = 0
∀k , t−1(k) = (i, j)

}
.

Then, the problem reads: find (u, h) ∈ V × Q such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑NΩ

i=1

(
K

− 1
2

i u, K
− 1

2
i v

)

Ωi

− ∑NΩ

i=1(∇ · v, h)Ωi

= − ∑NΩ

i=1

〈
hi, tr∂i v · n

〉
∂Ωi,D

∀v ∈ V ,

−∑NΩ

i=1(∇ · u, q)Ωi
= ∑NΩ

i=1(fi , q)Ωi
∀q ∈ Q .

Problem 3 (Darcy equation on a DFN–primal weak
formulation) Let us define the functional space V as

V = {v : v ∈ H 1(Ωi), tr∂i v = 0 on ∂Ωi,D ∀i ,

trki,+ vi = trki,− vi = trkj,+ vj = trkj,− vj ,

∀k , t−1(k) = (i, j)} .



Comput Geosci

Then the problem reads: find h ∈ V such that

NΩ∑

i=1

(K
1
2
i ∇h, K

1
2
i ∇v)Ωi

=
NΩ∑

i=1

(fi, v)Ωi

−
NΩ∑

i=1

(
K

1
2
i ∇hD,i, K

1
2
i ∇v

)

Ωi

∀v ∈ V ,

where hD,i ∈ H 1(Ωi) ∀i is a lifting of hi .

2.2 The heat equation

In this part, we present the heat equation on the DFN.
Once problem 1 is solved, the Darcy velocity can be used
as advective field in the transport problem. We denote the
temperature in a DFN as θ , and its restriction to fracture Ωi

as θi . The heat equation on Ωi reads: given ui find θi such
that

⎧
⎪⎨

⎪⎩

ζi∂t θi + ∇ · (uiθi − Di∇θi)

+ ιi (θi − θ̂i ) = 0
in Ωi \ Γ × (0, T ] ,

θi(0) = θi in Ωi \ Γ ,

(2a)

where T ∈ R is the end time of the simulation. Also, in
this case, the variables, data, and differential operators are
defined on the tangent plane of the fracture. The relations to
compute the physical parameters are [4, 56, 63]:

ζi = εice,i

ρwcw

, Di = εiλe,i

ρwcw

, ιi = γe,i

ρwcw

,

where εi is the fracture aperture, ρw the fluid density,
cw the fluid specific thermal capacity, ce,i = φiρwcw +
(1 − φi)ρmcm the fracture effective thermal capacity, φi

the fracture porosity, ρm the density of the rock matrix,
cm the specific thermal capacity of the rock matrix,
λe,i = λ

φi
w λ

1−φi
m the effective thermal conductivity, γe,i the

effective heat transfer coefficient between fluid and rock,
and, finally, θ̂i is the temperature of the rock matrix, acting
as external heat source/sink.

For brevity, we present only boundary conditions
conforming to the numerical tests of Section 4. Recalling
that ∂Ωi,D is the Dirichlet portion of the boundary of
fracture Ωi for the Darcy problem in Section 2.1, let us
split ∂Ωi,D into two parts, namely ∂Ω inflow

i,D and ∂Ωoutflow
i,D .

Thus, according to the computed Darcy velocity ui , on each
fracture Ωi , the inflow boundary ∂Ω inflow

i,D is the portion
of ∂Ωi,D where ui · next < 0 and conversely the outflow
boundary is the portion of ∂Ωi,D where ui · next > 0,
thus linking the nature of the boundary to the solution of
the Darcy problem. Note that ∂Ω inflow

i,D and ∂Ωoutflow
i,D might

be both empty for most of the fractures. Then, boundary

conditions on fracture Ωi are:

tr∂i θi = θi on ∂Ω inflow
i,D × (0, T ] ,

tr∂i Di∇θi · next = 0 on ∂Ωoutflow
i,D × (0, T ] ,

tr∂i Di∇θi · next = 0 on ∂Ωi,N × (0, T ] .
(2b)

Note that, by Eq. (1b), tr∂i (Di∇θi +uiθ)·next = 0 on ∂Ωi,N .
The coupling conditions between two fractures Ωi and

Ωj such that t (i, j) = k, read, ∀t ∈ (0, T ],
∑

l∈{i,j}
trl,+(ulθl − Dl∇θl) · nl,+

+ trl,−(ulθl − Dl∇θl) · nl,− =0 ,

tri,+ θi = tri,− θi = trj,+ θj = trj,− θj .

(2c)

The heat equation can be formalized in the following
problem.

Problem 4 (Heat equation on a DFN) Given the set of
fractures Ω and traces Γ and the Darcy velocity u, find θ

such that (2a)-(2b)-(2c) are satisfied.

We consider the following primal weak formulation of
problem 4.

Problem 5 (Heat equation on a DFN–weak formulation)
Suppose ζi , Di , ιi ∈ L∞(Ωi) and θ̂i ∈ L2(Ωi), ∀i and let

us define, for any ϒ such that ϒi ∈ H
1
2 (∂Ω inflow

i,D ),

Wϒ =
{
v : vi ∈ L2

(
0, T ; H 1(Ωi)

)
,

tr∂i v(t) = ϒi on ∂Ω inflow
i,D ∀i, ∀t ∈ (0, T ) ,

trki,+ vi(t) = trki,− vi(t) = trkj,+ vj (t) = trkj,− vj (t) ,

∀t ∈ (0, T ], ∀k , t−1(k) = (i, j)
}
.

The problem reads: find θ ∈ Wθ such that θi(0) = θi ∀i

and, ∀v ∈ W0,

∫ T

0

NΩ∑

i=1

[
−(ζi∂t θ, v)Ωi

+ (D
1
2
i ∇θ, D

1
2
i ∇v)Ωi

+ (∇ · (uiθ), v)Ωi
+ (ιiθ, v)Ωi

]
=

∫ T

0

NΩ∑

i=1

(ιi θ̂i , v)Ωi
.

3 Numerical discretization

In this section, we present various discretization strategies,
both well-established, both unconventional, that can be
used to solve the models described in Section 2. These
strategies have similarities and differences that can be used
to categorize them. A first point concerns the computational
mesh and, in particular, how the meshing is performed at
fracture intersections: it is possible to have a matching or
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non-matching grids. In the former case, fracture grids are
conforming to the intersections among fractures, while in
the latter, grid elements arbitrarily cross intersections. A
second issue is related to mass conservation: in computing
the Darcy velocity, some schemes are locally mass
conservative and some other are only globally conservative,
and this property may impact the subsequent solution
of the heat problem. Also, some numerical schemes are
characterized by high numerical diffusivity which might
impact the solution but also avoids unphysical spurious
oscillations in advection dominated flow regimes, whereas
other schemes need to adopt stabilization techniques.

Six different approaches are considered in the present
work, given as the combination of a numerical scheme
for the computation of the Darcy velocity and a numerical
scheme for the spatial semi-discretization of the subse-
quent non-stationary advection-diffusion-reaction problem
(shortly denoted as heat equation). The implicit Euler
method is used, instead, in all cases, for time evolution.
The impact of different time advancing schemes is also
of interest but is not considered here, the focus being
the geometrical complexity and thus the spatial discretiza-
tion techniques. The approaches are listed in Table 1. The
scheme tagged TPFAUP is given by the combination of
the two-point flux approximation (TPFA) method for the
Darcy problem and the TPFA with upwinding for the advec-
tion term (TPFA+UPWIND) for the heat equation. Scheme
MFEMUP uses instead mixed finite elements (MFEM) for
the Darcy equation and again TPFA + UPWIND for the
heat equation. The method MVEMUP uses instead the vir-
tual element method in mixed formulation (MVEM) for
the Darcy problem, on matching polygonal meshes. These
schemes are implemented in PorePy, a simulation tool writ-
ten in Python for fractured and deformable porous media;
see [44, 45]. PorePy is freely available on GitHub along
with the numerical tests proposed in Section 4. The method
labeled MFEMSUPG is based on mixed standard finite ele-
ments for the numerical resolution of the Darcy problem
and on standard finite elements (FEM) with streamline
upwind Petrov-Galerkin (SUPG) stabilization [32] for the
heat equation. Finally, methods FEMSUPG and XFEMSUPG

use a non-conventional optimization-based approach for

the Darcy equation and with SUPG stabilization also for the
heat equation. The optimization approach can adopt different
baseline discretization methods: here, we consider the variants
using standard finite elements (OPT-FEM) and extended finite
elements (OPT-XFEM). Methods MFEMSUPG, FEMSUPG and
XFEMSUPG are implemented in C++ and Matlab�.

The forthcoming parts describe in more detail the
previous approaches, grouping them according to the
coupling at the traces: matching coupling at traces in
Section 3.1 and non-matching coupling in Section 3.2.

3.1 Matching discretization at traces

Here, advantages and drawbacks of a conforming mesh
discretization at the traces are discussed. As mentioned
before in a conforming grid, the meshes of both the
intersecting fractures match the trace with their geometry.
The trace is thus entirely covered by contiguous cell edges
of the two fractures; see Fig. 2a and b as an example. This
approach has the clear advantage of an easy applicability
to most of the existing and well-established numerical
methods (finite volumes, finite elements). However, in the
case of complex geometries, the cost for mesh generation
might increase and become a severe constraint in complex
fracture networks.

To solve the Darcy problem, we rely on different classes
of numerical schemes: finite volumes, finite elements in
primal and mixed formulations, and virtual elements in
mixed formulation. For the finite volume class, we choose
the two-point flux approximation (TPFA) on simplicial
grids, applied to Problem 3; see [1] for details. This scheme
is well known in the industry field and widely used for its
velocity in assembling the discrete problem and for having
a narrow matrix stencil. The scheme is locally conservative
and robust with respect to strong variations of the effective
hydraulic conductivity coefficient; however, it is consistent
only for K-orthogonal grids. Regarding the class of finite
elements, we consider mixed finite elements with the pair
of spaces RT0 − P0 for the Darcy velocity and piecewise
constants for the hydraulic head, denoted by MFEM, defined
on a simplicial grid; for further references, see [54, 55]. It
is well known that RT0 − P0 is locally conservative and

Table 1 List of numerical schemes considered to solve the Darcy and heat problems, with the type of meshes used

Tag Darcy eq. Heat eq. Grid

TPFAUP TPFA TPFA + UPWIND Matching triangles

MFEMUP MFEM TPFA + UPWIND Matching triangles

MVEMUP MVEM TPFA + UPWIND Matching polygons

MFEMSUPG MFEM FEM + SUPG Matching triangles

FEMSUPG OPT-FEM OPT-FEM + SUPG Non-match. triangles

XFEMSUPG OPT-XFEM OPT-XFEM + SUPG Non-match. triangles
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Fig. 2 Examples of matching meshes

more robust than primal P1 finite elements with respect
to strong variations on the effective hydraulic conductivity
coefficient. On the other hand, it gives a larger linear system,
with a saddle-point structure. The MFEM scheme solves
the Darcy problem in the form presented in Problem 2. In
some particular scenarios, the regularity requirements on
meshes formed by triangles are too restrictive and schemes
able to handle generally shaped cells are more suitable. In
these cases, we rely on the new class of virtual element
methods, which are variational methods where the basis
functions of the discrete spaces are not prescribed a priori,
and are defined implicitly on general star-shaped elements
as solutions of suitable local PDEs. See the seminal works
[20, 59, 61, 62] and those related to DFN [6–9, 34]. In our
analysis, we consider only the lowest order mixed (MVEM)
formulation, which can be viewed as a generalizationRT0−
P0 mixed finite elements on generally shaped cells, solving
Problem 2. Virtual element methods share many properties
with their finite element counterpart: indeed, MVEM are
locally conservative, robust with respect to the effective
hydraulic conductivity variation and have the same grid
stencil of the RT0 − P0. Here, we use MVEM on polygonal
grids, obtained by coarsening a mesh originally made
of triangular elements in order to reduce the number of
cells required in the simulation for complex geometries, as
described in [33, 34].

To solve the heat equation (Problem 5), we use a TPFA

scheme for the diffusive term and a weighted upwind
scheme for the advective term. The advantage of this
choice is that we obtain a stable scheme which respects
the maximum and minimum principle, without oscillation
due to high grid Péclet numbers. However, for some
applications, the obtained scheme might be too diffusive.
Finally, we consider also standard P1 finite elements, with a
SUPG stabilized discrete variational formulation, which is a
globally conservative numerical scheme.

Since in all the above cases we have matching meshes,
and thus the degrees of freedom on the trace of one fracture
correspond to the degrees of freedom of the intersecting one,
coupling conditions can be imposed strongly.

Methods TPFAUP, MFEMUP, and MFEMSUPG are con-
sidered here standard reference approaches of different
discretization strategies (finite volume and finite element
based), and are used to benchmark the behavior of the other
less conventional approaches, based e.g. on polygonal or
non-matching mesh discretizations.

3.2 Non-matchingmesh discretization at traces

When dealing with huge networks, the generation of
conforming meshes may require a large computational cost.
Then, it is worth considering a class of methods that do not
require any kind of conformity of the fracture meshes to
traces; see, for example, Fig. 2c.

In [11, 12, 14–17], a PDE-constrained optimization
approach is proposed, based on non-conforming meshes,
that can be applied both to Problems 3 and 5. In this
framework, the problem is rewritten as a minimization
problem for a functional measuring the error in fulfilling
matching conditions, constrained by local PDEs on each
fracture. This approach provides not only a numerical
approximation of the solution but also a directly computed
approximation of the flux exchanged at traces, which is of
interest for many applications. The discretization can be
based on different methods: standard P1 finite elements are
the simplest choice, and the resulting scheme is denoted
as OPT-FEM. However, as mesh elements arbitrarily cross
the traces, the jump of the co-normal derivative of the
solution at fracture intersections, still directly computed
by the method, can not be correctly represented by non-
conforming P1 finite elements. Thus, the use of local
extended finite elements is also considered, being at the
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basis of the method denoted OPT-XFEM. When used for
advection-dominated flow regimes, the SUPG-stabilized
versions of the method are used (FEMSUPG, XFEMSUPG).

The resulting numerical schemes inherit the mass
conservation properties of the local discrete formulations,
thus they are globally but not locally conservative. A huge
advantage of this method is that the matrices resulting from
the local discrete problems can be computed in parallel,
and also the solution can be computed strongly relying on
parallel computing. In [19], a MPI-based parallel algorithm
is proposed for assembling and solving the discrete problem
using the conjugate gradient method on huge networks of
fractures, whereas in [13] an implementation suitable for
GPGPUs is presented.

4 Examples

In this section, we present three test cases with the aim of
validating and comparing the previously introduced models.
Extending the work proposed in [37], here we analyze
the various approaches for time-dependent problems of
advection-diffusion-reaction, where the advection velocity
is computed by means of the same approach solving a
diffusion problem. The key aspects of the various schemes
will be highlighted and investigated, along with the impact
of the lack of conservation of fluxes, both locally and
through a trace, that characterizes some of the proposed
approaches. For the considered test cases, both local and
global quantities will be computed at different time steps,
and used to assess and compare the behavior of the various
approaches, such as (i) the integral mean in space of the
temperature on a fracture Ω , denoted as 〈θ〉Ω ; (ii) the total
flux mismatch on a trace, δΦΓ defined as the integral of
the sum of the net total fluxes ΦΓ,i and ΦΓ,j entering or
leaving the two fractures Ωi and Ωj meeting at trace Γ ,
respectively, i.e., δΦΓ = |ΦΓ,i + ΦΓ,j |:

ΦΓ,i = −
∫

Γ

([[tri Di∇θi · niΓ ]]Γ + [[tri θi tri ui · niΓ ]]Γ )

with niΓ the unit normal vectors to Γ , with fixed orientation
on Ωi ; and (iii) the averaged θ on the outflow boundary,
∂Ωoutflow

D , denoted as:

〈θ〉outflow = 1

|∂Ωoutflow
D |

∫

∂Ωoutflow
D

tr θ .

Furthermore, we denote the norm of total flux at each trace
Γ on Ωi as:

Φ̂Γ,i(t) = ‖ [[tri Di∇θi · niΓ ]]Γ + [[tri θi tri ui · niΓ ]]Γ ‖.
The considered test cases are designed in order to chal-

lenge the proposed approaches with complex geometries

and/or realistic models. In Section 4.1, we consider the
effect of a vanishing trace from a simple network, by a
sequence of simulations. In the second example presented
in Section 4.2, a synthetic small network of 10 fractures
is considered, to analyze the behavior of the methods on a
more general yet simple configuration. We finally conclude
with a realistic example in Section 4.3, where a network of
89 fractures is generated from an extrusion of an interpreted
natural outcrop and physically sound values for the various
parameters are used.

With the purpose of establishing a standard reference for
the analysis of numerical schemes for flow in fractures, test
cases in Sections 4.1 and 4.3 are borrowed from [37] and
adapted to the present context, all the geometrical data being
available in [36].

4.1 Vanishing trace between intersecting fractures

As a first test case, named test case 1, the same setting of the
problem proposed in the example of [37, Subsection 4.3.1]
is considered. In the reference, the Darcy problem was
tackled, whereas here a non-stationary advection-diffusion
problem for the passive scalar θ is solved.

In this test case, the same problem is solved on different
geometries. Let us consider a network composed of three
fractures, named Ωl , Ωr , and Ωc, as shown in Fig. 3.
Fracture Ωl has a fixed position, whereas fractures Ωr

and Ωc are displaced, for each different geometry of a
same distance along the z-direction, such that the length
of the intersection line between fractures Ωl and Ωr ,
denoted as Γ0, progressively reduces from the configuration
shown in Fig. 5, being instead fixed at the intersection
between Ωr and Ωc, denoted as Γ1. In such a way, 21
different configurations are obtained, with the length of
the vanishing trace Γ0 ranging from 0.6 at configuration

Fig. 3 Geometry of test case 1. The inflow and outflow portions of the
boundary are represented by red and blue lines, respectively
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C0, as shown in Fig. 3, to 0.01, at configuration C20.
The geometries corresponding to configurations C0, C10,
and C20 are shown in Fig. 5. For each configuration, the
Darcy problem, formulated as in (2) or (3), depending on
the method, is first solved in order to compute the Darcy
velocity u, with a null source term. A unitary effective
hydraulic conductivity K is used for all the fractures and
pressure head boundary conditions are prescribed on the
bottom part of ∂Ωl (inflow) and ∂Ωr (outflow) equal to
1 and 0, respectively (see Fig. 3). On the other portions
of the boundary, a no-flux boundary condition is imposed.
Subsequently, an advection-diffusion problem is solved,
obtained from Problem 5 setting the reaction operator
r(·, ·) ≡ 0, and with null source. We assume a unitary
coefficient ζ , a diffusion coefficient D equal to 10−4, and a
constant in time unitary Dirichlet boundary condition on the
inflow part of the domain boundary, whereas homogeneous
Neumann boundary conditions are set on the rest of the
boundary.

The meshes used for the space discretization are different
for conforming-triangular, conforming-polygonal, and non-
matching gridding strategies, as discussed above. The mesh
for the conforming mesh schemes is generated using the
Gmsh [40] library, and two different mesh parameters
are used, corresponding to about 103 and 104 elements
for the configuration C0. Clearly, as the length of trace
Γ0 progressively reduces from configuration C0 to C20,

the mesh generation tool tends to increase the number
of elements in order to meet the conformity requirement
without compromising mesh quality. This process inevitably
leads to a large increment of the number of elements from
configuration C0 to C20, for each of the three initial
refinement levels. The mesh for the non-matching mesh
schemes is obtained through the Triangle [57] software,
using two mesh parameters, again corresponding to about
103 and 104 elements. In this case, instead, since the mesh
is independent from the traces, the number of elements
is practically unaffected by the change of the geometry
from configurations C0 to C20 (small oscillations of few
elements are observed as a consequence of the change of
the coordinates of fracture Ωl). The polygonal mesh for
the MVEM approach is finally built gluing together the
triangular elements of the conforming mesh, thus aiming
at mitigating the increase of mesh elements and degrees of
freedom. The number of elements for the various schemes,
for each geometrical configuration, is reported in Fig. 4, on
the leftmost column, for the coarse (top) and fine (bottom)
meshes. The center and right columns of Fig. 4 report
instead the number of degrees of freedom corresponding
to each method, which can be used as an indication of
the corresponding computational cost. We remark, however,
that the computational cost is also largely affected by
the approach used to solve linear systems: some of the
proposed methods, e.g., have efficient parallel solvers,

Fig. 4 Number of cells (left), number of DOFs for the Darcy problem (middle), and number of DOFs for the dispersion problem (right) against
configuration id for the two mesh parameters of test case 1, coarse mesh on the top and fine mesh on the bottom grids
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Fig. 5 Solution of test case 1 obtained with the MFEMUP scheme. On the pressure head solution is shown on the leftmost column at configurations
C0, C10, and C20. On the remaining columns, the solution θ is represented at t = {1.25, 2.5, 5}, respectively. The color scale spans from 0 to 1

others take advantage of standard domain decomposition
strategies to achieve computational efficiency. Also, the
availability of effective preconditioners should be taken into
account. Here, however, the main focus is on the analysis
of the response of the methods in terms of prediction
accuracy versus geometrical and model complexities typical
of DFN simulations, thus we refer to the literature of
each method for further details on computational efficiency
issues.

In the following of this test case, for brevity, the mesh
with 103 cells on configurationC0 will be denoted as coarse
mesh and the mesh with 104 cells onC0 as the fine. For time
discretization an equally spaced mesh with time-step equal

to 0.05 is considered and 300 time-steps are performed,
starting from an all zero initial condition.

The solution obtained with the scheme MFEMUP is
reported, as an example, in Fig. 5 on configurations C0,
C10, and C20. On the leftmost column, the pressure
head distribution in the network is shown for the three
geometries, whereas the remaining columns depict the
temperature distribution θ at three time-steps corresponding
to a time t = 1.25, t = 2.5, and t = 5, respectively.
We can notice that, as the trace between fractures Ωl

and Ωr vanishes, the pressure head distribution displays a
steeper gradient around the intersection, and the effective
permeability of the network reduces, thus also reducing the

Fig. 6 Mesh for test case 1 on configuration C20 for conforming (left) non-conforming (middle) and coarsened (right) schemes
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Fig. 7 Average temperature on curves against time for test case 1 on
the coarsest (first six pictures) and finest (last six pictures) for selected
fracture and configurations. Columns refer to the same geometrical

configuration: C0 on column 1, C10 on column 2, and C20 on column
3. The average temperature curves refer to fracture Ωm

penetration depth of the higher temperature zone in the
network at fixed time frames. From a computational point
of view, simulations become more and more challenging
as the solution starts to display steep gradients, especially

for methods built on non-conforming meshes, that are not
adapted to the geometry, as shown in Fig. 6.

For all the proposed numerical schemes, at each time-
step, the following quantities are computed: the average
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Fig. 8 Outflow average temperature curve with XFEMSUPG and FEMSUPG approaches (left), and solution with XFEMSUPG at t = 15 with a zoom
of the mesh around Γ0 (right), both on the perturbed mesh of configuration C20

temperature 〈θ〉Ω , the average temperature 〈θ〉outflow on
the outflow portion of the boundary, and, for non-locally
conservative schemes, as the optimization-based methods,
the total flux mismatch δΦΓ at each trace.

A reference solution is computed using the MFEMUP

method on a mesh much finer than the three considered
here for the simulations, counting about 6.3 × 105 cells,
almost independently from the configuration id, as cell size
is capable of resolving the smallest length of the vanishing
trace.

The plots in Fig. 7 propose a comparison of average
temperature for all the proposed methods against time,
on three selected configurations, for all the considered
meshes. In the picture, dashed black lines represent relative
errors with respect to the reference solution. As expected,
all the curves are in very good agreement, also on

the coarsest mesh, for configuration C0, whereas small
discrepancies appear for configuration C10 on the coarse
mesh that however disappear as the mesh is refined. Larger
differences appear, for methods FEMSUPG and XFEMSUPG,
instead for the simulations on configuration C20. This
is expected, since, as mentioned, when the varying trace
becomes very small, methods built on non-matching meshes
can not rely on the effect of mesh refinement around
the vanishing trace which clearly improves representation
capabilities of conforming methods. We observe that
method MVEMUP retains good approximation capabilities
despite the coarsening.

In order to quantify what is the effect of mesh adaptation
due to conformity requirements on the quality of the
solution with respect to the effect of the approximations
introduced by the non-matching schemes themselves, in

Fig. 9 Total flux mismatch against time for test case 1 on traces Γ0 (top) and Γ1 (bottom) for configuration C0 (left), C10 (middle), and C20
(right)
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Table 2 Maximum value in time of total flux norms Φ̂Γ0 and Φ̂Γ1

on traces Γ0 and Γ1 of test case 1, respectively, computed with the
XFEMSUPG method on configurations C0, C10, and C20

C0 C10 C20

Φ̂Γ0 0.6072 0.4725 0.251

Φ̂Γ1 0.876 0.912 1.300

Fig. 8 (left) the outflow average temperature for the
methods XFEMSUPG and FEMSUPG is reported against time,
for configuration C20 on a perturbation of the coarse
mesh used for the conforming methods for configuration
C20, overlapped to the curves of the other schemes, in
transparency, on the original meshes. We observe that
the curves of methods FEMSUPG and XFEMSUPG on the
perturbed adapted mesh are now much closer to the curves
of other conforming approaches, thus clearly showing the
effect of mesh adaptation on the quality of the solution.
The solution obtained with the XFEMSUPG approach on the
perturbed mesh at t = 15 is reported in Fig. 8, on the right,
along with a detail of the mesh around Γ0, clearly showing
the non conformity of the mesh. Two aspects are to be
remarked: first, the non-conforming approaches are capable
of producing reasonable approximations of the solution
also on the coarse mesh, which can be greatly improved
refining the mesh and still using a fraction of the degrees of
freedom required by the conforming approaches, see, e.g.,
the last two plots in the third column of Fig. 7; second, non-
conforming-mesh approaches allow to freely choose the
refinement level of the mesh, thus allowing to efficiently use
mesh adaptation strategies, only refining the mesh where
required, independently of the geometrical constraints [12].

As the non-conforming mesh approaches XFEMSUPG

and FEMSUPG are non locally conservative, Fig. 9 reports
the value of δΦΓ against time on the coarsest mesh for
the two traces of this example at configurations C0, C10,
and C20, from left to right, respectively, results with the
XFEMSUPG approach are on the top, results with FEMSUPG

on the bottom. The maximum-in-time total flux norms on
traces Γ0 and Γ1 are reported in Table 2, computed on

the finest mesh as Φ̂Γ0 = maxt
1
2

(
Φ̂Γ0,l + Φ̂Γ0,c

)
, and

Φ̂Γ1 = maxt
1
2

(
Φ̂Γ1,c + Φ̂Γ1,r

)
, used to compute relative

flux mismatches. We can see that relative values of less than
1% are obtained for all times for both methods, with the
higher values corresponding to the configuration C20, as
expected. Moreover, for the larger times, mismatch values
tend to decrease or to remain constant at a fixed value. Thus,
this non-local conservation has a negligible impact on the
computed solution. Furthermore, mismatch errors can be
reduced by refining the mesh.

The mesh Péclet number for this problem ranges between
a maximum of about 6 × 102 to a minimum of about 100
on the computational meshes for XFEMSUPG, FEMSUPG,
and MFEMSUPG methods, thus a streamline upwind Petrov-
Galerkin (SUPG) stabilization strategy was adopted. As a
consequence, small overshots/undershots in the solution are
observed in SUPG-stabilized methods, as well known in
the literature, whereas the intrinsic diffusive behavior of
methods using upwinding for advection prevents this kind
of phenomena.

4.2 Synthetic network

In the second test, labeled test case 2, we consider a
more complex network composed of 10 fractures with 14
traces, thus being more similar to (a portion of) realistic
DFNs, still remaining simple enough to perform analyses
on the solutions obtained with the considered schemes. The
network is represented in Fig. 10, where the inflow and
outflow portions of the boundary are also marked. Also, in
this case, the Darcy velocity u is first computed solving
Problem 2 or 3, depending on the chosen numerical scheme,
with constant effective hydraulic conductivity equal to 1 on
all fractures and null source term. A unitary pressure head
drop is imposed between the inflow and outflow portions
of the border, all other fracture edges being insulated. The
Darcy velocity is then used as an input for an advection-
diffusion problem for a scalar quantity θ , as formulated in
(5), with null source and reaction terms. A coefficient ζ = 1
is chosen, whereas the diffusion coefficient is D = 10−4.
A unitary Dirichlet boundary condition is prescribed on the
inflow border and all other edges are insulated.

Two meshes are used also for test case 2 counting
about 103 elements (coarse mesh) and 4 × 104 elements
(fine mesh), respectively. The mesh Péclet number, related
to the coarse mesh for SUPG-stabilized methods, is of
about 100. An equally spaced mesh is then used for time
discretization with 500 steps of length 0.05. Also, in this
case, the initial solution is the null function. An example
of the obtained numerical solution with the TPFA method
is shown in Fig. 11: in the first column on the left, the
pressure head distribution in the network is represented,
solution of the Darcy problem on the coarse (top) and fine
(bottom) meshes; the remaining columns depict the solution
θ of the dispersion problem at three selected time frames,
corresponding to t = 3.35, t = 6.25, and t = 12.5, again
on the coarse (top) and fine (bottom) meshes. Coherently,
the heat flows from the inflow to the outflow by following
a tortuous path given by the complex disposition of the
fractures and traces. The solution on the coarse grid has
a spreader front than on the fine grid due to the artificial
diffusivity of the scheme.
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inflow

outflow

Fig. 10 Geometry of test case 2 and two views of the network. A red line represents the inflow and a blue thick line the outflow part of the
boundary, respectively

As previously, the average temperature 〈θ〉Ω on selected
fractures, the average outflow temperature 〈θ〉outflow, and
flux mismatch δΦΓ at traces are used to compare and assess
the approximation capabilities of the various schemes.
The curves of 〈θ〉Ω1 , 〈θ〉Ω3 , and 〈θ〉outflow are reported
in Fig. 12. A reference solution is computed with the
MFEMSUPG method on a mesh counting about 2 × 104

cells, and relative error curves with respect to this solution
are shown in dashed lines in Fig. 12. We can observe that,
despite the network having a larger number of fractures
and fracture intersections with respect to test case 1,
all the methods, in the absence of severe geometrical
features have good approximation properties that further
improve with mesh refinement. The larger differences
are observed for the average outflow temperature curve
related to the MVEMUP approach on the coarse mesh and
for the average temperature curves of FEMSUPG again
on the coarse mesh. In both cases, differences slightly

exceed 10% of the reference, and are reduced by mesh
refinement. Concerning the MVEMUP, the difference is
caused by the coarsening process which reduces the number
of elements of the original mesh to about one-half. Also,
the TPFA method used for advection is observed to have
poor performances on irregular polygonal cells, as the
ones generated by the coarsening method. Concerning the
FEMSUPG method, some discrepancies with respect to the
reference are to be expected, as the approach is designed to
be computationally inexpensive; nonetheless, it is capable
of providing satisfactory predictions.

Curves of the total flux mismatch at the traces are
reported against time in Fig. 13 for the FEMSUPG and
XFEMSUPG methods. In this picture, values of δΦΓ are
shown, without labels, for all the traces in the network,
highlighting that, in all cases, the errors remain limited in
time. Furthermore, maximum-in-time mismatch values are
lower than 1% of the maximum in time total flux norm, for

Fig. 11 Solution of the test case in Section 4.2. On the first column, the pressure head solution for the two grid refinements. The other columns
show θ at different times of 3.35, 6.25, and 12.5, respectively, for both levels of refinement. In all cases, the solution is rescaled in the range [0, 1]
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Fig. 12 Average temperature on two selected fractures (left and middle columns) and at outflow (right column) curves against time for test case
2. Coarse mesh on top, fine mesh at the bottom

all the traces; values of the maximum flux norm with respect
to time on each trace are reported in Table 3, computed with
the XFEMSUPG method on the finest mesh.

4.3 Extruded real outcrop

In this last test case, we consider a fracture network
generated from an extruded outcrop, located in Western
Norway. The test case is inspired by Section 4.4 of [37]. The
network is composed by NΩ = 89 intersecting fractures

resulting in 166 traces. There are 7 non-connected fractures
and with no flow boundary conditions, which will not
contribute to the solution. The geometry is depicted in
Fig. 14. The aim of this test case is to validate the proposed
numerical schemes in the presence of realistic physical
parameters of a real fracture network. However, we assume
that all the fractures share the same values of effective
hydraulic conductivity and heat diffusion coefficient.

We consider two distinct problems that differ from
each other from the position of the inflow and outflow

Fig. 13 Total flux mismatch against time for all the traces of the network of test case 2 on the coarse mesh with methods FEMSUPG (left) and
XFEMSUPG (right)
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Table 3 Maximum value in time of total flux norm across each trace of the DFN for test case 2 computed with the XFEMSUPG method on the fine
mesh

Φ̂Γ1 Φ̂Γ2 Φ̂Γ3 Φ̂Γ4 Φ̂Γ5 Φ̂Γ6 Φ̂Γ7

0.040 0.079 0.150 0.260 0.284 0.047 0.074

Φ̂Γ8 Φ̂Γ9 Φ̂Γ10 Φ̂Γ11 Φ̂Γ12 Φ̂Γ13 Φ̂Γ14

0.020 0.393 0.163 0.443 0.061 0.058 0.063

boundaries. In the first case (denoted as case 1), the inflow
and outflow are imposed on two different fractures, while in
the second case (case 2) they belong to the same fracture.
See Fig. 14 where a sketch of the network is shown with the
position of the inflow and outflow boundaries. On the other
portions of the boundaries, a no flow boundary condition
is given. In both cases, we require a simulation grid with
roughly 70k elements.

Fractures are immersed in granite and we assume
that at the beginning of the simulation we have thermal

equilibrium, the water contained in the fractures is at θi =
353.15 K (80 ◦C), for all i = 1, . . . , NΩ . The value of
θ̂i , which represents the constant temperature of the rock

matrix, is at the same value, θ̂i = θi , for all i = 1, . . . , NΩ .
The relations to compute the physical parameters for the
simulations are the ones presented in Section 2.2. We
assume εi = 2 mm ∀i, and φi = 0.95 ∀i. The water and
rock physical parameters are reported in Table 4.

From these data, we obtain: ∀i = 1, . . . , NΩ ,

Ki ≈1.84 × 10−6m2/s , ce,i ≈4, 000, 700 J/(m3K) ,

λe,i ≈0.72W/(m K) , ζi ≈1.95 × 10−3m ,

Di ≈0.35 × 10−9m3/s , ιi ≈3.05 × 10−10m/s .

Regarding boundary conditions, for the Darcy problem,
we impose a pressure head equal to hinflow = 2.5 km at
the inflow boundary and houtflow = 0 m at the outflow

Fig. 14 Geometry of the test case in Section 4.3. On the top, two
screenshots of the geometry of the network. On the bottom, a sketch
of the network with only the largest fractures to present the boundary

conditions: on the left in the case of inflow and outflow imposed on
two different fractures, on the right on the same fracture. The inflow is
represented in red and the outflow in blue
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Table 4 List of rock and water coefficients for the example in Section 4.3

Water Rock

Dynamic viscosity μ = 3.55 P a s –

Thermal conductivity λw = 0.667 W/(m K) λm = 3.07 W/(m K)

Density ρw = 1000 kg/m3 ρm = 2700 kg/m3

Specific heat capacity cw = 4099 J/(kg K) cm = 790 J/(kg K)

Heat transfer coefficient γ = 1.25 × 10−3 W/(m2 K)

Fig. 15 Conforming (left) and non-matching (right) meshes for test case 3

Fig. 16 Solution with the
MFEMUP scheme for the test
case 3: case 1 on the top; case 2
at the bottom. The first column
shows the pressure head
solution, the second column the
temperature distribution at the
end of time evolution. On the
left, the fractures depicted in
blue are unconnected to the
main network. In this case, we
set their pressure at zero. On the
left, the temperature of these
fractures stays constant during
the simulation
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Fig. 17 Curves of average theta on fractures Ω0 (left) and Ω1 and at outflow (right) against time for test case 3: case 1 top, case 2 bottom

boundary, while for the heat problem we impose θ inflow =
303.15 K (30 ◦C) at the inflow and zero diffusive flux at
the outflow. The simulation time is a year (3.154 ×107 s),
divided in 200 time-steps.

The conforming computational mesh counts about 7 ×
104 elements, while the non-matching computational mesh
has 2 × 104 cells and is shown in Fig. 15. It is possible to
notice how, in order to meet the conformity requirement,
mesh elements of the conforming mesh are concentrated
near the traces, whereas the non-matching mesh has all
elements of equal size evenly distributed in the network.
The non-matching mesh is characterized by a mesh Péclet
number of about 3 × 104 for case 1 and 6.6 × 104 for
case 2, reached on fracture Ω0, in both cases. The non-
adapted mesh and the high mesh Péclet numbers make
this example extremely complex for methods built on
non-conforming meshes and relying on stabilization for
advection-dominated flow regimes.

The computed solution with the MFEMUP scheme is
reported in Fig. 16 where we display the solution of the
Darcy problem on the left and the solution at the end of time
evolution on the right, for both the setting of case 1, on top,
and case 2, at the bottom.

Figure 17 shows the curves against time of the
average temperature on the inflow (Ω0) and outflow (Ω1)
fractures, along with the average temperature on the outflow
boundary. Despite the complexity of the geometry and of

the model, curves appear in good agreement. For this last
example, no coarsening was used for the MVEMUP method,
as the poor performances of the TPFA method on polygonal
cells, already observed in test case 2, have a strong impact
on the quality of the solution in this more complex case.
The curves related to the MVEMUP approach on triangular
meshes are almost perfectly overlapped to the curves of the
MFEMUP method. Curves of XFEMSUPG and FEMSUPG are
in good agreement with those of the other methods. Flux
mismatch values have been computed for these methods
for those traces having a non-negligible maximum-in-time
total flux norm, i.e., traces Γk with Φ̂Γk

greater than 1%
of maxk Φ̂Γk

, i.e., the maximum total flux norm through
all the traces in the network. Indeed, in this more complex
example, some traces are excluded from the main flow path,
and thus have an almost zero net flux. The computed relative
mismatch values are lower than 1% also for this example.

5 Conclusions

In this work, we presented a detailed comparative study of
several solution strategies for single-phase flow and trans-
port in discrete fracture networks. The proposed numer-
ical schemes are challenged with networks of increasing
geometrical complexity and with unsteady advection—
reaction—diffusion problems. The characteristics of the
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various approaches are compared in terms of flexibility in
handling geometrical complexity, local and global conser-
vativity, and stability to high Péclet numbers. The main
focus of the present work is the response of the consid-
ered numerical schemes to geometrical complexity and thus
other relevant aspects such as the impact of different time
integration schemes, or of strongly heterogeneous fracture
properties, such as fracture transmissivity, and also a more
detailed discussion on computational cost, have not been
addressed.

Methods based on matching grids at the traces trade
simplicity in imposing coupling conditions with the lack
of control on the number of mesh elements, which is
actually constrained by the conformity requirement. On the
other hand, non-matching and polygonal-based approaches
demand ad hoc discretization strategies but allow full
flexibility in meshing. The obtained results show that the
presence of traces much smaller than the characteristic size
of the network is a major source of complexity. Methods
based on non-matching meshes and polygonal meshes are
both capable of producing reliable approximations, also in
time-evolving simulations. Lack of local conservation at
traces appears to have an acceptable impact on the quality
of the solution and on the measured global quantities,
compared with other sources of error and to the usual
uncertainty in model parameters. This is a non-trivial
result, mainly for time-evolving simulations, where an
accumulation of local errors could have a strong impact on
the solution. Peclét-related instabilities are effectively cured
by SUPG stabilization, providing solutions comparable with
those obtained by methods intrinsically stable thanks to
numerical diffusivity.

Non-matching mesh discretizations are thus suggested
to provide reliable predictions in complex geometrical
configurations, and benefit from mesh adaptivity to
recover high accuracy levels. The VEM-based approach
based on the coarsening of a conforming mesh allows
to mitigate the impact of handling large meshes for
complex geometries, and is promising of being effective
on complex geometrical configurations in combination with
more advanced discretization strategies for unstationary
advection-reaction simulations.
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fracture network flows with an optimization-based extended finite
element method. SIAM J. Sci. Comput. 35(2), 908–935 (2013).
10.1137/120882883

16. Berrone, S., Pieraccini, S., Scialò, S.: An optimization approach
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media with immersed intersecting fractures. J. Comput. Phys. 345,
768–791 (2017). https://doi.org/10.1016/j.jcp.2017.05.049
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