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ON THE MULTIPLICITY OF TANGENT CONES OF

MONOMIAL CURVES

ALESSIO SAMMARTANO

Abstract. Let Λ be a numerical semigroup, C ⊆ A
n the monomial

curve singularity associated to Λ, and T its tangent cone. In this paper
we provide a sharp upper bound for the least positive integer in Λ in
terms of the codimension and the maximum degree of the equations of
T , when T is not a complete intersection. A special case of this result
settles a question of J. Herzog and D. Stamate.

1. Introduction

Let G be a standard graded algebra over a field k. It is an important
problem in commutative algebra and algebraic geometry to find formulas
and inequalities that relate the multiplicity or degree e(G) to other invariants
of G, such as the codimension, degrees of the defining equations, or degrees
of the higher syzygies. Significant advancements have been achieved in this
area in recent years, see for instance [4, 6, 17, 26].

There is an obvious upper bound for e(G) when G has codimension c and
is defined by forms of degree d, namely e(G) ≤ dc, with equality holding if
and only if G is a complete intersection. We will assume that G is not a
complete intersection, then the question becomes how close can e(G) actu-
ally be to dc. A general result in this direction was proved in [14] for almost
complete intersections, see also [22].

It is interesting to investigate this problem in special situations. In this
paper, we are concerned with the case when G is the tangent cone of an affine
monomial curve singularity. Let Λ = 〈n0, . . . , nc〉 be a numerical semigroup,
i.e. a cofinite submonoid of (N,+). The ring R = kJΛK = kJtn : n ∈
ΛK ⊆ kJtK is the completed local ring at the origin of the curve C ⊆ A

c+1

parametrized by X0 = tn0 , . . . ,Xc = tnc . The associated graded ring of R
is gr

m
(R) = ⊕i≥0m

i/mi+1, where m denotes the maximal ideal of R; it is
the coordinate ring of the tangent cone T to C at the singularity 0 ∈ C.
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The combinatorial structure of such rings allows to formulate more pre-
cise results, and thus the study of the algebraic properties of gr

m
(R) is an

active topic of research, with recent progress concerning especially its defin-
ing equations [13, 19, 20, 25], Hilbert function [2, 27], Cohen–Macaulayness
[3, 21, 24, 32], and related notions [5, 11, 12]. Notice that if Λ is minimally
generated by n0 < · · · < nc then we have codim(R) = codim(gr

m
(R)) = c

and e(R) = e(gr
m
(R)) = n0. In the case c = 1 of plane curves, gr

m
(R) is

always a complete intersection, so we assume c ≥ 2.

In a recent work [20] Herzog and Stamate consider tangent cones defined
by quadrics, calling “quadratic” those numerical semigroups for which this
condition occurs. They propose the following problem:

Question 1 ([20, Question 1.11]). Let Λ = 〈n0, . . . , nc〉 be a numerical semi-

group, R = kJΛK and G = gr
m
(R). Assume that G is defined by quadratic

equations. Are the following statements true?

(a) Either e(G) ≤ 2c − 2c−2 or e(G) = 2c.
(b) If e(G) = 2c − 2c−2, then G is an almost complete intersection.

This question was motivated in part by experimental evidence and by an
affirmative answer under the assumption that G is Cohen–Macaulay [20,
Theorem 1.9]. Observe that the proposed inequality is sharper than the one
of [14, Theorem 1], which in this case would yield e(G) ≤ 2c − c+ 1.

In this paper, we give a complete affirmative answer to Question 1. In fact,
Theorem 3 provides a bound on the multiplicity of non-complete intersection
tangent cones whose degrees of the equations are bounded by an arbitrary
d ≥ 2; the case d = 2 corresponds to Question 1. Furthermore, we prove
a stronger statement than item (b). In Proposition 5 we determine the
minimal free resolutions of R and G in the case when the bound is achieved.
Finally, we show in Proposition 7 that the bound is sharp.

2. Main result

This section is devoted to the proof of the main theorem. We refer to [16]
for definitions and background.

We will need the following discrete optimization results:

Lemma 2. Let c, d ∈ N be such that c, d ≥ 2 and E = {ε1, . . . , εc} ⊆ N a

multiset with 1 ≤ εi ≤ d for every i.

(1) If
∑c

i=1 εi = (c−1)d then
∏c

i=1 εi ≥ (d−1)dc−2, with equality if and

only if E = {1, d − 1, d, . . . , d}.
(2) If

∑c
i=1 εi = (c− 1)d+ 1 then

∏c
i=1 εi ≥ dc−1.

Proof. The two proofs are similar, so we only present the first one. Suppose
without loss of generality that ε1 ≤ · · · ≤ εc. If c = d = 2 then the result is
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obvious, so we assume c+ d ≥ 5. Define

ρ = min{i : εi > 1}, τ = max{i : εi < d}.

Since c <
∑c

i=1 εi < cd, both indices are well-defined integers in {1, . . . , c}.

If ρ > τ then ρ = τ + 1 and
∑c

i=1 εi = τ + (c − τ)d; however, since
∑c

i=1 εi = (c− 1)d, we derive (τ − 1)d = τ and thus d = τ = 2. In this case,
E = {1, 1, 2, . . . , 2} and the equality

∏c
i=1 εi = (d− 1)dc−2 holds.

If ρ = τ then we have
∑c

i=1 εi = (τ − 1) + ετ + (c − τ)d, which forces
ετ = (τ − 1)(d − 1). However, we have 2 ≤ ετ ≤ d − 1, whence τ = 2 and
ε2 = d − 1 . Thus, in this case E = {1, d − 1, d, . . . , d} and the equality
∏c

i=1 εi = (d− 1)dc−2 holds.

If ρ < τ then we define another multiset of integers ε′i by setting ε′ρ =

ερ − 1, ε′τ = ετ + 1, ε′i = εi for i 6= ρ, τ . Since ερ + ετ = ε′ρ + ε′τ and

0 ≤ ετ − ερ < ε′τ − ε′ρ we have ερ · ετ > ε′ρ · ε
′
τ and hence

∏c
i=1 εi >

∏c
i=1 ε

′
i.

However, we still have
∑c

i=1 ε
′
i = (c−1)d, thus, by double induction on τ−ρ

and ετ −ερ, we conclude that
∏c

i=1 ε
′
i ≥ (d−1)dc−2. The desired statements

follow. �

We are ready to present the main result of this paper.

Theorem 3. Let Λ ⊆ N be a numerical semigroup, R = kJΛK, and G =
gr

m
(R) the associated graded ring. Assume that G has codimension c and

is defined by equations of degree at most d, for some c, d ≥ 2. If G is not a

complete intersection, then the multiplicity of G satisfies

e(G) ≤ dc − (d− 1)dc−2.

Furthermore, if equality holds then G is a Cohen–Macaulay almost complete

intersection.

Proof. Let n0 < · · · < nc be the minimal set of generators of Λ, and define a
regular presentation πR : kJX0, . . . ,XcK ։ R = kJΛK by πR(Xi) = tni . This
induces a regular presentation πG : P = k[x0, . . . , xc] ։ G. Let I = ker(πR)
and J = ker(πG) denote the defining ideal of R and G, respectively. The

ideal I is generated by all binomials
∏c

j=0X
αj

j −
∏c

j=0X
βj

j with
∑c

j=0 αjnj =
∑c

j=0 βjnj. The ideal J is generated by the initial forms of elements of I,
so by binomials and monomials. By assumption, the minimal generators of
J have degree at most d.

For each i = 1, . . . , c, define

di = inf
{

δ ∈ N
+ : 0 6= Xδ

i −
c
∏

j=0

X
αj

j ∈ I for some αj ∈ N with

c
∑

j=0

αj ≥ δ
}

.

First of all, we observe that di < ∞, since Xn0

i − Xni

0 ∈ I. By definition,
di is the lowest degree of a form g ∈ J containing a pure power of Xi

in its support. It follows in particular that di ≤ d, otherwise J would
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have a minimal generator of degree di > d, giving a contradiction. Up

to multiplying by Xd−di
i , we conclude that there exists a nonzero binomial

fi = Xd
i −

∏c
j=0X

αj

j ∈ I such that
∑c

j=0 αj ≥ d. Let gi ∈ J be the initial

form of fi. Note that either gi = xdi −
∏c

j=0 x
αj

j or gi = xdi , depending on

whether
∑c

j=0 αj = d or
∑c

j=0 αj > d.

Let ≺ denote the reverse lexicographic monomial order on P with the
variables ordered by xc ≻ xc−1 ≻ · · · ≻ x0, and denote leading monomials by
LM≺(−). Then we have LM≺(gi) = xdi for every i = 1, . . . , c: this is obvious
for those i such that fi is not homogeneous. If fi = Xd

i −
∏c

j=0X
αj

j ∈ I

with
∑c

j=0 αj = d, then necessarily αj > 0 for some j < i, as the generators

of Λ are in increasing order; we conclude that xdi ≻
∏c

j=0 x
αj

j .

Since the sub-ideal (xd1, . . . , x
d
c) ⊆ LM≺(J) is generated by a regular se-

quence, by upper semicontinuity the sub-ideal J ′ = (g1, . . . , gc) ⊆ J is also
generated by a regular sequence. By assumption J is generated in degrees
at most d and it cannot be generated by a regular sequence, therefore J ′

and J must differ in some degree d′ ≤ d. However, this implies that J ′

and J differ in degree d. In fact, the quotient P/J ′ is Cohen-Macaulay of
dimension 1, so the local cohomology H0

mP
(P/J ′) vanishes, and the non-zero

submodule J/J ′ ⊆ P/J ′ contains no non-trivial submodule of finite length.
We conclude that there exists a homogeneous g0 ∈ J \ (g1, . . . , gc), and it
may be chosen to be a monic monomial or binomial of degree d.

Suppose that LM≺(g0) = xdi for some i = 1, . . . , c. Then g0 − gi 6= 0
has degree d and it does not contain any pure power in its support, as no
homogeneous binomial in I contains two distinct pure powers in its support.
Thus, up to replacing g0 with g0 − gi, we may assume that LM≺(g0) = M
is a monomial of degree d divisible by at least two distinct variables of P .

We obtain the inclusion of monomial ideals

H =
(

LM≺(g0),LM≺(g1), . . . ,LM≺(gc)
)

⊆ L =
(

LM≺(g) : g ∈ J
)

.

Now we distinguish two cases.

Case 1: x0 does not divide M. Then H is a (x1, . . . , xc)-primary ideal of
P of dimension 1. The variable x0 is a non-zerodivisor on P/H, hence the
multiplicity can be computed as

e

(

P

H

)

= e

(

P

H + (x0)

)

= dimk

(

P

H + (x0)

)

= dimk

(

k[x1, . . . , xc]

(M, xd1, . . . , x
d
c)

)

= dimk

(

k[x1, . . . , xc]

(xd1, . . . , x
d
c)

)

− dimk

(

(M, xd1, . . . , x
d
c)

(xd1, . . . , x
d
c)

)

.
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The first quantity in this difference is equal to dc, whereas, writing M =
∏c

j=1 x
µj

j where
∑c

j=1 µj = d and µj < d for all j, the second quantity is

dimk

(

(M, xd1, . . . , x
d
c)

(xd1, . . . , x
d
c)

)

= Card
{

(γ1, . . . , γc) : µj ≤ γj < d
}

=

c
∏

j=1

(d− µj).

By Lemma 2, the least possible value of the product
∏c

j=1(d − µj) with

1 ≤ d−µj ≤ d and subject to the constraint
∑c

j=1(d−µj) = cd−deg(M) =

(c− 1)d is (d− 1)dc−2. In conclusion, we have e(P/H) ≤ dc − (d− 1)dc−2.

Case 2: x0 divides M. Write M = xα0N where N is a monomial in
x1, . . . , xc of degree d − α, with 0 < α < d. A shortest primary decom-
position of H is then H = H1 ∩ H2, where H1 = (xα0 , x

d
1, . . . , x

d
c) and

H2 = (N , xd1, . . . , x
d
c). Note that H1 has dimension 0 whileH2 has dimension

1. It follows, for instance from the associativity formula of multiplicity [16,
Ex. 12.11.e], that e(P/H) = e(P/H2). The variable x0 is a non-zerodivisor
on P/H2, and as above we compute

e

(

P

H

)

= e

(

P

H2

)

= e

(

P

H2 + (x0)

)

= dimk

(

k[x1, . . . , xc]

(N , xd1, . . . , x
d
c)

)

= dimk

(

k[x1, . . . , xc]

(xd1, . . . , x
d
c)

)

− dimk

(

(N , xd1, . . . , x
d
c)

(xd1, . . . , x
d
c)

)

Proceeding as in Case 1, we estimate the second quantity in this difference
to be at least dc−1, since now we have deg(N ) ≤ d − 1. Therefore, in this
case we have e(P/H) ≤ dc − dc−1.

In either case we see that e(P/H) ≤ dc − (d − 1)dc−2. Since both ideals
H and L have codimension c, the inclusion H ⊆ L implies that e(P/L) ≤
e(P/H). Finally, the fact that a homogeneous ideal and its initial ideal
have the same multiplicity yields e(G) = e(P/J) = e(P/L) ≤ e(P/H) ≤
dc − (d− 1)dc−2 as desired.

Now suppose that the equality e(G) = dc − (d − 1)dc−2 holds, then nec-
essarily e(P/L) = e(P/H) = dc − (d− 1)dc−2. In particular, Case 2 cannot
occur, hence P/H is Cohen–Macaulay since x0 is a non-zerodivisor by Case
1. We have an inclusion of ideals H ⊆ L of the same codimension c and
with the smaller one being (x1, . . . , xc)–primary; the associativity formula of
multiplicity forces H = L. We deduce that the initial ideal of J is a Cohen–
Macaulay almost complete intersection; by upper semicontinuity, the same
must be true for J itself. This concludes the proof.

We also observe that the equality e(P/H) = dc − (d − 1)dc−2 forces the
product

∏c
j=1(d − µj) to achieve the least possible value (d − 1)dc−2. By

Lemma 2 (1), up to renaming the variables x1, . . . , xc, we necessarily have

M = xd−1
1 x2. Thus, if the equality e(G) = dc − (d − 1)dc−2 holds, then we

have L = (xd1, x
d
2, . . . , x

d
c , x

d−1
1 x2), up to renaming the variables. �
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Theorem 3 can be applied readily in the negative direction.

Example 4. Let Λ = 〈100, n1, n2, n3, n4〉 be minimally generated by 100 <
n1 < n2 < n3 < n4. From Theorem 3 we deduce that gr

m
(R) must have a

minimal relation of degree at least 4.

We remark that the converse of the last statement in Theorem 3 is false.
That is, if gr

m
(R) is a Cohen–Macaulay almost complete intersection, it may

happen that e(gr
m
(R)) < dc − (d− 1)dc−2. This is the case for instance for

the quadratic semigroup Λ = 〈11, 13, 14, 15, 19〉, see also [20, Remark 1.10].

3. The extremal case

In this section we investigate further the case when the upper bound
in Theorem 3 is attained, showing that this condition forces very strong
properties.

First, we determine the minimal free resolutions of the semigroup ring R
and tangent cone G.

Proposition 5. Let Λ ⊆ N be a numerical semigroup, R = kJΛK, and

G = gr
m
(R). Assume that G has codimension c ≥ 2, is defined by equations

of degree at most d ≥ 2, and is not a complete intersection. If e(G) =
dc − (d− 1)dc−2 then the Betti numbers of R and G are

βi(R) = βi(G) =

(

c− 2

i

)

+ 3

(

c− 2

i− 1

)

+ 2

(

c− 2

i− 2

)

for i = 0, . . . , c.

Proof. We have shown at the end of the proof of Theorem 3 that, under these
assumptions and up to renaming the variables, we have L = LM≺(J) =

(xd1, x
d
2, . . . , x

d
c , x

d−1
1 x2). We determine the minimal graded free resolution

of P/L. Observe that P/L ∼= P ′/L′⊗kP
′′/L′′ where L′ = (xd1, x

d−1
1 x2, x

d
2) ⊆

P ′ = k[x0, x1, x2] and L′′ = (xd3, x
d
4, . . . , x

d
c) ⊆ P ′′ = k[x3, . . . , xc]. The

ideal L′ is perfect of codimension 2, hence the resolution of P ′/L′ over P ′ is
determined by the Hilbert-Burch matrix





x2 0

−x1 xd−1
2

0 −xd−1
1





and therefore it has the form

0 → P ′(−2d+ 1)⊕ P ′(−d− 1) → P ′(−d)3 → P ′.

The ideal L′′ is generated by a regular sequence and the resolution of P ′′/L′′

over P ′′ is given by the Koszul complex

0 → P ′′(−(c− 2)d) → · · · → P ′′(−2d)(
c−2

2
) → P ′′(−d)c−2 → P ′′.
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Finally, the minimal free resolution of P/L over P is obtained by tensoring
the two resolutions, hence the graded Betti numbers are given by

βi,j(P/L) =
∑

i′+i′′=i
j′+j′′=j

βi′,j′(P
′/L′) · βi′′,j′′(P

′′/L′′).

We obtain the following formulas for the nonzero graded Betti numbers of
P/L: if d ≥ 3 then

βi,id(P/L) =

(

c− 2

i

)

+ 3

(

c− 2

i− 1

)

βi,id−1(P/L) =

(

c− 2

i− 2

)

βi,(i−1)d+1(P/L) =

(

c− 2

i− 2

)

whereas if d = 2 one simply adds the last two lines.

The formulas above imply that βi,j(P/L)·βi+1,k(P/L) = 0 for all k ≤ j. In
other words, we cannot have any consecutive cancellation of the same degree
[29] or of negative degree [30, 31]. It follows from [29, Proof of Theorem 1.1]
that βi,j(P/L) = βi,j(P/J) for all i, j. As for the Betti numbers of the
local ring R, it follows from [30, Theorem 3.1] or [31, Theorem 2] that
βi(G) = βi(R) for all i. The proof is concluded. �

Remark 6. We have proved that, if the upper bound is attained, then
G, and therefore R, are almost complete intersections. Moreover, their
defining ideals J and I are licci, i.e. they belong to the linkage class of
a complete intersection. In fact, as already observed, L = LM≺(J) =

(xd1, . . . , x
d
c , x

d−1
1 x2) and we have (xd1, . . . , x

d
c) : L = (xd1, . . . , x

d
c) : (x

d−1
1 x2) =

(x1, x
d−1
2 , xd3, . . . , x

d
c), that is, L is linked in one step to a complete intersec-

tion; this implies that the same is true for J and I. Furthermore, J is
strongly licci in the sense of [23].

Next, we construct a family of monomial curves to show that the upper
bound for the multiplicity is sharp.

Proposition 7. For every c, d ≥ 2 there exists a numerical semigroup at-

taining the upper bound in Theorem 3.

Proof. Let e = dc − (d− 1)dc−2 and set

n0 = e, n1 = e+1, n2 = e+d, ni = e+(d2−d+1)di−3 for 3 ≤ i ≤ c.

Consider the numerical semigroup Λ = 〈n0, . . . , nc〉, and notice that the
generating set is minimal because n0 < · · · < nc < 2n0. Clearly, we have
e(G) = dc − (d − 1)dc−2 and codim(G) = c; it remains to show that G is
defined by relations of degrees at most equal to d.
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We use the same notation as in the proof of Theorem 3. If c ≥ 3 then
the defining ideal I of R contains the relations f0 = X1X

d−1
2 − Xd−1

0 X3,

f2 = Xd
2 − Xd−1

1 X3, fc = Xd
c − Xd+1

0 , and fi = Xd
i − Xd−1

i−1 Xi+1 for i =

1, 3, 4, . . . , c − 1. If c = 2 then I contains f0 = X1X
d−1
2 − Xd+1

0 , f1 =

Xd
1 − Xd−1

0 X2, f2 = Xd
2 − X2

0X
d−1
1 . Let gi be the initial form of fi and

let H =
(

LM≺(g0), . . . ,LM≺(gc)
)

=
(

x1x
d−1
2 , xd1, . . . , x

d
c

)

. As in the proof of
Theorem 3 we see thatH is a primary ideal of codimension c and multiplicity
dc−(d−1)dc−2, and thenH must coincide with the initial ideal of the defining
ideal J of G. In particular, J = (g0, . . . , gc). �

A standard graded k–algebra G is called Koszul if k has a linear G–
resolution, equivalently if TorGi (k,k)j = 0 for all i 6= j, cf. [10]. If G is a
Koszul algebra then it is defined by quadrics, however, this is only a nec-
essary condition. It is interesting to find sufficient conditions for quadratic
k–algebras to be Koszul. The next corollary shows that attaining the upper
bound in Theorem 3 is a sufficient condition.

Corollary 8. Let Λ be a quadratic numerical semigroup minimally generated

by n0 < . . . < nc. If n0 = 2c − 2c−2, then gr
m
(R) is a Koszul algebra.

Proof. From the proof of the last statement of Theorem 3 with d = 2, we
see that the defining ideal J of gr

m
(R) has an initial ideal L generated by

quadratic monomials; this implies the Koszul property, cf. [10]. �

We conclude the paper with a general discussion.

Remark 9. It is natural to ask for what classes of rings Theorem 3 is valid.
No example of a standard graded k–algebra G is known which violates the
upper bound. In fact, it is possible to show that if the Eisenbud–Green–
Harris conjecture [15] holds, then the inequality is true for any standard
graded k–algebra G. We refer to [18] for a detailed account of this problem.
Roughly speaking, the most general formulation predicts that every Hilbert
function in a complete intersection defined by forms of prescribed degrees
is realized by a lexsegment ideal in a complete intersection defined by pure
powers of the given degrees. The conjecture has been solved only in some
special cases, e.g. [1, 7, 8, 9, 28].
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