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Abstract

Preparing an arbitrary preselected coherent superposition of quantum states

finds widespread application in physics, including initialization of trapped ion

and superconductor qubits in quantum computers. Both fractional and integer

stimulated Raman adiabatic passage involve smooth Gaussian pulses, designed

to grant adiabaticity, so to keep the system in an eigenstate constituted only of

the initial and final states. We explore an alternative method for discovering

appropriate pulse sequences based on deep reinforcement learning algorithms

and by imposing that the control laser can be only either on or off instead of

being continuously amplitude-modulated. Despite the adiabatic condition is

violated, we obtain fast and flexible solutions for both integer and fractional

population transfer. Such method, consisting of a Digital Stimulated Raman

Passage (D-STIRaP), proves to be particularly effective when the system is af-

fected by dephasing therefore providing an alternative path towards control of

noisy quantum states, like trapped ions and superconductor qubits.

Keywords: D-STIRaP, fractional D-STIRaP, deep reinforcement learning

1. Introduction

Stimulated Raman adiabatic passage (STIRAP [1, 2]) and its fractional ver-

sion (f-STIRAP [3]) are well known methods for optical manipulation of atomic
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quantum states by laser pulses. Both are used in quantum information process-

ing (QIP) for coherent control of trapped ions. STIRAP and f-STIRAP proved5

to be efficient tools for optical [4] and hyperfine [5] qubit manipulation [6]

respectively.

STIRAP can flip a qubit between its base states, by allowing the popula-

tion transfer between two discrete quantum states. In quantum information

such method is applied for instance to 40Ca+ ions trapped in a segmented lin-10

ear Paul trap, with the Rabi frequencies Ω3D3/2−→4P3/2max
=2π · 100MHz and

Ω3D5/2−→4P3/2max
=2π · 250MHz [4], used as optical qubits. Instead, fractional

STIRAP can be advantageously used to create an excited state of the qubit in-

sensitive to magnetic field fluctuations and whose coherence exceeds the coher-

ence time of the bare state qubit by three orders of magnitude [6], by creating15

a coherent superposition of the two states. This technique was used in the ex-

periment by Timoney et al. (2011) [5] to construct the excited state of a 171Y b+

trapped ion hyperfine qubit. Furthermore, STIRAP has been applied to super-

conductive three levels systems [7], including strongly coupled systems [8].

Quantum systems can be controlled by machine learning, such as super-20

vised learning in the determination of high-fidelity gates and the optimiza-

tion of quantum memories by dynamical decoupling [9]. More recently Deep

Reinforcement Learning (DRL) has been proposed to maintain a physical sys-

tem in its equilibrium condition [10] and achieve a different equilibrium state,

such as Coherent Transport by Adiabatic Passage (CTAP) [11, 12]. DRL algo-25

rithms can identify strategies for achieving a goal without prior knowledge of

a system [13] and have been therefore chosen to short-circuit the analytical

approach in this work.

The adiabatic condition is fundamental in the analytical Gaussian solution,

but we exploit a pulse sequence where it may be violated. The DRL algorithm30

is asked to find digital on-off pulse sequences to ensure the population transfer

in shorter times and satisfactory fidelity. Therefore, we will refer to integer

and fractional Digital Stimulated Raman Passage (D-STIRaP) to indicate the

complete transfer of the system from the initial state |1〉 to the final one |3〉
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and the creation of a coherent superposition of |1〉 and |3〉 respectively. In35

the past, there are examples such as from Ref. [14] of pulses discretized to

a number of possible values, for which the definition of Digital-STIRAP has

already been used. Differently from such examples, here D- corresponds to

the Digital values of only on (maximum value) and off.

STIRAP is mathematically equivalent to CTAP [15, 16, 17, 18, 19, 20] which40

has already been treated by using deep reinforcement learning [11, 12] and has

inspired the current work. There, a three quantum dots solid state system is

considered for the shuttling of a single spin across a quantum chip. Consis-

tently, in the case of D-STIRaP the goal is to transfer amplitude from an initial

state |1〉 to a final state |3〉, without involving a state |2〉 to which both are cou-45

pled, by using a sequence of two laser pulses: the Stokes pulse ΩS , coupling

|2〉 with |3〉 and the Pump pulse ΩP , coupling |1〉 with |2〉 [3]. Similarly, in

the case of fractional D-STIRaP, the goal is to create a superposition of |1〉 and

|3〉 [3]. The fidelity of the protocol is defined as ρ33, i.e. the probability density

of being in |3〉.50

The fundamental idea underlying (fractional-)STIRAP is to keep the system

in the eigenstate associated to the null eigenvalue called "dark state", where |2〉

is not involved. An adiabatic evolution is therefore used to keep the system

in such state, while the superposition of |1〉 with |3〉 can be controlled by the

amplitude of the two pulses [3]. In this work, we demonstrate that DRL can55

obtain the same results despite the violation of the adiabatic condition. An ex-

ample of so-called shortcut to adiabaticity for STIRAP processes is known [21],

but it requires not trivial complex tunneling frequencies. Thefore, techniques

from optimal control and machine learning have been recently considered im-

portant to explore [2].60

Since speed and resilience to disturbances are fundamental properties in

quantum computing, DRL is a natural option, as already proved in the case of

CTAP [11]. In the following, in partial analogy with the case of continuously

driven CTAP, we show that the digital pulses discovered by the DRL algorithm

are able to achieve a satisfactory population transfer. D-STIRaP and fractional65
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Figure 1: Deep Reinforcement Learning architecture: the environment corresponds to the physi-

cal system, while the agent consists of a deep neural network with two hidden layers of 64 neurons

each. At each interaction (one time step) the agent observes the current state of the environment

and it determines an action to take. After the environment has evolved into a new state, the re-

ward function is returned to the agent. The deep neural network receives as input ni modulus of

elements of the density matrix. The highest activated neuron in the output layer no tells which

lasers are on during the next time step.

D-STIRaP pulse sequences drive the system faster than the analytical solu-

tions, but more importantly they can be adapted with no additional effort to

detuning (no two-photon resonance [6]) and dephasing (phase relaxation [6]).

In both cases above, there is no analytical approach to replace Gaussian pulses.

The implementation of DRL is based on an agent-environment system as70

summarized in Figure 1. More specifically the Proximal Policy Optimization

(PPO) algorithm has been chosen.

In the Methods Section, the physical system and the DRL algorithm are ex-

plained. The Results and Discussion Section concerns the simulation of integer

and fractional D-STIRaP, including the case of evolution affected by distur-75
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bances as controlled by the DRL. The last Section summarize the Conclusions.

2. Methods

2.1. The Hamiltonian formulation of STIRAP

STIRAP has been extensively discussed elsewhere [3, 11]. It is a three states

system, where only one of them is coupled with both the others and their cou-

pling can be externally controlled. The time evolution of the density matrix

ρ(t) is governed by a master equation:

i}
d
dt
ρ(t) = [H(t),ρ(t)] ; H(t) = }


0 1

2ΩP (t) 0
1
2ΩP (t) ∆ 1

2ΩS (t)

0 1
2ΩS (t) δ

 (1)

where }∆ = E2−E1−}ωP and }δ = E3−E1−}ωP +}ωS , while ωP and ωS are the

carrier frequencies. ∆ and δ are called one-photon detuning and two-photon80

detuning respectively.

A non vanishing value of ∆ does not affect the population transfer. Instead,

in the ideal case δ must be null in order to ensure the availability of the "dark

state" [6] which is expressed in terms of |1〉 and |3〉, but not of |2〉. In this case,

it is possible to apply successful analytical solutions to achieve (f-)STIRAP.85

However, detuning can occur due to mismatches between system energy

differences (Bohr transition frequencies) and photon energies (field carrier fre-

quencies) [6]. In Subsection 3.3 the case of non-null detuning is treated.

In turn, the coupling with the environment is a source of decoherence. In

the case of D-STIRaP and fractional D-STIRaP, both dephasing and phase re-

laxation can significantly affect the system. The treatment of this disturbance

requires solution of the Liouville equation for the density matrix [6]:

i}
d
dt
ρ(t) = [H(t),ρ(t)]− iD(t) ; D(t) = }


0 γ12ρ12(t) γ13ρ13(t)

γ12ρ21(t) 0 γ23ρ23(t)

γ13ρ31(t) γ23ρ32(t) 0


(2)
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In the following, we postulate the approximation that γnm = Γ ∀(n,m).

Dephasing affects STIRAP by destroying the coherence between states |1〉90

and |3〉 and thus it leads to the depopulation of the "dark state" [6] (see Subsec-

tion 3.3). In order to exploit the Hamiltonian framework as an environment for

a deep learning agent, the time evolution of the system has been implemented

via the QuTiP [22, 23] library.

2.2. The deep reinforcement learning architecture for solving D-STIRaP95

Deep Reinforcement Learning (DRL) is a set of techniques that exploit ar-

tificial neural networks to learn behavior in sequential decision-making prob-

lems [24, 25, 26]. Such techniques are highly effective when no prior knowl-

edge about the dynamics of the system is available or when the control problem

is too complex to be addressed by classical optimal-control algorithms.100

The basic principles and notions in the theory of reinforcement learning are

based upon the idea of interactions between a decision maker called agent and

a controlled system named environment. The latter is everything that cannot

be controlled directly by the former. In the case of D-STIRaP, the environment

corresponds to the physical system, involving the Hamiltonian and the density105

matrix.

The agent and the environment interact at discrete time steps as shown in

Figure 1. At every time step, the agent observes the current state of the en-

vironment and it performs actions according to a policy function that fully

determines its behavior. Therefore, the environment evolves changing its state110

and a reward signal is returned to the agent to update its policy. The funda-

mental units of the learning process are the episodes, during which the agent

tries to maximize the sum of the rewards obtained at each time-step, i.e. the

cumulative reward, changing its policy. Episodes are interrupted when an end-

ing condition is reached. It happens when either the number of steps exceeds115

a quantity defined by the user, or the agent learns how to solve the problem.

Figure 2 shows the cumulative rewards earned during the learning process in

the case of D-STIRaP without disturbances.
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Figure 2: Cumulative reward evolution during a learning process in the case of D-STIRaP with-

out disturbances. A moving average on a 30 episodes window (horizontal average) was previously

done on 8 independent runs to reduce the noisy effect. The blue line represents the average (ver-

tical) of these smoothed cumulative rewards and the grey line represent its standard deviation.

The learning process effectively succeeds after about 25000 episodes, even if the major learning

breakthroughs are done in the first 3000 episodes.

STIRAP is considered as a textbook technique in quantum control [2]. If we

consider deep neural networks as discrete-time nonlinear dynamical systems120

employed as an optimization algorithms, the training processes required when

a controller is included can be formulated as an optimal control problem [27].

This kind of approach based on a DRL control system has successfully been

exploited in a recent work [11] for the CTAP environment. Such work have

inspired some key elements of the learning architecture, due to the similarity125

between CTAP and STIRAP, such as the shape of the reward function and the

state of the environment as described in the following.

The time given to solve the problem tmax and the maximum number of steps

nmaxstep have an impact on the learning process. The former should be neither

too short, as DRL will not be able to solve the problems, nor too long, as it130

would slow down the learning procedure. The most effective hyperparameters
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used for the learning process have been summarized in Table 1.

At each time step, the agent chooses and applies one between four distinct

actions. Such actions correspond to four possible combinations generated by

having on and off the two lasers, i.e. the Pump pulse ΩP (t) and the Stokes135

pulse ΩS (t) respectively. At each time step, of duration tmax/nmaxstep, both

amplitudes can take only the values 0 or Ω0 ∝ 1/tmax. Ω0 affects the speed of

the population transfer from state |1〉 to state |3〉, as shown in Figure 3.

The agent receives the modulus of the elements of the density matrix and

the values of the pulse at every time step. As already proven [11], taking140

separately the real and the imaginary part of the off-diagonal elements is not

needed. Furthermore, in the ideal case the information carried by the values of

ρ33 and ρ22 are sufficient. In the dephasing case the upper non diagonal terms

are added as input, i.e.
∣∣∣ρ12

∣∣∣, ∣∣∣ρ13

∣∣∣ and
∣∣∣ρ23

∣∣∣.
The reward function r(t) used in this work has been inspired by [11] and

has the following expression:

r(t) = f
(
ρ11(t),ρ22(t),ρ33(t)

)
+A(t) +B(t) (3)

where f is a real function which has a global maximum if ρ22 = 0 and ρ33, ρ11145

are equal to the aimed final population. A(t) and B(t) are additional punishing

or rewarding terms which may intervene when the state of the system becomes

too critical. We want the agent to find the sequence of pulses that keeps ρ22

close to 0, while transforming (ρ33, ρ11) from (0,1) to the aimed values.

In the framework of deep reinforcement learning, the policy followed by150

the agent is approximated by an artificial neural network. In this work, we uti-

lized a feed-forward neural network with two hidden layers of 64 neurons each

for both fractional and integer D-STIRaP. No other network architectures have

been investigated since this neural network is relatively small in size and has

achieved excellent results in all the actual simulations. Therefore, we exploit155

the Proximal Policy Optimization (PPO) algorithm [28] to train agents capa-

ble of finding digital pulses sequences to achieve both integer and fractional

population transfer between states. PPO has been chosen in favour of Trusted

8
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Figure 3: Comparison between D-STIRaP and Gaussian pulses for fast transfer times. While

Gaussian pulses (dotted lines) heavily fail to transfer the population if the time interval is signif-

icantly below 50-60π/Ωmax , digital pulses successfully achieve the transfer at the cost of a small

non-zero probability of occupying the state |2〉 of the order of a percent. The probability density

of being in |1〉, |2〉 and |3〉 are plotted in blue, orange and green respectively, while the Stokes and

Pump pulses are represented in pink and cyan.

Region Policy Optimization (TRPO) exploited in [11], due to several reasons:

PPO performs comparably or better than state-of-the-art approaches [28] while160

being much simpler to implement and tune. Moreover, it allows using multiple

agents at the same time, significantly decreasing the training time compared

to TRPO.

The D-STIRaP environment has been implemented using Python 3.7.0 lan-

guage, while we exploited the Stable-Baseline 2.6.0 Python module [29] to im-165

plement the deep reinforcement agent. All the hyperparameters used by PPO

algorithm are the default ones (see Stable-Baseline documentation for further

details).

9



3. Results and Discussion

3.1. Control of integer D-STIRaP170

In the case of integer D-STIRaP we exploited the reward function proposed

for the CTAP environment [11]:

r(t) = −1−ρ22(t) +ρ33(t) +A(t) +B(t) where


A(t) = 10 ·H(ρ33(t)− 0.97)

B(t) = −e6ρ22 ·H(ρ22(t)− 0.05)

(4)

where the ending conditions are:

• the number of steps exceeds an arbitrary limit of time steps nmaxstep;

• ρ33 exceeds 0.995. In such case an additional positive reward of 100 is

given.

The results obtained by the DRL agent with no disturbances (∆ = δ = Γ = 0)175

are shown in Figure 3. The pulse sequences found by DRL achieve the popula-

tion transfer in roughly 2.5 ·π/Ω0, reaching a fidelity of 99.5% and keeping ρ22

close to 0.05 before dropping to zero. Such solution is approximately 20 times

faster than the analytical one consisting of two Gaussian pulses in a counter-

intuitive sequence [6, 3], where the transfer is achieved after a time of 160/Ω0180

only.

The digital pulses found by the agent are still conceptually close to both

the Gaussian [3] and to the DRL-based [11] continuous pulses, as shown by

their moving average in Figure 4. In order to intuitively relate the successful

drive achieved by the digital pulses, we show that they act as if their average is185

responsible of the effect on a longer timescale. In fact, they not only resemble

the counterintuitive sequence, i.e. the Stokes pulse starts before the Pump

pulse, but they are capable to induce the STIRAP.

3.2. Control of fractional D-STIRaP

In the case of fractional D-STIRaP a generalized reward function is required

to take into account the final ratio between the populations according to a

10
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Figure 4: Smoothing of D-STIRaP pulses to recover STIRAP. Solid lines in (a) represent the

Stokes and Pump digital pulses and dashed lines its moving average. The counterintuitive se-

quence can be recognized. Such pulses achieve STIRAP with a 99.5% fidelity as shown in (b).

parameter. The reward function is defined as:

r(t) = −1− (ρ11(t)− cos2α)2 − (ρ33(t)− sin2α)2 +A(t) +B(t) (5)

where α is the parameter controlling the ratio of ρ11 and ρ33 [3], A(t) = 0 and190

B(t) = −e6ρ22(t) ·H(ρ22(t)− 0.05). The ending conditions are:

• the number of steps exceeds an arbitrary limit of time steps nmaxstep;

•
∣∣∣ρ33 − sin2α

∣∣∣ < ε and
∣∣∣ρ11 − cos2α

∣∣∣ < ε with ε = 0.25%.

Figure 5 reports the results obtained with no disturbances (∆ = δ = 0) for

four different angles α. The agent was able to achieve a precision of 0.25% on195

(ρ11, ρ33) and to keep ρ22 close to 0.05. Similarly to the integer D-STIRaP, the

DRL pulse sequences reach the desired coherent superposition of states |1〉 and

|3〉 in approximately 2π/Ω0, outperforming standard pulses.
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Figure 5: Comparison of fractional D-STIRaPwithout disturbances achieved by Gaussian pulses

(dashed lines) versus pulses found by DRL algorithm (solid lines) for different values of α. The goal

is to reach the desired population of ρ11 = cos2α and ρ33 = sin2α represented by the solid red line.

Despite allowing a maximum time tmax of 6π/Ω0, the DRL managed to reach the goal in shorter

times. In such time the analytical pulses do not achieve D-STIRaP, while the DRL pulses are able

to maintain ρ22 close to 0 and to transfer the state from |1〉 to the desired coherent superposition

of |1〉 and |3〉.
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(b) Fractional D-STIRaP with α = π/4 and ∆ =

0.15Ω0 and δ = 0.15Ω0

Figure 6: Comparison of D-STIRaP and fractional D-STIRaP with detuning (α = π/4) achieved

by Gaussian pulses (dashed lines) vs. pulses found by DRL algorithm (solid lines). The maximum

time tmax allowed was 10π/Ω0 for D-STIRaP and 8π/Ω0 for fractional D-STIRaP, but DRL man-

aged to reach the goal in shorter time. In such time the analytical pulses do not achieve D-STIRaP,

while the DRL pulses succeed in transferring amplitude from state |1〉 to the desired coherent

superposition of |1〉 and |3〉.

3.3. Resilience to disturbances

When sources of disturbance act on the quantum system, the known pulse200

control sequence is inadequate to preserve the transfer. Moreover, no analyti-

cal methods to derive suitable sequences are known. However, deep reinforce-

ment algorithms such PPO can be exploited to address such cases. Table 1

summarizes the results obtained by the agent, including the cases of detuning

and dephasing, fractional D-STIRaP and their reward functions.205

3.3.1. Detuning

The population transfer as a function of time in case of detuning (∆ = δ =

0.15 ·Ω0) is shown in Figure 6. DRL achieves (fractional)D-STIRaP without

13



being perturbed by two-photon detuning in a time of 4π/Ω0, which is compa-

rable to the unperturbed case.210

3.3.2. Dephasing

Figure 7 shows the population transfer in the case of dephasing (∆ = δ =

0). Two regimes, consisting of a weak (Γ = 0.01Ω0) and a strong (Γ = 0.1Ω0)

dephasing, are displayed.

In such case, the non-diagonal terms of the density matrix are non-null.215

Therefore,
∣∣∣ρ13

∣∣∣, ∣∣∣ρ12

∣∣∣ and
∣∣∣ρ23

∣∣∣ were added to ρ22 and ρ33 as inputs of the

neural network. No additional terms were considered, since the density matrix

is Hermitian and the non-diagonal terms belong to R or to C \R.

In the case of weak dephasing (Γ = 0.01Ω0), DRL achieves both D-STIRaP

and fractional D-STIRaP, bringing ρ33 to the desired proportion with an accu-220

racy of 0.25% while keeping ρ22 close to 0. The transfer is reached faster than

the analytical approach without disturbances.

When a strong dephasing (Γ = 0.1Ω0) occurs, it is possible to appreciate

the long-term effect of the disturbance, i.e. the populations start to converge

towards ρ11 = ρ22 = ρ33 = 1/3. The DRL algorithm finds pulse sequences that225

reach a fidelity of 97%, higher than Gaussian pulses, which achieve a fidelity of

91.5% only. Moreover, the probability of being in state |2〉 during the transfer

is lower than using Gaussian pulses. In fact, the former is 0.28 · π/Ω0, while

the latter is approximately 0.62 ·π/Ω0. The fact that the population is inverted

before stabilizing to the final value is an accidental feature which may or may230

not happen depending on the time the training is stopped.

3.4. General discussion

The deep reinforcement learning agent learns suitable pulse sequences that

are able to achieve (fractional)D-STIRaP. Ideally we want the transfer to be as

fast as possible and to keep the state |2〉 not populated. The latter condition is235

especially relevant in the case of Zeeman qubit, where the state |2〉 can natu-

rally decay failing the transfer. However, it is preferable a sequence of pulses
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Figure 7: Comparison of D-STIRaP and fractional D-STIRaP (α = π/4) with strong and weak

dephasing achieved by Gaussian pulses (dotted lines) vs. pulses found by DRL algorithm (solid

lines). In case of strong dephasing, DRL did not manage to satisfy the strict conditions imposed

(ρ33 ≤ 0.995 and a margin of ε=0.5% for fractional D-STIRaP) but it was anyway able to find better

solutions than the analytical approach.
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that achieve a faster population transfer even at the cost of slightly populating

the state |2〉.

It is worth noting that the Gaussian pulses are able to achieve the transfer240

maintaining ρ22 closer to 0 than DRL pulses, if they are applied with a longer

tmax [3], e.g. of 40π/Ω0. Unfortunately, in real systems such ideal condition

can not be precisely met due to the disturbances that affect the transfer. For

instance, when a dephasing source acts during the process, the result of DRL

can be significantly better despite the small non vanishing occupation of |2〉.245

The trade-off between occupation of ρ22 and the transition time is irrele-

vant, when considering hyperfine qubits, because |2〉 is not a decaying state.

In the context of an actual implementation of a (fractional)D-STIRaP guided

by DRL, it is not necessary to know the density matrix at every time-step. The

main idea is to extract Γ experimentally from the system beforehand, then run250

a simulation to get the sequences of pulses and finally applying them to the

actual experiment.

While managing digital pulses required for the control of superconductive

qubits looks straightforward, one may wonder if the time scale required to

switch on/off lasers is compatible with the control trapped ions. If we con-255

sider gate operations of the order of tens to hundred of microseconds (see for

instance Ref. [30] related to 40Ca+), such digital control is made possible by

modern electro-acoustic modulators which have rise and fall time of the order

of 2 ns. Superconductive qubits such as transmons are generally operated un-

der global adiabatic condition as it shows that the transfer efficiency can be260

improved by making the pulses longer, which is in turn limited by its deco-

herence [7]. Violating the adiabatic condition and achieveing therefore signif-

icantly faster pulse sequences limits the time during which such decohernce

occurs. Dephasing may arise differently depending on the kind of supercon-

ductive qubit and is less critical but still present. For instance, the dephasing265

is minimized for the Quantronium in correspondance of the symmetry point

but a selection rule prevents to implement the STIRAP there [31]. The so-

lution is to detune away from such symmetry point, at the cost of introduc-

17



ing some unavoidable degree of dephasing. For what concerns trapped ions

qubits, dephasing is one of the three ion trap specific error types, together with270

overrotation and crosstalk [32]. Here again the use of D-STIRaP shortens the

population transfer time therefore reducing the global effect acting because of

dephasing. Our method can be extended to other kind of disturbance such as

population decay set by a finite T1 time as already discussed in Ref. [11].

4. Conclusions275

We propose a population transfer pulsing method alternative to STIRAP,

which relies on a Deep Reinforcement Learning (DRL) agent to find very fast

digital pulse sequences. We refer to this method as integer or fractional Digital

Stimulated Raman Passage (D-STIRaP).

Although the condition of adiabaticity is violated, the population transfer280

is successful and faster than using continuous amplitude-modulated pulses.

In fact, DRL finds sequences of two-valued laser amplitude intensities corre-

sponding to turning on and off two laser-beams, achieving population transfer

within 0.5% accuracy significantly faster than the analytical approach. More

importantly, DRL is able to find sequences even in the presence of disturbances285

such as detuning and dephasing. In the latter case, D-STIRaP is highly more

efficient than continuously STIRAP.

More generally, artificial intelligence [33] can be applied successfully in

quantum information processing and in particular reinforcement learning in

the field of trapped ions and superconducting quantum computing, where290

both D-STIRaP and fractional D-STIRaP can be used to manipulate quantum

states.
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Appendices

Appendix A. Purity of the states

This Appendix is devoted to quantitatively account for the time evolution

of the purity i.e. Tr |ρ|2. The purity is traced as function of time for all the

simulations discussed throughout the Sections.400
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Figure A.8: Purity of the states as function of time in the case of D-STIRAP as represented in

Figure 3.
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Figure A.9: Purity of the states as function of time of time in the case of D-STIRAP as represented

in Figure 4b.

0.00 0.25 0.50 0.75 1.00
t[π/Ω0]

0.95

1.00

pu
rit

y

(a) ρ33=0.5; ρ11=0.5; sinα = 0.5

0 1 2 3 4
t[π/Ω0]

0.95

1.00

pu
rit

y

(b) ρ33=0.875; ρ11=0.125; sinα = 0.875

0 1 2 3 4
t[π/Ω0]

0.95

1.00

pu
rit

y

(c) ρ33=0.75; ρ11=0.25; sinα = 0.75

0 2 4
t[π/Ω0]

0.95

1.00

pu
rit

y

(d) ρ33=0.975; ρ11=0.025; sinα = 0.975

Figure A.10: Purity of the states as function of time in the case of fractional D-STIRAP as repre-

sented in Figure 5.
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(a) D-STIRaP with detuning ∆ = 0.15Ω0 and

δ = 0.15Ω0
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Figure A.11: Purity of the states as function of time in the case of D-STIRAP and fractional D-

STIRAP with detuning as represented in Figure 6.
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Figure A.12: Purity of the states as function of time in the case of D-STIRAP and fractional D-

STIRAP (blue lines) in the case of weak (a,b) and strong dephasing (b,d) respectively as represented

in Figure 7, together with the corresponding function e−Γ ·t (dashed gray).
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