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Abstract. In this paper we address the numerical approximation of linear fourth-order
elliptic problems on polygonal meshes. In particular, we present a novel nonconforming
virtual element discretization of arbitrary order of accuracy for biharmonic problems.
The approximation space is made of possibly discontinuous functions, thus giving rise to
the fully nonconforming virtual element method. We derive optimal error estimates in a
suitable (broken) energy norm and present numerical results to assess the validity of the
theoretical estimates.

1. Introduction

In recent years the study of numerical methods for the approximation of partial differen-
tial equations on polygonal and polyhedral meshes has flourished at exponential rate (see,
e.g., the special issues of References [12, 16] for a recent overview of the different methodolo-
gies). Among the different proposed methodologies, the Virtual Element Method (VEM),
due to its flexibility in dealing with a wide variety of differential problems, has polarized an
increasing research activity. VEM has been introduced in the seminal paper [5] and can be
seen as an evolution of the Mimetic Finite Difference method, see, e.g., References [13, 33]
for a detailed description. Since then, the VEM has been proposed to address an increas-
ing number of different problems: general elliptic problems [9, 17], linear and nonlinear
elasticity [6, 29, 14], plate bending [23, 27], Cahn-Hilliard [3], Stokes [2, 15], Helmholtz
[36], parabolic [37], Steklov eigenvalue [34], elliptic eigenvalue [30] and discrete fracture
networks [18]. Moreover, several different variants of the VEM have been developed and
analysed: mixed [21, 8], discontinuous [24], H(div) and H(curl)-conforming [7], hp [11],
serendipity [10] and nonconforming VEM. This latter formulation has been first analyzed
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for elliptic problems [4, 26] and subsequently extended to the Stokes problem [25]. Also,
very recently, an approximation method for plate bending problems has been analyzed [38],
which is based on a globally C0-nonconforming virtual element space.

In this work we present the fully nonconforming virtual element method for the approx-
imation of biharmonic problems. Our method works on unstructured polygonal meshes,
provides arbitrary approximation order and does not require any global C0 regularity for
the numerical solution. The numerical approximation of biharmonic problems with non-
conforming finite elements on triangular meshes has a very long tradition and it is beyond
the scope of this introduction to provide a detailed account of it (see, e.g., the classical
book [28] for a short overview). However, it is worth mentioning that as a by product of
the results of this paper we obtain, on triangular meshes, a family of novel nonconforming
finite elements of arbitrary order that are not continuous. Indeed, for the lowest order
our nonconforming virtual element method on simplicial meshes reduces to the classical
Morley element [35], while for higher-order polynomial approximation degrees it gives rise
to a new family of nonconforming finite elements.

The outline of the paper is as follows. In Section 2 we recall the continuous problem.
In Section 3 we introduce our novel, arbitrary order, nonconforming virtual element dis-
cretization for the biharmonic problem. In Section 4 we derive the optimal error estimate
in a broken energy norm. In Section 5 we numerically assess the validity of the theoretical
estimate and, finally, in Section 6 we draw the conclusions.

1.1. Notation. Throughout the paper we shall use the standard notation of the Sobolev
spaces Hm(D) for a nonnegative integer m and an open bounded domain D. The m-th
seminorm of the function v will be defined by

|v|m,D =
∑
|α|=m

∥∥∥∥ ∂|α|v

∂α1
x1 ∂

α2
x2

∥∥∥∥2

0,D
,

where ‖·‖20,D stands for the L2(D) norm and we set |α| = α1+α2 for the nonnegative multi-

index α = (α1, α2). For any integer m ≥ 0, Pm(D) is the classical space of polynomials of
total degree up tom defined onD. Moreover, n = (n1, n2) is the outward unit normal vector
to ∂D, the boundary of D, and t = (t1, t2) the unit tangent vector in the counterclockwise
orientation of the boundary. To ease the notation, we may use u,i to indicate the first
order derivative along the i-th direction, and, accordingly, u,n and u,t for the normal and
tangential derivatives. Whenever convenient, we shall also use the notation ∂nu and ∂tu
instead of u,n and u,t. Moreover, we may denote high-order derivatives by repeating the
index subscripts, e.g., u,ij = ∂2u/∂xi∂xj , and, likewise, u,nn, u,tt, u,nnt, etc, for multiple
derivatives in the normal and tangential directions. We also use the summation convention
of repeated indexes (Einstein’s convention), so that

u,ijv,ij =

2∑
ij=1

∂2u

∂xi∂xj

∂2v

∂xi∂xj
.
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Finally, the notation A . B will signify that A ≤ cB for some positive constant c indepen-
dent of the discretization parameters.

2. The continuous problem

Let Ω ⊂ R2 be a convex polygonal domain occupied by the plate with boundary Γ and
let f ∈ L2(Ω) be a transversal load acting on the plate. According to the Kirchoff-Love
model for thin plates [31] and assuming that the plate is clamped all over the boundary,
the transversal displacement u is solution to the following problem

D∆2u = f in Ω(1a)

u = 0 on Γ(1b)

∂nu = 0 on Γ(1c)

where D = Et3

12(1−ν2)
is the bending rigidity, t being the thickness, E the Young modulus,

and ν the Poisson’s ratio.
Consider the functional space V =

{
v ∈ H2(Ω) : v = ∂nv = 0 on Γ

}
and denote by 〈·, ·〉

the duality pairing between V and its dual V ∗.
The variational formulation of (1) reads as: Find u ∈ V such that

(2) a(u, v) = 〈f, v〉 ∀v ∈ V,

where

a(u, v) = D

∫
Ω

(
ν∆u∆v + (1− ν)u,ijv,ij

)
dx and 〈f, v〉 =

∫
Ω
fvdx.(3)

Setting ‖ · ‖V = | · |2,Ω and employing the boundary conditions and Poincaré inequality,
we can prove that ‖ · ‖V is a norm on V . Moreover, it holds that

a(v, v) & ‖v‖2V ∀v ∈ V(4a)

|a(u, v)| . ‖u‖V ‖v‖V ∀u, v ∈ V.(4b)

Hence, there exists a unique solution u ∈ V to (2) (see, e.g., [19]).

2.1. Preliminaries. In this section, we collect some useful definitions that will be em-
ployed in the rest of the paper. Let σij(u) = λ(u,11 +u,22)δij +µu,ij with Lamé parameters
λ = Dν, µ = D(1− ν). We set

(5) Mnn(u) = σij(u)ninj , Mnt(u) = σij(u)nitj , T (u) = σij,j(u)ni +Mnt,t(u),

(we recall the summation notation of repeated indexes) and observe that

(6)

Mnn(u) = ∆u− (1− ν)u,tt = ν∆u+ (1− ν)u,nn,

Mnt(u) = u,nt,

T (u) = ∂n(∆u) + (1− ν)u,ntt.
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Moreover, let K ⊂ R2 be a polygonal domain and set

aK(u, v) = D

∫
K

(
ν∆u∆v + (1− ν)u,ijv,ij

)
dx.

Integrating by parts and employing (5) and (6) yield the following useful identities

aK(u, v) = D

{∫
K

∆2uvdx+

∫
∂K

(
∆u− (1− ν)u,tt

)
v,nds

−
∫
∂K

(
∂n(∆u)v − (1− ν)u,ntv,t

)
ds

}

= D

{∫
K

∆2uvdx+

∫
∂K

Mnn(u)∂nv ds−
∫
∂K

T (u)vds−
∑
e∈∂K

(Mnt(u), vn∂e)∂e

}
(7)

where ∂e is the boundary of edge e ⊆ ∂K and n∂e is the outwards normal “vector” to
∂e. For every edge e with end points v1 and v2 the boundary ∂e is the set {v1, v2}, and,
depending on the chosen edge orientation, n∂e at the end points is equal to +1 or −1.

3. Nonconforming virtual element discretization

The nonconforming virtual element approximation of the variational problem (1) reads
as: Find uh ∈ Vh,` such that

(8) ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ Vh,`,

where Vh,` is the nonconforming virtual element space of order ` that approximates the
functional space V , and ah(·, ·) and 〈fh, ·〉 are the nonconforming virtual element bilinear
form and load term that approximate a(·, ·) and 〈f, ·〉 in (2), respectively. The rest of this
section is devoted to the construction of these quantities.

3.1. Technicalities. Let {Th}h be a sequence of decompositions (meshes) of Ω into non-
overlapping polygons K. Each mesh Th is labeled by the mesh size parameter h, which will
be defined below, and satisfies a few regularity assumptions that are necessary to prove
the convergence of the method and derive an estimate of the approximation error. These
regularity assumptions are introduced and discussed in Section 4. Let Eh be the set of
edges in Th such that Eh = E ih ∪ EΓ

h , where E ih and EΓ
h are the set of interior and boundary

edges, respectively. Similarly, we denote by Vh = V ih ∪ VΓ
h the set of vertices in Th, where

V ih and VΓ
h are the sets of interior and boundary vertices, respectively. Accordingly, VKh is

the set of vertices of K. Moreover, |K| and |e| denotes the area of cell K and the length
of edge e, ∂K is the boundary of K, hK is the diameter of K and the mesh size parameter
is defined as h = maxK∈Th hK . We introduce the broken Sobolev space for any integer
number s > 0

Hs(Th) = ΠK∈ThH
s(K) =

{
v ∈ L2(Ω) : v|K ∈ Hs(K) for any K ∈ Th

}
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and endow it with the broken Hs-seminorm |v|2s,h =
∑

K∈Th |v|
2
s,K . We denote the traces

of v on e ⊂ ∂K+ ∩ ∂K− from the interior of K± by v±, respectively. Then, we define the
jump of v on the interior edge e ∈ E ih by [v] = v+ − v− and on the boundary edge e ∈ EΓ

h
by [v] = v|e.

For future use, we also introduce the nonconforming space H2,nc(Th) ⊂ H2(Th) defined
as follows

H2,nc(Th) =

{
v ∈ H2(Th) : v continuous at internal vertexes, vh(vi) = 0 ∀vi ∈ VΓ

h∫
e
[∂nv]ds = 0 ∀e ∈ Eh

}
.

We next prove the following result.

Lemma 1. | · |2,h is a norm on both V and H2,nc(Th).

Proof. Employing [20, Corollary 4.2] and [20, (5.2)] (with Φ(v) chosen as in [20, Example
2.6]) we can prove that

|v|1,h . |v|2,h ∀v ∈ H2,nc(Th)

which implies that |v|2,h is a norm on H2,nc(Th). �

3.2. Local and global nonconforming virtual element space. In this section, we
introduce the local and global nonconforming virtual element spaces.

For ` ≥ 2, the local virtual element space is defined as follows:

V K
h,` =

{
vh ∈ H2(K) : ∆2vh ∈ P`−4(K),Mnn(vh)|e ∈ P`−2(e), T (vh) ∈ P`−3(e) ∀e ∈ ∂K

}
with the usual convention that P−1(K) = P−2(K) = {0}. The solution of the biharmonic
problem in the definition of V K

h,` is uniquely determined up to a linear function that can be
filtered out by fixing the value at three non-aligned vertexes of K.

Remark 1. By construction, it holds that P`(K) ⊂ V K
h,`.

We choose the degrees of freedom of V K
h,` as follows:

(D1) for ` ≥ 2: vh(vi) for any vertex vi of K;

(D2) for ` ≥ 2:

∫
e
∂nvh p ds for any p ∈ P`−2(e) and any edge e of ∂K;

(D3) for ` ≥ 3:
1

|e|

∫
e
vhp ds for any p ∈ P`−3(e) and any edge e of ∂K;

(D4) for ` ≥ 4:
1

|K|

∫
K
vhp ds for any p ∈ P`−4(K).

These degrees of freedom are illustrated in Figure 1 for the virtual element spaces with
` = 2, 3, 4, 5. We next show that these degrees of freedom are unisolvent in V K

h,`.
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` = 2 ` = 3 ` = 4 ` = 5

Figure 1. Local degrees of freedom of V K
h,` for l = 2, 3, 4, 5: vertex values

uh(v) (dots); edge moments of ∂nuh (arrows); edge moments of uh (squares);
cell moments of uh (central dots).

Lemma 2. The degrees of freedom (D1)-(D4) are unisolvent for V K
h,`.

Proof. Employing (7), for any vh ∈ V K
h,` there holds

aK(vh, vh) = D

{∫
K

∆2vh vhdx+

∫
∂K

Mnn(vh)∂nvhds−
∫
∂K

T (vh)∂nvhds

−
∑
e∈∂K

(Mnt(vh), vhn∂e)∂e

}
.(9)

We first observe that ∆2vh is a polynomial of order ` − 4 on K. Moreover, we note that
on each edge the functions Mnn(vh) and T (vh) are polynomial of degree up to ` − 2 and
`− 3, respectively. Hence, by setting to zero the degrees of freedom we get aK(vh, vh) = 0.
This latter implies |vh|H2(K) = 0 which gives vh = 0 in view of the fact that setting to
zero the nodal values of vh filters the linear polynomials (i.e. the kernel of the seminorm
| · |H2(K)). �

Building upon the local spaces V K
h,`, the global nonconforming virtual element space is

then defined as follows

Vh,` =

{
vh : vh|K ∈ V K

h,`, vh continuous at internal vertexes, vh(vi) = 0 ∀vi ∈ VΓ
h∫

e
[∂nvh]pds = 0 ∀p ∈ P`−2(e),

∫
e
[vh]pds = 0 ∀p ∈ P`−3(e) ∀e ∈ Eh

}
.(10)

We observe that by construction it holds Vh,` ⊂ H2,nc(Th) and Vh,` 6⊆ H2
0 (Ω). Moreover,

it is important to remark that our nonconforming virtual element space does not require
that its functions are globally continuous over Ω, thus admitting piecewise discontinuous
functions on each partition Th (see also Remark 2 below).
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Remark 2 (Lowest order case). Let us briefly comment on the lowest-order VE space, for
` = 2. In this case the local space is given by

V K
h,2 =

{
vh ∈ H2(K) : ∆2vh = 0,Mnn(vh)|e ∈ P0(e), T (vh)|e = 0 ∀e ∈ ∂K

}
,

and the local degrees of freedom are:

(d1) vh(vi) for any vertex vi of K;

(d2)

∫
e
∂nvhds for any edge e of ∂K.

On triangular meshes the degrees of freedom (d1)-(d2) of V K
h are the same of the Morley’s

nonconforming finite element space [35] and the unisolvence property from Lemma 2 implies
that these two local spaces coincide. Finally, the global lowest-order nonconforming virtual
element space is given by

Vh,2 =

{
vh : vh|K ∈ V K

h , vh continuous at internal vertexes, vh(vi) = 0 ∀vi ∈ VΓ
h ,

and

∫
e
[∂nvh]ds = 0 ∀e ∈ Eh

}
and clearly contains functions that are piecewise discontinuous on Th.

3.3. Construction of the bilinear form. Starting from the local bilinear forms aKh (·, ·) :

V K
h,` × V K

h,` → R the global bilinear form ah(·, ·) is assembled in the usual way:

ah(uh, vh) =
∑
K∈Th

aKh (uh, vh).

Each local bilinear form is given by

(11) aKh (uh, vh) = aK
(

Π∆,K
` uh,Π

∆,K
` vh

)
+ SK

((
I −Π∆,K

`

)
uh,
(
I −Π∆,K

`

)
vh

)
,

where Π∆,K
` is the elliptic projection operator discussed below and SK(uh, vh) is a sym-

metric and positive definite bilinear form such that

aK(vh, vh) . SK(vh, vh) . aK(vh, vh)

for all vh ∈ V K
h,` such that Π∆,K

` vh = 0. A practical and very simple choice for SK(·, ·) is

the Euclidean scalar product associated to the degrees of freedom scaled by factor h−2
k .

The operator Π∆,K
` : V K

h,` → P`(K) is the solution of the elliptic projection problem:

aK(Π∆,K
` vh, p) = aK(vh, p) ∀p ∈ P`(K),(12)

((Π∆,K
` vh, p))K = ((vh, p))K ∀p ∈ P1(K),(13)

where

((vh, wh))K=
∑
v∈VK

h

vh(v) wh(v).
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It is immediate to verify that Π∆,K
` is a projector onto the space of polynomials P`(K).

Indeed, for any q ∈ P`(K) equation (12) with p = Π∆,K
` q − q yields (Π∆,K

` q),ij = q,ij for
i, j = 1, 2. This latter relation combined with (13) proves the assertion. Furthermore, as

stated by the following lemma, the polynomial projection Π∆,K
` vh is computable from the

degrees of freedom of vh.

Lemma 3. The projector Π∆,K
` : V K

h,` → P`(K) can be computed using only the degrees of

freedom (D1)-(D4).

Proof. In view of (12) and assuming, as usual, the computability of aK(p, q) for polynomial
functions p, q, it is sufficient to prove the computability of aK(p, vh) for any p ∈ P`(K) and
vh ∈ V K

h,`. Employing (7) we have

aK(p, vh) = D

{∫
K

∆2pvhdx+

∫
∂K

Mnn(p)∂nvhds−
∫
∂K

T (p)vhds

−
∑
e∈∂K

(
Mnt(p), vhn∂e

)
∂e

}
.

Each term of the right-hand side can be computed using only the degrees of freedom (D1)-
(D4). Indeed, for the first term we note that ∆2p is a polynomial of order ` − 4; for the
second term we note that Mnn(p) is a polynomial of order `− 2 on each edge; for the third
term we note that T (p) is a polynomial of degree `− 3; finally, we note that the last term
depends on the value of vh at the vertexes of K. �

The local bilinear form aKh has the two crucial properties of polynomial consistency and
stability that we state in the following lemma.

Lemma 4.

• `-consistency: For any p ∈ P`(K) and any vh ∈ V K
h,` it holds that:

(14) aKh (p, vh) = aK(p, vh).

• stability: For any vh ∈ V K
h,` it holds that:

(15) aK(vh, vh) . aKh (vh, vh) . aK(vh, vh),

where the hidden constants are independent of h and K (but may depend on `).

The proof is straightforward, and is therefore omitted.

3.4. Construction of the load term. Let Π`
K denote the L2-projection onto P`(K) and

fh be the piecewise polynomial approximation of f on Th given by

(16) fh|K = Π`−2
K f
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for ` ≥ 2 and every K ∈ Th. Then, we set

(17) 〈fh, vh〉 =
∑
K∈Th

∫
K
fhvh dx.

In view of (16) and using the definition of the L2-projection we find that

(18) 〈fh, vh〉 =
∑
K∈Th

∫
K

Π`−2
K fvh dx =

∑
K∈Th

∫
K

Π`−2
K fΠ`−2

K vh dx =
∑
K∈Th

∫
K
fΠ`−2

K vh dx.

The right-hand side of (18) is computable by using the degrees of freedom (D1)-(D4) and
the enhanced approach [1] that considers the augmented local space

WK
h,` =

{
vh ∈ H2(K) : ∆2vh ∈ P`−2(K), Mnn(vh)|e ∈ P`−2(e), T (vh) ∈ P`−3(e) ∀e ∈ ∂K,∫
K

Π∆,K
` vhpdx =

∫
K
vhpdx ∀p ∈ P`−2 \ P`−4

}
.

Since (D1)-(D4) are still unisolvent in WK
h,`, we can compute the projection Π`−2

K from the
degrees of freedom of vh.

Finally, from (18), employing the Cauchy-Schwarz inequality, standard approximation
error estimates and (1) we have the estimate

(19) 〈f − fh, vh〉 =
∑
K∈Th

∫
K

(
I −Π`−2

K

)
f
(
I −Π0

K

)
vh dx . h

`|vh|2,h,

which will be useful in the error analysis of the next section.

4. Error estimates

We now turn to the derivation of an optimal error estimate for the virtual element dis-
cretization (8).

On the mesh sequence {Th}h we make the following regularity assumptions:

(H) there exists a fixed number ρ0 > 0 independent of Th, such that for every element
K it holds:

(H1) K is star-shaped with respect to all the points of a ball of radius ρ0hK

(H2) every edge e ∈ Eh has length |e| ≥ ρ0hK .

(H3) There exists a point xB interior to K such that the sub-triangulation obtained
by connecting xB to the vertices of K is made of shape regular triangles.

The assumptions (H1)-(H2) are standard (see, e.g., [5]) while (H3) is required to perform
the error analysis (see, in particular, (23) and (24) in the proof of Theorem 2).

In view of the assumptions (H1)-(H2) on Th, we can define, for every smooth enough
function w, an “interpolant” in Vh,` with the right interpolation properties. More precisely,
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if χi(w), i = 1, . . . ,N , denotes the i-th global degree of freedom of a sufficiently regular
function w, there exists a unique element wI ∈ Vh,` such that

χi(w − wI) = 0 i = 1, 2, . . . ,N .

Moreover, combining Bramble-Hilbert technique and scaling arguments (see e.g. [5, 34]
and [19]) as in the finite element framework we can prove that

‖w − wI‖s,Ω . Chβ−s|w|β,Ω s = 0, 1, 2 3 ≤ β ≤ k + 1.

In accordance with the seminal paper [32] (see also [28]) we obtain the following result.

Theorem 1. Under the regularity mesh assumptions (H1)-(H2), there exists a unique
solution uh ∈ Vh,` to (8). Moreover, for every approximation uπ ∈ P`(Th) of the exact
solution u of (2), it holds that

(20) |u− uh|2,h . (|u− uI |2,h + |u− uπ|2,h + sup
vh∈Vh,`

〈f − fh, vh〉
|vh|2,h

+ sup
vh∈Vh,`

N (u, vh)

|vh|2,h
,

where uI ∈ Vh,` is the interpolant of u in the virtual element space Vh,` and

N (u, vh) = 〈f, vh〉 −
∑
K∈Th

aK(u, vh)

= D
∑
K∈Th

{∫
∂K

(∆u− (1− ν)u,tt)vh,nds−
∫
∂K

(
∂n(∆u)vh − (1− ν)u,ntvh,t

)
ds

}
(21)

is the non-conformity error.

Proof. Existence and uniqueness of the discrete solution follows easily from the Lax-
Milgram theorem by observing that ah(·, ·) is continuous and coercive with respect to
| · |2,h , which is a norm in H2,nc in view of Lemma 1, and thus on Vh,` for any ` ≥ 2, cf.
(10). We now address the proof of (20). Using the triangular inequality we have that

|u− uh|2,h ≤ |u− uI |2,h + |uh − uI |2,h.
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Setting δh = uh − uI , employing (15) and (7) we obtain the developments

|δh|22,h =
∑
K∈Th

aK(δh, δh) .
∑
K∈Th

aKh (δh, δh)

= ah(uh, δh)− ah(uI , δh) = 〈fh, δh〉 − ah(uI , δh)

= 〈fh, δh〉 −
∑
K∈Th

aKh (uI − uπ, δh)−
∑
K∈Th

aKh (uπ, δh)

= 〈fh, δh〉 −
∑
K∈Th

aKh (uI − uπ, δh)−
∑
K∈Th

aK(uπ, δh)

= 〈fh, δh〉 −
∑
K∈Th

aKh (uI − uπ, δh) +
∑
K∈Th

aK(u− uπ, δh)−
∑
K∈Th

aK(u, δh)

= 〈fh − f, δh〉+N (u, δh)−
∑
K∈Th

aKh (uI − uπ, δh) +
∑
K∈Th

aK(u− uπ, δh),

from which inequality (21) follows. �

Finally, from the above result and bounding each term in (20) we obtain an estimate of
the approximation error in the broken energy norm as stated in the following theorem.

Theorem 2. Let us assume that the solution to (2) satifies u ∈ H3(Ω). Under the regular-
ity assumption (H) on the mesh Th, for ` ≥ 2 the unique solution uh ∈ Vh,` to (8) satisfies
the following error estimate

(22) |u− uh|2,h . h`−1.

Proof. In order to prove (22) it is sufficient to combine (19) with (20), use standard inter-
polation error estimates and the estimate of the conformity error N (u, δh). Let us focus
on the last step. Assuming that u is sufficiently smooth we rewrite the conformity error as
follows:

N (u, δh)=D
∑
e∈Eh

{∫
e
(∆u− (1− ν)u,tt)[δh,n]ds−

∫
e
∂n(∆u)[δh]ds+

∫
e
(1− ν)u,nt[δh,t]ds

}
=D(I + II + III).

To estimate the above terms we employ the fact that δh belongs to Vh,` and use standard

interpolation error estimates for the L2-projection Π`
e on polynomials defined on e. In

particular, for the first term for ` ≥ 2 we use the definition of the global virtual element
space Vh,` and we find that

I =
∑
e∈Eh

∫
e
(I −Π`−2

e )(∆u− (1− ν)u,tt)(I −Π0
e)[δh,n]ds

. h`−2+1− 1
2h

1
2 |δh|2,h = h`−1|δh|2,h.
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For the second term we first consider the case ` = 2, 3 and, in view of (H3), introduce, for

each edge e ⊂ ∂K, the linear Lagrange interpolant I1
T (e) of δh on the triangle T (e), which

is obtained by connecting the point xB (interior to K) and the endpoints of e. Clearly,
due to the H2 regularity of δh, the interpolant I1

T (e)δh can be built based on employing the

values of δh at the vertices of T (e). In particular, using the fact that δh is continuous at the
endpoints of e we have [I1

T (e)δh]|e = 0. Hence, for ` = 2 employing standard interpolation
error estimates and a trace inequality we get

II =
∑
e

∫
e
∂n(∆u)([δh]− [I1

T (e)δh])ds

. h2− 1
2 |δh|2,h.(23)

On the other hand, for ` = 3, we have

II =
∑
e

∫
e
(I −Π0

e)(∂n(∆u))([δh]− [I1
T (e)δh])ds

. h2|δh|2,h,(24)

where we employed the definition of the global space Vh,3 together with standard interpo-
lation error estimates and a trace inequality. In case ` ≥ 4 we have

II =
∑
e

∫
e
(I −Π`−3

e )(∂n(∆u))(I −Π1
e)[δh]ds

. h`−3+1− 1
2h1+1− 1

2 |δh|2,h = h`−1|δh|2,h.(25)

Finally, we consider the third term. Using the fact that δh is continuous at the vertexes of
Th and the fact that

∫
e[δh]pds = 0 ∀p ∈ P`−3(e) we deduce after integration by parts that∫

e[δh,t]qds = 0 ∀q ∈ P`−2(e). Indeed, after observing that for any p ∈ P`−3(e) there exists

q ∈ P`−2(e) \ P0(e) such that p = q′ we have

0 =

∫
e
[δh]pds =

∫
e
[δh]q′ds = −

∫
e
[δh,t]qds+ ([δh]q)(v2)− ([δh]q)(v1)

= −
∫
e
[δh,t]q,

where we used the fact that the jump [δh] is zero when evaluated at the endpoints v1 and
v2 of e. Finally, for q ∈ P0(e) we immediately have, after integration by parts,∫

e
[δh,t]q = 0.

In view of the above result we get

III =
∑
e

∫
e
(1− ν)(I −Π`−2

e )u,nt(I −Π0
e)[δh,t]ds

. h`−2+1− 1
2h

1
2 |δh|2,h = h`−1|δh|2,h,
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and this concludes the proof. �

5. Numerical results

The numerical experiments presented in this section are aimed to confirm the a priori
analysis developed in the previous sections. To study the accuracy of our new nonconform-
ing method we solve the biharmonic problem (1a)-(1c) on the domain Ω =]0, 1[×]0, 1[. The
forcing term f in (1a) is set in accordance with the exact solution:

u(x, y) = x2(1− x)2 y2(1− y)2,

which obviously satisfies the boundary conditions in (1b)-(1c).

The performance of the VEM is investigated by observing experimentally the conver-

gence behavior on four different sequences of unstructured meshes labelled by
{
T (1)
h

}
h
,{

T (2)
h

}
h
,
{
T (3)
h

}
h
, and

{
T (4)
h

}
h
. All mesh data are reported in Tables 1-4 in the Appen-

dix. Figs. 2(a)-(d) show the first and second mesh of each sequence (top and right plots,

respectively). The meshes in
{
T (1)
h

}
h
, also known as criss-cross meshes, are composed by

first partitioning Ω in regular square grids and then splitting each square cell into four
triangular subcells by connecting the four vertices along the diagonal. It is worth recalling
that our nonconforming VEM for ` = 2 on triangular meshes coincides with the Morley

finite element method [35]. The meshes in
{
T (2)
h

}
h

are built as follows. First, we determine
a primal mesh by remapping the position (x̂, ŷ) of the nodes of a uniform square partition
of Ω by the smooth coordinate transformation (see [22]):

x = x̂+ 0.1 sin(2πx̂) sin(2πŷ),

y = ŷ + 0.1 sin(2πx̂) sin(2πŷ).

Then, the corresponding mesh of
{
T (2)
h

}
h

is built from the primal mesh by splitting each
quadrilateral cell into two triangles and connecting the barycenters of adjacent triangular
cells by a straight segment. The mesh construction is completed at the boundary by con-
necting the barycenters of the triangular cells close to the boundary to the midpoints of
the boundary edges and these latter ones to the boundary vertices of the primal mesh. The

meshes in
{
T (3)
h

}
h

are obtained by filling the unit square with a suitably scaled non-convex
octagonal cell, which is cut at the domain boundaries to fit into the unit square domain.

The meshes in
{
T (4)
h

}
h

are built by partitioning the domain Ω into square cells and relocat-
ing each interior node to a random position inside a square box centered at that node. The
sides of this square box are aligned with the coordinate axis and their length is equal to 0.8
times the minimum distance between two adjacent nodes of the initial square mesh. All
the meshes are parametrized by the number of partitions in each direction. The starting
mesh of every sequence is built from a 5 × 5 regular grid, while for the n-th refined mesh
the underlying resolution is 10n × 10n. For the virtual element spaces of order 2 ≤ ` ≤ 4
we consider a sequence of 9 meshes; for ` = 5 the calculation is arrested after the fifth
mesh when rounding errors begin affecting the accuracy of the approximation due to the
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increasing ill-conditioning of the algebraic problem.

For ` ≥ 2, we define the relative “2h” error by

Error2,h =
|Π∆

` (u− uh)|2,h
|Π∆

` (u)|2,h
.

with Π∆
` |K = Π∆,K

` . Thus, on every element K ∈ Th, we compare Π∆,K
` u, the elliptic pro-

jection of the exact solution u and Π∆,K
` uh, the projection of the virtual element solution

uh. These relative errors are shown in the log-log plots of Figs. 3, 4, 5, and 6, with respect
to the mesh size parameter h (left panels) and the number of degrees of freedom (right
panels). The convergence rate is reflected by the slope of the experimental error curves that
are obtained by joining the error values measured on the sequence of refined meshes for
each polynomial degree 2 ≤ ` ≤ 5. Each experimental slope has to be compared with the
theoretical slope, which is shown for each curve by a triangle and whose value is indicated
by the nearby number. From the a priori analysis of Section 4, cf. Theorem 2 and inequal-
ity (22)), the 2h-approximation errors must decrease proportionally to h`−1 when we use
the virtual element space V h

` . These errors are also expected to decrease proportionally to

|V `
h |
− `−1

2 , where |V `
h | is the total number of degrees of freedom of the `-th virtual element

space, because |V `
h | is roughly proportional to h−1/2, Accordingly, the experimental slopes

for Error2,h are expected to be closed to `− 1 and (`− 1)/2 when we plot the error curves
versus the mesh size parameter h and the number of degrees of freedom. The experimental
convergence rates are in perfect agreement with the theoretical ones for all such calculations.

Finally, it is worth mentioning that in a preliminary stage of this work, the consistency
of the nonconforming VEM of order ` for 2 ≤ ` ≤ 5, i.e., the exactness of the method
for polynomial solutions of degree up to `, has been tested numerically by solving the bi-
harmonic equation (1a) with Dirichlet boundary conditions and forcing term determined
by the monomials xµyν for all possible combinations of integers µ and ν such that µ+ ν ≤
`. Non-homogeneous Dirichlet conditions were imposed in strong form by setting the
boundary degrees of freedom to the values determined by the exact solution. For these
experiments, we considered a wider set of polygonal meshes (including the four considered
in this section). In all the cases, the magnitude of the 2h errors was comparable to the
arithmetic precision, thus confirming the polynomial consistency of the method. We also
verified that our nonconforming VEM for ` = 2 on the criss-cross triangular meshes provides
the same results of an independent implementation of the Morley finite element method.
For the sake of brevity, these results are not reported here.

6. Conclusions

In this paper we presented the arbitrary-order accurate fully nonconforming virtual
element method for biharmonic problems on polygonal meshes. The virtual element space
is made of functions that may be globally not-continuous. An optimal error estimate in
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Mesh

Mesh

(a) (b) (c) (d)

Figure 2. Base mesh (top row) and first refinement (bottom row) of the
four mesh families: (a) criss-cross triangular mesh; (b) mainly hexagonal
mesh; (c) non-convex regular mesh; (d) randomized quadrilateral mesh.

the broken energy norm is derived for all polynomial approximation orders and numerical
results assess the validity of the theoretical estimate.
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Figure 3. Relative 2h-approximation errors using the sequence of criss-
cross triangular meshes versus the mesh size parameter h (left panel) and
the total number of degrees of freedom #dofs (right panel).
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Figure 4. Relative 2h-approximation errors using the sequence of
remapped hexagonal meshes versus the mesh size parameter h (left panel)
and the total number of degrees of freedom #dofs (right panel).
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Figure 5. Relative 2h-approximation errors using the sequence of non-
convex regular meshes versus the mesh size parameter h (left panel) and
the total number of degrees of freedom #dofs (right panel).
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Figure 6. Relative 2h-approximation errors using the sequence of random-
ized quadrilateral meshes versus the mesh size parameter h (left panel) and
the total number of degrees of freedom #dofs (right panel).
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Appendix

In Tables 1–4, we report the geometric data and the total number of degrees of freedom
of the associated VEM spaces for the sequences of considered meshes. More precisely, in
Tables 1–4 the first column reports the refinement level n = 0, 1, 2, . . ., the second, third
and fourth columns show the corresponding total number of polygonal cells (NP ), faces
(NF ) and vertexes (NV ), respectively, whereas in the fifth column the corresponding mesh
size h is shown. Finally, in the last four columns we report the total number of degrees of
freedom of the corresponding VEM spaces V `

h , ` = 2, . . . , 5.

Table 1. Geometric data and number of degrees of freedom of the sequence
of criss-cross meshes.

n NP NF NV h |V 2
h | |V 3

h | |V 4
h | |V 5

h |
0 100 160 61 2.00 10−1 221 541 961 1481
1 400 620 221 1.00 10−1 841 2081 3721 5761
2 1600 2440 841 5.00 10−2 3281 8161 14641 22721
3 3600 5460 1861 3.33 10−2 7321 18241 32761 50881
4 6400 9680 3281 2.50 10−2 12961 32321 58081 90241
5 10000 15100 5101 2.00 10−2 20201 50401 90601 −−
6 14400 21720 7321 1.67 10−2 29041 72481 130321 −−
7 19600 29540 9941 1.43 10−2 39481 98561 177241 −−
8 25600 38560 12961 1.25 10−2 51521 128641 231361 −−

Table 2. Geometric data and number of degrees of freedom of the sequence
of remapped hexagonal meshes.

n NP NF NV h |V 2
h | |V 3

h | |V 4
h | |V 5

h |
0 36 125 90 3.28 10−1 215 465 751 1073
1 121 400 280 1.85 10−1 680 1480 2401 3443
2 441 1400 960 9.69 10−2 2360 5160 8401 12083
3 961 3000 2040 6.49 10−2 5040 11040 18001 25923
4 1681 5200 3520 4.89 10−2 8720 19120 31201 44963
5 2601 8000 5400 3.91 10−2 13400 29400 48001 −−
6 3721 11400 7680 3.26 10−2 19080 41880 68401 −−
7 5041 15400 10360 2.80 10−2 25760 56560 92401 −−
8 6561 20000 13440 2.45 10−2 33440 73440 120001 −−
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Table 3. Geometric data and number of degrees of freedom of the sequence
of nonconvex octagonal meshes.

n NP NF NV h |V 2
h | |V 3

h | |V 4
h | |V 5

h |
0 25 120 96 2.91 10−1 216 456 721 1011
1 100 440 341 1.46 10−1 781 1661 2641 3721
2 400 1680 1281 7.29 10−2 2961 6321 10081 14241
3 900 3720 2821 4.86 10−2 6541 13981 22321 31561
4 1600 6560 4961 3.64 10−2 11521 24641 39361 55681
5 2500 10200 7701 2.92 10−2 17901 38301 61201 −−
6 3600 14640 11041 2.43 10−2 25681 54961 87841 −−
7 4900 19880 14981 2.08 10−2 34861 74621 119281 −−
8 6400 25920 19521 1.82 10−2 45441 97281 155521 −−

Table 4. Geometric data and number of degrees of freedom of the sequence
of randomized quadrilateral meshes.

n NP NF NV h |V 2
h | |V 3

h | |V 4
h | |V 5

h |
0 25 60 36 3.311 10−1 96 216 361 531
1 100 220 121 1.865 10−1 341 781 1321 1961
2 400 840 441 9.412 10−2 1281 2961 5041 7521
3 900 1860 961 6.130 10−2 2821 6541 11161 16681
4 1600 3280 1681 4.693 10−2 4961 11521 19681 29441
5 2500 5100 2601 3.808 10−2 7701 17901 30601 −−
6 3600 7320 3721 3.167 10−2 11041 25681 43921 −−
7 4900 9940 5041 2.751 10−2 14981 34861 59641 −−
8 6400 12960 6561 2.389 10−2 19521 45441 77761 −−
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