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Abstract— For bilateral teleoperation, the haptic feedback
demands the availability of accurate force information trans-
mitted from the remote site. Nevertheless, due to the limitation
of the size, the force sensor is usually attached outside of the
patient’s abdominal cavity for the surgical operation. Hence,
it measures not only the interaction forces on the surgical tip
but also the surgical tool dynamics. In this paper, a model-free
based deep convolutional neural network (DCNN) structure is
proposed for the tool dynamics identification, which features
fast computation and noise robustness. After the tool dynamics
identification using DCNN, the calibration is performed, and the
bilateral teleoperation is demonstrated to verify the proposed
method. The comparison results prove that the proposed DCNN
model promises prominent performance than other methods.
Low computational time (0.0031 seconds) is ensured by the
rectified linear unit (ReLU) function, and the DCNN approach
provides superior accuracy for predicting the noised dynamics
force and enable its feasibility for bilateral teleoperation.

I. INTRODUCTION

Teleoperation is defined as the remote control of a slave
manipulator by the human operator [1]. Its application has
been adopted in numerous areas. Moreover, a substantial
novel interest is driven by medical robot applications, Robot-
assisted Minimally Invasive Surgery (RA-MIS), for instance.
In particular, bilateral teleoperation [2], [3] draws lots of
research interests because it provides tactile feedback for
robotic surgery, which can promote the manipulability for the
tasks performing and ease of surgical operation, for example,
enhancing surgical accuracy [4], optimizing robot dexterity
and reducing the injuries of the patient [5], [6]. In decades,
it has been proved that it is essential to provide haptic
feedback of surgery interaction forces to the surgeons [7]–
[9]. Without haptic feedback in minimally invasive surgery,
the possibilities of some disadvantageous effects such as
intra-operative injury and time-consuming will increase [10].
Consequently, obtaining precise force sensing of the surgical
tool is crucial in the bilateral teleoperation for Robot-assisted
surgery [11]–[13].

Achieving reliable interaction forces in surgery [14] has
drawn lots of research interests owing to the limitations
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imposed by the usage of teleoperation [15], [16]. For ap-
plying the interaction forces on the haptic manipulator, a
six-axis force sensor is mounted between the slave robot
manipulator and the end effector surgical tool [17]. In this
situation, the influences of the sensor size and the increment
of the equipment cost can be ignored contrary to the case of
mounting the force sensor on the surgical tip [18]. However,
unexpected disturbances [19], [20] will be introduced due to
the dynamics of the surgical tool. Hence, it is significant
to determine the tool dynamics force and compensate it
online. After this, the calibration of the force direction should
be performed to align the force between the sensor and
manipulator in the same coordination frame [21].

Previously, several approaches of dynamics identification
using robot joint angles have been proposed, based on the
kinematic and dynamic models of the manipulator [22]–
[25]. A Proportional–Derivative (PD) controller with online
gravity compensation utilizing robot joint angles is designed
for regular tasks of the robot in [26]. A nonlinear opti-
mization scheme is proposed to obtain feasible values from
the identified dynamic coefficients in [27]. However, the
methods depending on the kinematic model are challenging
for industrial and biomedical robots, for which the joint
torque sensors are often unavailable. It forces the researches
towards novel approaches for tool dynamics identification.
In our previous works, it has been proved that the force
of tool dynamics mapped on the force sensor relies on the
orientation of the robot [28], [29]. However, it is difficult
to obtain an accurate mathematical model for nonlinear
regression [30]. Consequently, we utilized curve fitting (CF)
and Artificial Neural Networks (ANN) methods, i.e., feed-
forward neural network (FFNN) and cascade-forward neural
network (CFNN), to identify the tool dynamics based on the
orientation angles of the manipulator [28], [29]. Although the
ANN-based approaches have generalization ability to build
a model without priority information, they have extremely
poor robustness which is easily affected by the problems
of overfitting and underfitting. The established ANN-based
models had no anti-interference ability to predict the tool
dynamics forces in the noisy environment.

Recently, various deep learning (DL) methods have
emerged to learn the hierarchical feature representations [31],
which show prominent performances compared with other
general regression methods, such as CF [32], fuzzy logic
(FL) [33] and ANN [21]. The benefits including fast com-
putation, noise robustness, and stability, are brought by the
DL algorithms, e.g., the recurrent neural network (RNN) and
deep convolutional neural network (DCNN). Furthermore,



Fig. 1: Teleoperation scenario in robot-assisted surgery. The surgeon is placed at the remote site to move the haptic
manipulator following a desired trajectory Xr ∈ Rm. In the slave site, the robot manipulator executes the trajectory Xd ∈
Rm. The transformation matrix, omT , is from the slave to remote coordinate frames. eoT is the transformation matrix between
the slave base and the surgical tip. The matrix, wc T , represents the transformation from the operational space to the camera.
A camera is placed in the slave site to enable the visualization of the surgical operation for the surgeon.

compared to the rest of the activation functions, the Rectified
Linear Unit (ReLU) method is safe concerning the gradient
vanishing problem, less computationally expensive [34] and
the dropout technique was used generally to reduce the
complexity and to avoid overfitting [35].

In this paper, a novel DCNN-based nonlinear regression
model is proposed for the tool dynamics identification to
achieve accurate force sensing. It consists of several con-
volutional networks, ReLU function, and dropout layer for
achieving noise robustness, fast computation, and stability
enhancement. The proposed DCNN-based regression model
is implemented on the real robot application to eliminate the
tool dynamics. Finally, a bilateral teleoperation demonstra-
tion is performed to verify the proposed DCNN-based tool
dynamics identification approach. The novel contributions of
this work include:

1) A model-free approach is presented to model the tool
dynamics using the tool pose information.

2) A DCNN-based regression algorithm is utilized to
achieve tool dynamics identification with fast compu-
tation and noise robustness.

3) A bilateral teleoperation demonstration is implemented
to verify the effectiveness of the DCNN-based tool
dynamics identification method.

II. RELATED WORK

In our previous work, several nonlinear regression ap-
proaches are adopted for modeling the tool dynamics using
the tool orientation (e.g., Euler angle). The CF and FFNN
with single hidden layer methods were implemented for
tool identification and the performance were compared for
bilateral teleoperation in [28]. As a model-free approach,
the modeling ability of FFNN model was more potent than
the CF method, which depends on the mathematical model
accuracy. Although the used FFNN method with 30 neurons
in the hidden layer was examined as a promising method, its

stability regularly suffered from either overfitting or under-
fitting. To assess the best ANN-based model, we compared
the accuracy and computational time among several FFNN
and CFNN models, which features with different neurons
and layers [29]. The best structure is the CFNN model
with 9 and 6 neurons in each layer. However, our previous
works aimed to map three dimensions Euler angles which
limited the accuracy because the tool dynamics includes the
position movement. Primarily, it becomes very challenging
to process dataset with the movement of the tool. Meanwhile,
the limitation also exists when the ANN-based models are
applied to the noise dataset.

III. PROBLEM FORMULATION AND METHODOLOGY

In the teleoperated surgery, the master haptic and
slave robot have different kinematics characteristics and
workspace [36], which requires an efficient and convenient
approach to provide accurate workspace mapping to enable
the surgeon to access the whole workspace in the patients’
cavity [37], as shown in Fig. 1. Furthermore, the tool
dynamics should be identified and compensated to access
the accurate interaction force on the surgical tip during
the motion. For achieving the tool dynamics identification,
DCNN-based modeling techniques have been implemented
on the same online procedure to compare its accuracy. Once
the tool dynamics identification is achieved, the calibration
between the force sensor and robot pose is implemented to
map the force into manipulator coordinates, making precise
force feedback measurement for the remote site. Finally, a
demonstration experiment of bilateral teleoperation is pre-
sented to prove the proposed method.

A. Problem Formulation

In order to provide force feedback, helping the surgeon
to guide his gestures correctly [38], the sensor is embedded
between the robot end-effector and the surgical instrument as
presented in Fig. 1. The sensor measures the interaction force
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Fig. 2: The schematic diagram of the proposed DCNN-based architecture for tool dynamics identification using the tool
pose information.

on the tool tip and the tool dynamics at the same time. It is
well known that the tool dynamics force can be expressed
as [14]:

F = MXT
(XT )ẌT + hXT

(XT , ẊT ) +Gtool (1)

where F is the tool dynamics forces. XT is the static pose
of the tool. Gtool is the tool of gravity force. The matrix
MXT

is the inertia matrix of the tool and the matrix hXT

represents the generalized centrifugal and Coriolis influences
of the tool.

In our previous works, we only considered the static
gravity force without consideration of the full tool dynamics
expression, which limits the accuracy of the modeling when
there is a movement of the tool. Hence, the inputs of the tool
dynamics model in this paper are enriched to 15 dimensions
(15D) which includes collected positions P = [x, y, z], Euler
angles θ = [θα, θβ , θγ ] and their corresponding velocity,
VP , Vθ, and acceleration, AP , Aθ, defined as:

X = [θ, VP , Vθ, AP , Aθ] (2)

It should be noted that the static position P = [x, y, z] of the
end-effector does not influence the tool dynamics forces. The
output is set as the tri-axis force vector F = [Fx, Fy, Fz].
The established nonlinear regression model aims to predict
the forces on the inputs X ∈ R15 with high accuracy as
follows.

F = f(X,Θ) (3)

The optimal parameters represented by Θ can be determined
by adjusting the minimum least squares:

Θ = argmin
Θ

N∑
i=1

(
F̂i − Fi

)2

= argmin
Θ
‖F̂ − F‖22 (4)

where Fi and F̂i are the observed and predicted values,
respectively. The Root Mean Square Error (RMSE) shown
in Eq. 5 is chosen to estimate the predictive performance of
the model.

ε =

√√√√ N∑
i=1

(
F̂ − F
i

)2

(5)

To strengthen the assessment, we define the overall RMSE
(Eq. 6) to examine the complete regression accuracy of the
tri-axis force. Both ε and ε∗ are expected to be 0.

ε∗ =
εFx + εFy + εFz

3
(6)

B. DCNN-based Tool Dynamics Identification

1) Training Data Preparation: The 6D raw data {P ; θ}T
(73774 samples) were collected from the workspace (41729
samples for training and 32045 samples for testing) and
extended into 15D by Eq. 2. Knowing that the convolutional
network is proved to be more valid on the Homogeneous
matrix [39], a new input map x∗ ∈ R15×5 is constructed as:

X∗ = [X,X − X̄,
X − X̄

σ(X)
, |X|,X2]>; (7)

X̄ and σ(X) denote the average and variance of X , respec-
tively.

2) DCNN Architecture: Fig. 2 shows the proposed DCNN
architecture for mapping the inputs to the 3D forces. Both
batch normalization (BN) layer and Rectified Linear Unit
(ReLU) activation function are adopted in each convolution
module. The former one is to update the network indepen-
dently while the latter aims to solve the vanishing gradient
problem for fast computation. The dropout layer is used for
resolving the overfitting. The DCNN-based architecture con-
sists of three main parts as follows.
• Inputs: the size of reconstructed matrix is 15× 5
• Deep Convolution Modules: it include four similar deep

CNN module. Each of them has a 2D convolutional
layer, a BN layer, and a ReLU function. We adopted
four types of window size to perform the convolutional
operations, i.e., 8, 16, 32, and 32. All of them used the
2× 2 filter. Hence, the size of yielded feature map are
14× 4, 13× 3, 12× 2, and 11× 1

• Dropout: to avoid the large convolved feature vectors
causing the phenomenon of overfitting and time-con-
suming, a dropout layer is applied. We set 0.5 as the
dropout percentage

• Output: both full connection and regression layers were
arranged at the end of DCNN-based structure. The



Fig. 3: Overview of the DCNN-based the tool dynamics identification and calibration procedure.

predicted forces were computed by summing the inputs
of the node

The full connection layer have 3× 2400 weights and 3
bias. The initial learning rate is 0.001. We adopt mini-batches
of size 50 with 0.001 drop factor and 300 drop period. The
replacement optimization algorithm is adaptive moment es-
timation (Adam) optimizer. The Mean Squared Error (MSE)
is used as the loss function.

3) Noise Robustness: The produced data streams in real-
world will be affected by various noises. Hence, to develop
a robust model reducing the effect of noise for practical
operation is necessary. We added Gaussian noise to the inputs
at each epoch for anti-interference measurement. The average
and standard deviation of the errors, i.e., RMSEs (Eq. 5) and
overall RMSE (Eq. 6), are the two crucial test indicators to
search for the best noise robustness model.

C. Force Sensor Calibration

Once the identification of tool dynamics is achieved, the
force sensor is calibrated using SVD method [28], [29] to
enable force feedback for the teleoperation. Fig. 3 exhibits
the overview of the DCNN-based dynamics identification and
force calibration procedure.

IV. EXPERIMENTS AND DEMONSTRATION

Experiments are performed to validate the proposed
DCNN-based tool dynamics identification approach.

A. System Overview

The description of the developed robot system is shown
in Fig. 4. A robot is placed on the remote site to serve as
the slave manipulator. Fast Research Interface (FRI) is used
to create a real-time access to the robot controller (KRC)
at rates of 500 Hz [17]. The controller has been developed
using OROCOS 1, with a real-time Xenomai-patched Linux

1Open Robotic Control Software, http://www.orocos.org/

kernel, and using ROS2 Kinetic under Ubuntu. To guarantee
the control frequency, the force sensor, the ROS node and
the OROCOS torque controller were executed on separate
computers with UDP communication between each other.
The developed teleoperation system is integrated with:
• A 7 DoFs slave manipulator (LWR4+, KUKA, Ger-

many) to operate in the slave site.
• A 6-axis force sensor (M8128C6, SRI, China) [40] to

measure the interaction force.
• A cable-driven master manipulator (Sigma 7, Force

Dimension, Switzerland) for the teleoperation control.

B. Tool Dynamics Identification using DCNN

Based on our previous contributions [28], [29], the anti-
noise performance was quantitatively and qualitatively evalu-
ated among CF, ANN-based, and DCNN-based models, i.e.,
Long Short-Term Memory (LSTM) and DCNN. For ANN-
based methods, both two layers and single layers structures
are adopted, which are marked as FFNN-M, CFNN-M,
FFNN-S, and CFNN-S. The models of multiple layers have
9 and 6 neurons in each layer while the single layers
have 20 nodes. The LSTM structure was created with 150
neurons LSTM layer, a dropout layer (0.5 probability), and
a full connection layer. It also adopted the Adam optimizer
algorithm. The other parameters are set as follows: 200 mini-
batch size, 0.2 initial learning rate, 0.5 drop factor, and 100
drop period. We use MATLAB 2018b software (hardware
platform: Intel(R) i7 Core, 2.80 GHz CPU, 16.0 GB RAM)
to verify the performance of DCNN model.

1) Noise Robustness: The regularization method and the
characteristics of parameters decide the noise robustness.
Even though the optimal parameters can be obtained in
systematic ways, it is not possible for a fair comparison.
In this experiment, the Gaussian noise with four types of
Signal-to-Noise Ratio (SNR) is annexed into the inputs to

2Robot Operating System, http://www.ros.org/



Fig. 4: Overview of the developed teleoperation system.

Fig. 5: The comparison RMSEs for quantitative validation of noise robustness. (a)-(c) the computed RMSEs of Fx, Fy , and
Fz on NS, CF, ANN-based, and DNN-based models. (d) The overall RMSE.

measure the anti-interference performance. Seven models
are trained based on the above mentioned approaches and
the unidentified system (NS) on the training dataset. The
comparative errors are calculated on the testing dataset. In
each SNR case, it runs 20 times to represent the standard
deviation of the computed RMSEs on the four models
(displayed in Fig. 5).

In general, both DL-based (DCNN and LSTM) models get
better results for predicting Fy and FZ than when adopting
ANN-based models. Notably, the DCNN model gets the

lowest average error for predicting Fx force. By observing
the RMSEs computed by the four methods, the proposed
DCNN structure is the most stable method for predicting the
noisy data, because it gets the smallest standard deviation
compared to the other approaches.

2) Computational Time: The computational time is an
important feature for robot tool dynamics identification since
force sensors generally require high frame rate to consider
the position and orientation changes. The computational time
is compared to the testing dataset. We computed the sum



TABLE I: The computational time of The computational time of CF, ANN-based and DNN-based models.

Model
Predictive Length = 1 Predictive Length = 5 Predictive Length = 10

c̄t
∑

(ct) c̄t
∑

(ct) c̄t
∑

(ct)

CF 0.0003 ± 0.00001 12.19 ± 0.33 0.0004 ± 0.00002 3.01 ± 0.20 0.0003 ± 0.00001 1.07 ± 0.09

FFNN-S [28], [29] 0.0044 ± 0.00006 165.46 ± 2.01 0.0046 ± 0.00020 33.21 ± 1.70 0.0045 ± 0.00009 16.29 ± 0.36

CFNN-S [29] 0.0060 ± 0.00009 198.44 ± 2.92 0.0059 ± 0.00025 40.71 ± 1.56 0.0060 ± 0.00009 19.49 ± 0.30

FFNN-M [28], [29] 0.0067 ± 0.00008 215.05 ± 2.64 0.0068 ± 0.00027 43.88 ± 1.70 0.0067 ± 0.00011 21.54 ± 0.36

CFNN-M [29] 0.0074 ± 0.00010 236.20 ± 3.36 0.0076 ± 0.00031 48.66 ± 1.97 0.0075 ± 0.00015 23.93 ± 0.48

LSTM 0.0112 ± 0.00038 357.44 ± 12.3 0.0117 ± 0.00061 74.97 ± 3.94 0.0117 ± 0.00054 37.64 ± 1.75

DCNN 0.0031 ± 0.00002 100.75 ± 0.49 0.0056 ± 0.00016 35.68 ± 1.01 0.0054 ± 0.00008 17.34 ± 0.24

Fig. 6: Position tracking of bilateral teleoperation.

and the average of computational time of ten results among
ANN and DNN based models. Meanwhile, both incremental
learning (predictive length is 1) and batch learning (predic-
tive length is 5 and 10) methods are used. The computational

times (table I) prove that the proposed DCNN model is the
faster-speed computation method. In the incremental learning
way, it only needs 100.75 seconds to predict all the results,
while the LSTM model needs 357.44 seconds. In the two
batch learning cases, the DCNN method only needs (less
than) 0.0006 seconds to predict the batch results. Although
CF model obtains the lowest time, it cannot acquires a
satisfied accuracy.

C. Demonstration after tool dynamics identifcation and cal-
ibration

A bilateral teleoperation tracking demonstration with
physical interaction is presented. As shown in Fig. 6, the
position tracking is achieved when there is a physical inter-
action on the surgical tip around 70s-75s. When a physical
contact occurs, the haptic feedback will prevent the surgeon
from continuing moving the haptic manipulator. Hence, the
position error is constrained in a small range.

V. CONCLUSION

A model-free approach based on DCNN regression algo-
rithm was proposed in this paper to achieve tool dynamics
identification for bilateral teleoperation, which features fast
computation and noise robustness. This could meet the
clinical requirements in terms of efficiency and accuracy. A
calibration procedure was performed after the identification
of tool dynamics, and the bilateral teleoperation was demon-
strated to verify the effectiveness of the proposed method.
In this study, the presented DCNN model improved noise
robustness and computation time compared to the conven-
tional approaches, such as CF, FFNN, CFNN, and LSTM.
The obtained RMSEs on the noise datasets proved its ability
for eliminating perturbations. The DCNN approach provided
superior accuracy for predicting the noised dynamics force
and enabled its feasibility for bilateral teleoperation.

For future works, more challenging problems will be
considered in the bilateral teleoperation control system, such
as the dead-zones and time-delays. The system tracking
accuracy and stability might not be secured under these
conditions, which remain the main preconditions for the
success of the surgical procedure. Furthermore, an external
force sensor will be placed on the table to validate the real-
time contact force acting on the surgical tip.
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