10

15

20

25

30

35

Suitability Analysis of Modeling and Assessment Approaches in Energy
Efficiency in Buildings

C. Koulamas?, A P. Kalogeras?, R. Pacheco-Torres®, J. Casillas®, L. Ferrarini¢

! fkoulamas, kalogeras}@isi.gr, Industrial Systems Institute, ATHENA Research and Innovation Center, Platani-Patras,
26504 Greece

2 rosalia.pacheco@upm.es, Departamento de Ingenieria Civil:,Construccion, Infraestructura y Transporte. ETS de
Ingenieria Civil, Universidad Politécnica de Madrid, Alfonso XII, 3, 28014 Madrid, Spain

3 casillas@decsai.ugr.es, Department of Computer Science and Artificial Intelligence, University of Granada, CITIC-
UGR, E-18071, Granada, Spain

* luca.ferrarini@polimi.it, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio
34/5, 20133 Milano, Italiy

Abstract

The widely accepted importance of energy efficiency in the building sector is continuously
acknowledged by the engineering and research community, as proven by the quantity and
diversification of relevant modeling proposals in literature. It is often difficult to collect and assess
this plethora of approaches and sometimes the diversity of the features of the available options
makes it hard to decide what is the most convenient for the purpose required. This work presents a
comprehensive analysis of the most important results today, along with their various classification
and assessment approaches for modeling energy building consumption. A critical review of the
limitations of the different existing approaches is conducted, and open research challenges are also
highlighted. Finally, a horizontal and selective assessment of their suitability according to a

descriptive set of qualitative comparison contexts and parameters is provided.

Keywords:
Building Energy Model, Building Energy Consumption, Energy Performance Assessment, Modeling
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1. Introduction

The residential and commercial building sectors account for about 20% of the total energy
consumption in the industrialized world [1]. The sector expansion drives its energy consumption

increase. More specifically world delivered energy consumption grows by an average 1.4% per year
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in the residential building sector and 1.6% per year in the commercial building sector from 2012 to
2040 [1]. Nevertheless, there is growing interest in the reduction of building energy consumption and
the associated greenhouse gas emissions. In Europe, the European Union has especially addressed
the issue of building energy consumption and efficiency [2], in order to reduce its energy

dependency, and greenhouse gas emissions.

With reference to residential buildings, most of the energy goes towards space conditioning. Top
four energy end-uses in US residential buildings in 2005 included space heating, space cooling,
water heating, and lighting with 30.7%, 12.3%, 12.2%, and 11% of total energy consumed in
buildings respectively. Refrigeration, electronics, wet cleaning, cooking, and computers supplement
the list of most important residential energy end-uses. On the other hand, when it comes to
commercial buildings, space conditioning remains the primary target for energy end-uses. Top four
energy end-uses in US commercial buildings in 2005 included lighting, space heating, space cooling,
and water heating with 25.5%, 14.2%, 13.1%, and 6.8% of total energy consumed in buildings
respectively. Electronics, ventilation, refrigeration, computers, and cooking supplement the list of the

most important commercial energy end-uses [3].

Different parameters affect the degree to which energy end-uses affect overall energy consumption,
including climate and meteorological conditions, occupancy and occupant behavior, building
characteristics, building systems and appliances. Furthermore, when it comes to energy consumption
end-uses may affect one another, as is the case of space heating attributed to appliances. Depending
on the building site, the source of energy may be diverse, e.g. electricity, natural gas, or oil, and it
may include secondary sources, such as generation (e.g. Renewable Energy Sources - RES), co-

generation, and passive solar gains.

The modeling of energy consumption and efficiency in buildings is a useful tool that allows the

quantification of building energy consumption and sharing of end-uses. In this context, it can provide
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a useful prediction of consumed energy that, accumulated to a regional or national scale, can
determine energy supply requirements. Furthermore, it can provide useful feedback on decision
support with reference to building retrofits, application of new technologies and materials, so that

return of investment is calculated for different types of building interventions.

The focus of this paper is to review approaches for modeling energy consumption and efficiency in
buildings, and propose an assessment methodology of existing approaches, based on a qualitative
comparison. The rest of the paper is structured as follows. Section 2 provides a classification of
modeling approaches. Section 3 presents selected state-of-the-art implementations and results.
Section 4 presents a discussion on the relative suitability of modeling approaches. Finally, Section 5

summarizes the conclusions.

2. Classification of Modeling Approaches

Different modeling approaches appear in literature. They utilize input data to calculate or simulate
energy consumption. Modeling approaches can vary significantly depending on the availability and
details of the data. Different criteria have been defined for their classification, including the relative
hierarchical position of data inputs as compared to the building sector, the details of the required
information, and the energy data acquisition approach. A brief description of the main categories in
each criterion and their strengths and weakness is given below. The limitations and open challenges
of the existing approaches are also highlighted.

2.1. Classification according to the relative hierarchical position of data inputs and building
sector

Two general categories may be discerned: top-down and bottom-up. Bottom-up models calculate the
energy consumption of an individual building or groups of buildings, and then extrapolate to a
regional or national scale. Top-down models utilize total building sector energy consumption
estimation, and map energy consumption to building sector global characteristics. Macroeconomic

indicators, such as Gross Domestic Product (GDP), price indices, and employment rates are used to
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perform regression analysis and obtain the energy consumption. A subsequent microscale approach
may provide individual consumption. Following this approach, a classification of modeling
techniques is presented in [4]. According to this, the top-down category includes econometric and
technological models. Economic indexes, such as energy price, are the main input of the former,

while technological models attribute energy consumption to broad characteristics of building stock.

The main limitation of this approach is the primary need of massive data that in some cases is not
available or supplied by building managers. Furthermore, sensitive information such as housing
surveys may be needed, which is not always accessible. An existing gap in methodological resources
to explain energy consumption of singular buildings or buildings under very specific energy use
conditions is evident. Due to the fact that this approach does not distinguish energy consumption due
to individual end-uses, it is not the most appropriate to identify massive energy consumers in
buildings. In general, the approach output does not provide detailed information in order to design

specific energy saving strategies in buildings oriented to reduce energy needs by end-use.

Bottom-up models estimate separately the energy consumption of a building, and then extrapolate to
regional or national level. Two different methodologies may be used: statistical or engineering.
Statistical methods exploit established relations between end-uses and energy consumption. Relevant
models can be applied to predict the energy consumption of representative buildings. Historical
information is used to establish relations between building energy consumption and end-uses.
Regression, conditional demand analysis, and neural networks are classified under statistical
methods. Regression and conditional demand analysis use regression analysis to determine model
coefficients, while the latter takes into account the existence of end-use appliances. Neural networks

rely on simplified mathematical models seeking to minimize errors.

Engineering methods estimate final energy consumption based on building characteristics and uses.

Historical consumption data are used for the calibration of derived models ensuring compliance with
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the building Measuring and Verification guidelines [5]. Distribution, archetypes and samplings are
classified under engineering methods. Distribution technique relies on the distribution and use of
end-use appliances aggregating to end-use energy consumption, missing though end-use interactions.
Archetypes classify buildings to representative building classes. Energy consumption is an estimate
of modeled archetypes, allowing extrapolation to a larger scale. Sampling technique utilizes energy
consumption data from a sample of buildings or energy consuming units. Providing a wide range of
buildings and making the sample representative of the building stock can lead to wider energy

consumption estimation.

One of the main limitations of bottom-up models is the need for detailed data on energy
consumption, frequently acquired by advanced metering systems. A considerable amount of
historical data is also necessary, in order to have enough base data to train the predictive model.
They also present a clear limitation with reference to the need for detailed building constructive
information. When project documents are not available or accessible, such modeling techniques have
to rely to a large extent on user/engineer experience and previous knowledge. Engineering models
are not suitable for ancient or historical buildings, which were built in the absence of technical
guides, making it almost impossible to know such constructive details about the material

composition and the real status of external walls.

The top-down modeling’s main strength is the need for aggregated data only, which is generally
widely available. Top-down approaches rely on historical data and allow the forecast of energy
consumption on a larger scale, without going into detail on the specific end-uses. Thus, the approach
is quite suitable for the purpose of decision making on energy policies at regional, national or
international level. Nevertheless, the reliance on historical data is a drawback, since there is no
possibility to model discontinuous technological advances. Furthermore, when it comes to large
buildings, the historical data acquisition can be a complex process, while in the case of modeling of

several buildings there is a need for historical data harmonization. Finally, the lack of end-use details
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makes it difficult to identify key consuming areas in the case of modeling for energy retrofitting

purposes.

Meanwhile, the bottom-up methodology allows a closer approximation to consumer areas. Also, it is
related to a range of parameters that affect final energy demand. However, it requires a great level of
detailed data and may be subject to a number of difficulties in order to choose a sufficiently

representative sample of the building portfolio.

2.2.  Classification according to the details of required information

According to the details of their required information, modeling techniques can be classified as white
box, black box, and grey box [6]. White box techniques, or otherwise called physical models, use
sets of equations to solve building physical phenomena, such as heat transfer. A deep level of detail
about building geometry and description of material properties is required, presenting one of the
main limitations of these techniques. Yet, there is no need for model training data. White box
methods are widely used to model the building thermal behavior and their results may be interpreted
in physical terms. Another limitation of these techniques is the need for an expert to build the model
and interpret results, a role not suitable for the common energy managers. Furthermore, resulting
models have difficulties in extracting conclusions or being adapted to different buildings bearing
different physical behaviors. Despite the high impact of building user behavior on final energy

consumption, the use in these models is usually misleading.

On the other hand, black box approaches do not require such detailed physical information on
buildings. Such models utilize samples of training data, describing the behavior of specific systems.
Black box approaches can predict energy consumption, when given a large amount of training data
over an exhaustive period of time. Trends may be found across different buildings, yet data mining
techniques are building-specific, leading to needs for new modeling, when a new building is treated.

Difficulties exist with reference to the interpretation of results in physical terms. The main limitation
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of these models is the difficulty to adapt the model to individual buildings, given that their internal

calculation engine is not accessible to users or it does not provide a friendly user interface.

Grey box models combine physical and statistical approaches. A rough description of building
geometry and parameters is supplemented by a smaller amount of training data over a short period of
time. Grey box models use the mathematical structure of the physics-based white box models and
measured data to estimate their parameters. Results can be interpreted in physical terms; yet, this
hybrid approach that covers two distinct scientific domains may be more difficult to grasp. Grey box
models represent a balance between the good generalization capability of white box models and high
accuracy of black box models. Compared to the black-box models, grey box models require more
effort during the definition stage, having good generalization capabilities, whereas obtaining higher

accuracy compared to the white-box models.

2.2.1 White box or physical models

Physical models are based on solving mathematical equations, derived from physical laws, such as
the energy conservation law. Numerical software is usually used for this purpose. A wide range of
mechanisms can be taken into account, such as conditioning systems, renewables, hydrothermal
plants, and occupant behavior. There are three main calculations [6]: the Computational Fluid

Dynamics method, the Zonal method, and the Nodal method.

The Computational Fluid Dynamics (CFD) method is the most complete approach, since it is three-
dimensional. Each building zone is divided into cells; each cell is a control volume. Thus, quite
complex building geometries can be studied. The method’s main drawback is its large computation
time and model complexity. The application fields of this method are HVAC systems, indoor air

quality, and pollutant distribution.

The Zonal method represents a two-dimensional simplification of the CFD method. Each building

zone is divided again into cells; each cell is the division of a room. It permits the determination of
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local state variables, such as temperature, concentration, pressure and air velocity in a large volume.
Despite being simpler than the CFD method, it remains quite time-consuming, while requiring
detailed descriptions of factors affecting indoor flow profiles. Application fields of this method

include indoor thermal comfort, artificial and natural ventilation.

The nodal method represents the simplest of the physical methods. Each building zone is regarded as
a homogeneous cell, a node, with uniform distribution of physical quantities (e.g. ambient
temperature) modeled as state variables. Equations are solved per node, offering a one-dimensional
approach. The implementation is easier and the calculation times are reasonable. Yet, it is difficult to
study large volume systems and it is impossible to address local effects like heat or source of
pollutant. The application fields of this method are the determination and time evolution of total

energy consumption, average room temperature and cooling and heating loads.

2.2.2 Black/grey box or statistical models

Statistical methods do not require any physical information about the building, yet, they rely on
training data to extract system functions. Multiple regression, Artificial Neural Networks (ANN) and
decision trees represent three statistical techniques used for predicting electrical energy consumption
[7]. Regression models are commonly used due to the interpretability of model parameters and ease
of use; yet they can only ascertain the relationship among the selected variables about the underlying
causal mechanism, but there might be uncertainties, when a relevant variable is missing or badly
measured. Neural networks are useful for energy prediction, when mathematical formulas and prior
knowledge on the relationship among inputs and outputs are not known, yet they have difficulty in
testing parameter significance. Despite solving this problem, decision tree models are complex, as

they are susceptible to noise.

When comparing the ANN-based model and the physical simulation model (based on the

EnergyPlus® software for example), as predicting tools for energy consumption forecasting of a
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non-residential building, models based on physical principles typically offer the possibility to
evaluate new strategies for reducing energy consumption, while ANN models appeared more limited

in this sense [8].

The performance of grey-box models and black-box models focusing on residential heating,
ventilation and air conditioning systems (HVAC) is compared in [9]. Grey box models consist of a
combination of energy balance equations and parameter estimation based on sensor measurements of
subsystem inputs and outputs. Black box models that were compared were based on Multiple-Input
and Multiple-Output (MIMO) ANN, transfer function process, state-space and autoregressive

exogenous model. ANN models performed best among compared models.

Two aspects to consider with reference to statistical methods are data dimensionality and obtained
model interpretability versus accuracy balance [6]. An important amount of data is required by
statistical techniques. The preferable measurement resolution is the hour or days; the resolution of
months is hardly useful. With reference to the number of variables, there is a tendency to use as
many variables as possible, without considering the redundancy or correlation, since current machine
learning techniques can deal with large numbers of variables and variable selection, so that
processing can be applied. When it comes to the aspect of interpretability versus accuracy,
techniques like Support Vector Machines (SVM) or ANN produce models that are not
understandable by humans, thus being useful for behavior simulation, but not for reasoning
explanation. On the other hand, decision trees or rule sets (such as greedy or genetic algorithms) are
easily understood and can help better analyze variables and relationship causalities. In between,
regression or graphical models can be interpreted in a general way. On the one hand, applying
different statistical techniques to the same problem and data can generate more accurate but more
illegible models for prediction, while on the other hand, more easily interpretable but less accurate

models for description.
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2.3.  Classification according to the energy data acquisition approach

The energy performance assessment method is based on a relevant energy quantification process,
which in turn depends on an energy data acquisition approach. Energy quantification methods may

be classified into three categories: calculation-based, measurement-based, and hybrid methods [10].

Many of the physical and statistical methods are categorized under the broader Calculation-based
class of energy quantification methods [6] [10]. Measurement-based methods focus mainly on the
Building Management System (BMS) / Sub-metering utilization and on energy disaggregation.
Energy disaggregation can be achieved either by means of pattern recognition setups trained by
available sub-metering information, or through approximations summing up to the total energy

consumption known from the energy bills.

Calculation-based methods are diverse with reference to their consideration of building and system
dynamic effects. They are classified into dynamic and steady-state methods. Dynamic methods
capture building and system dynamics resulting in calculation complexity often implemented
through detailed simulation. Dynamic simulations usually use a forward modeling approach,
although dynamic inverse modeling is also reported (classified under hybrid methods). Typical input
parameters include building, system and component descriptions along with weather conditions. The
details of the mathematical simulation algorithms are described in the simulation engine and involve
thermal load calculations, based either on heat balance or weighting factor methods, various air-
handling and control systems simulation according to their schedules and calculation of final
electricity and fuel use based on system component characteristics. Different simulation tools include

e-Quest® (DOE-2), EnergyPlus® (DOE), ESP-r, and TRNSYS®.

On the other hand, steady-state methods ignore or simplify dynamic effects thus decreasing
complexity and achieving high computation speeds. They may adopt forward or inverse modeling

approaches. The Simplified Building Energy Model (SBEM), adopted from the current Energy
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Performance Building Directive (EPBD) related standards such as the EN ISO-13790, is a typical
steady-state forward model, which follows a quasi-steady state method for the monthly heating and
cooling demands, taking into account dynamic effects through correlation factors called utilization
factors. Modeling examples using an inverse modeling approach relate energy performance
indicators to energy influential factors and can be applied either to a whole building level or to a
HVAC system level. Thus, the whole building energy consumption can be regressed in various ways
against influencing parameters. Examples of steady-state inverse models are included in the
ASHRAE Inverse Modeling Toolkit [11]. Such models include constant or mean models, two-
parameter, three-parameter, four-parameter, five-parameter and multivariate models. Typical
examples of other methods for building load calculation are the degree-day method, variable base

degree-day method, BIN and modified BIN methods and the equivalent full load hour method.

Measurement-based quantification is based on measured data that represent actual building energy
consumption, ranging from energy bills to more detailed energy sub-metering and monitoring.
Energy bills represent a source of high quality energy measurement data that need to be
disaggregated into end-uses, in order to develop a better understanding on energy use. Different
disaggregation methods have been proposed such as the bottom-up calculation method, bottom-up
short-term measurement method, and top-down disaggregation algorithm. Different methods have
been proposed to increase disaggregation accuracy and detail, investigating sources of inaccuracy
and introducing metrics for performance quantification [12]. The monitoring-based methods provide
such accuracy and detail through metering and monitoring systems and platforms. Examples of such
approaches include end-use sub-metering, installing separate energy meters on relevant circuit
branches, the Non-Intrusive Load Monitoring (NILM) method, which is a pattern recognition-based
method capable of firstly determining end-use operating characteristics and secondly distributing

monitored energy into end-uses, and Building Management System (BMS) based methods.
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Hybrid quantification methods are actually a combination of calculation-based methods and
measurement-based methods, where measurements are used to reduce calculation discrepancies or
identify model parameters. Usually, calibration procedures are based on hybrid methods using a
building simulation program to tune input values, so that the program energy predictions follow
closely energy data measurements and the Dynamic inverse modeling, being capable of capturing
building dynamic effects, yet introducing a higher degree of complexity and needing measurements
for model tuning. Typical examples of Dynamic inverse modeling include AutoRegressive Moving

Average (ARMA) models, Fourier series models, ANN models and grey models.

3. Combined Insight on Classification and Methodologies

With the exception of a first level classification of top-down vs. bottom-up [4], all other surveys
focus mainly on the bottom-up sub-tree. All recent works tend to agree on a second-level
classification, although with partial overlaps, and the use of slightly different terminology for the
same underlying principles: physical / statistical / hybrid or white / black / grey, close to calculation
/ measurement / hybrid, close to engineering / statistical / hybrid approaches; all aligned with the
classical (forward) and data-driven (inverse) relevant classification [13], with their dynamic or
steady-state variances. The large picture relationships among current classification approaches,
having combined the dimensions of pure modelling methods and quantification methods appear in
Fig.1. This presentation indicates on the one hand the clear sub-classes of distinct methodologies at
the two ends of the spectrum and the lack of a similar analysis as we approach the middle point
(hybrid methods). On the other hand, it clarifies the fact that the quantification methods cannot be
assumed as orthogonal to or disconnected from the modeling approaches. For instance, there is
evident dependency between a white-box model (i.e. physics) and its usage in a calculation method
to quantify the energy consumption of an element. Another example is related to dependencies

between a monitoring-based data collection method (e.g. a BMS) and the exploitation of



measurement data in order to develop a statistical model (e.g. train an ANN or extract a regression

function).
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Fig. 1. Building modeling approaches classification.

The following sections shed light into representative approaches from the literature in order to: a)
make clear what are the current state-of-the art and quality limits of the forward and inverse
modeling methodologies, and b) point out the benefits of hybrid methods that combine elements
from the far ends of the modeling and quantification spectrum limits, as well as demonstrate their
heterogeneity and multi-disciplinarity, explaining why current classifications do not typically
provide generic subclasses of them. Table 1 summarizes the revised studies grouped by modeling

approach.



Table 1

Summary of the studies reviewed.

PublicationjReference  Building description Aim of the worke Key contribution Algonithm{Methed  Data vanable Software used
Type of building Size fm?)] Number of fioors Location
Category: White box or physical models
Yoshida, Ito, and Haospital 25,000 n Japan Toinvestigate what Testing 25 different  Optimization Utility rates, the GAMS|CPLEX
Yokoyama | 14] energy supply structures of approach utility maximum solver
system structure is ive energy ixed-i contract demands,
suitable fora supply systems linear the numbers and
‘hospital for the Programming capacities of
purpose of saving equipment, the
oost. energy flow rates
Yang et al. [15] 1000 5 cooling: Proposing an Coupling ENVI-met Open loop analysis  ENVI-met: climatic  The urban
Guangzhou/heating:  integrated with EnergyPlus {one-way coupling  variables, E+: microclimate
Framkfurt simulation system simulation and no  convective heat mode]
for building energy data feedback to transfer coefficient  ENVI-met/the
assessment in the EMVI-met for each linking building energy
urban model) wnit of the building, software Energy-
enyironments weather condition  Plus/coupling
platform Building
Controls Virtual
Test Bed (BCTVE).
Ballarini and Corrado Residential foffice 192928 2fintermediate Rome (lealy) Examines the Analysing the Dynamnic driving Convective and Energy Plus
| 18] relationship different Forces radiative heat
between the effects  contributions to transfer,
ofthe thermal the internal air thermo-physical
insulation on the convective heat parameters,
building energy balance and their
need for cooling interrelations with
and all the aspects  different driving
that have the mest  forces
effecton the
energy
performance of
buildings.
Gowreesunker, Tassou, Case study: 100 mm: It'saboxofapmew UK Semi-empinical The contnibution of  TFD Conductive heat Computational
and Kolokotroni [ 17]  environmental ® material maodel for the this approach is to transfer variables fluid dynamics
chamber, with 4 T0mm simulation of the differentiate {CFD) simulation
T-type ® phase change between melting environments) FLUENT
thermocouples B0 mm process in phase and freezing, so
change materizls that the solver uses
(PCM). the appropriate
heat source
function
Dall'Dy, Sarto, Sanna, Residential Ground 4 Milan, Lombardy Comiparison The paper proposes  Thermal dymamic Energy consump- Software
etal [18] buildings with a floor:82.3 /4th region-italy between the an i i tonfenvi HOBOware of
total of 196 flats Aoor: 94 36/ top predicted and comparative [ sl has: O Plus
floor: 12612 actual energy evaluation indoor and outdoor
performance for between the actual air temperature
summer cooling in and normalized and humidity
high-energy ENErgy
performance performance of a
residential high-performance
building=s residential building
equipped with a
cooling plant.
PublicationReference Building description Aim of the work Key contribution Algorithm/Method  Data variable Software used
Type of building Size [m?] Number of floars Location
Dall'l’, Sarto, Galante, 3 flats located in; Ground 4 Lombardy Comparison Adetailed analysis  Thermal dynamic Energy comsump- Software
etal [19] Ground floor, 4th floor:82.3/4th region-italy between predicted  of 3 flats with modeling tionjenvironmental HOBOware of
fAoor, top floor) foor: 9436/ top and actual enerzy different ways of conditions such as:  Onset/EnergyPlus
floor; 126,12 performance for EeneTEy indoor and outdoor
winter heating in computation: air temperature
high-performance  theoretical and humidity
residential (mormative)
buildings estimation and real
mEasurements,
Michalak [20] Typical building 130.8 2 Poland To present in detail  Ability to test Dynamic IS0 13790 standard  Matlzb{Enerzy
(house) the application of different control modeling: state variables plus/Audytor 0ZC
the simple hourly strategies, to space model {based on EN IS0
dynamic dietermine the 13790 standard )
calculation method  optimal power
from EN 150 13790 value of
standard to hieating/cooling
calculate the sources, etc
annual demand of
heating and
cooling eneTgy.
D Lieto Vollaro et al. Old building 210 5 Central ltaly, Comparative Correct estimation  Semi-stationary IS0 13790 standard  MCL1300:

[21] climatic area D analysis of the of the energy {based on standard  variables steady-statepart
energy demands, taking  UNI EN 150 13790) analysis/ TRNSYS:
performances of an  into account the and dynamic dynamic analysis
old building usinga  dynamic properties  approach (transfer
semi-stationary of the structures functions method )}
software and a
dynamic one

Congradac et al, [22] Emergency Center B350 5 Serbia —Novi Sad Presenting the tool  Ease of use, Static modeling Thermo-physical EnergyPlus, Riuska
(Hospital) for assessing the simplified set of approach wvariables similar as  and Standard EN
heating and input data, as well those in 50 13790  13790/macros and
cooling energy as the omission of 2 standard Wisual Basic
consumption complex dymamic functions of EXCEL
modeling
Mantovani and Commercial 26,369 5 Campo de Fiori The design of an A noo-linear MPC Dynamic modeling  Air and water Matlab{Enerzy
Ferrarini [23] building {shoping shopping center- MPC architecture approach for and predictive temperatures, plus/Audytor 0ZC
center) northern, ltaly for the optimal thermal energy control approach mass flows, {based on EN IS0
temperature control conductive and 13790 standard )
control of a real convective heat,
commercial efficiency of heat
building. pumps, fan coil
models
Ferrarini and Large commercial 26,369 5 Gavirate, Italy Modeling. control Vertical air Dynarnic Air and water MATLAB/UNI EN

Mantovani | 24] building and energy tempera ture modeling/classical — temperatures, 150 13700 standard
management of a stratification, and advanced mass flows, and dynamic
large-commercial aimed at efficient control approach conductive and maodeling with
building energy control {PID & MPC) convective heat, Matkab/Simulink

efficiency of heat
pumps, fan coil
models.



Category: Conwventional Statistics/ Regression based

Krese, Prek, and Butala  Office 7200 13 Ljubljana, Slovenia
125]
Fumo, Mago, and Luck  Office 715 | Atlanta and
[26] Meridian, USA
Smith et al. [27] Office 4980 3 Baltimore, USA
Catalina, Virgone, and  Residential Different buildings 1 Paris, Marseille,
Blanco [28] shapes with areas Chambery,
from 150 to 300 m2 Strashourg, Rouen,

Brussels, France

To improve the
cooling degree
method taking into
account both the
sensible and latent
loads and use it to
analyze electric
energy
consumption data
from an existing
building and
compared against
the conventienal
cooling degree day
approach

Employ a series of
predetermined
coefficients to the
monthly energy
comsumption data
from electrical.

Uses EnergyPlus
normalized energy
consumption
coefficients to
estimate the
energy profiles of
buildings with
similar
characteristics to a
given benchmark
model

The development
of regression
models to predict
the monthly
heating demand

An improved
cooling degree
method which
takes into account
both the sensible
and latent loads, is
used o analyze
electric energy
consumption data
from an existing
building and
compared against
the

conventional
cooling degree day
approach

The use of
predetermined
coefficients relieve
the user from the
burden of
performing or
learning how to
perform a detailed
dymnamic
simulation of the
building, The
information given
by these
coefficients could
cover information
missing from
utility bills to
perform an energy
analysis

tthe coefficient
methodology
decreases the error
limits in almost all
of the test

points

Easy use equations
to be applied by
architects and
professionals at
early desing stage,
with small range of
error

Statistical analysis
to improve cooling
degree days
method and
piecewise linear
FEgression

Uses an
'EnergyPlus
normalized energy
consumption
coefficients’
[E+NECC)as
normalized energy
profiles

Uses an
‘EnergyPlus
normalized energy
Comsumption
coefficients”
(E+NECC)as
normalized energy
profiles

Multiple regression
analysis

Monthly electric

eneTgy
consumption

Hourly electrical
and fuel energy
consumption

Hourly energy
consumption

Monthly heating
demand

NjA

EnergyPlus to
generate data

EnergyPlus to
generate data

TRMSYS to generate
data

Fublication/Reference  Building description Aim of the work Key contribution Algorithm(Method  Data variable Software used
Type of building Size [m?] Number of floors Location
Cataling, lordache, and  Residential 3007 b Bucharest, Develop 3 simple Acormection made  [reratively Heating energy TRMSYS to generate
Caracaleanu [29] Romania and large in the model to reweighted least demand data
applicable model better take into sguares {[RLS)
to estimate heating  account human
energy demand behavior improves
based on three heating
inputs: heat loss CONSUMpHOn
coefficient, the predictions under
south equivalent real building's
surface and the operation
difference between  conditions
the indoor set
point temperature
and the sol-air
temperature
Asadi, Amiri, and Commercial 23226 2 Houston, USA To build a simple Monte Carlo was Linear regression Annual heatingand  DOE-2 to generate
Mottahedi | 30] but precise model used o define a st model and cooling demand data
to predict energy of 70,000 standardized
Conswmption, simulation regression
based on scenarios. High coefficients
regression analysis  precision of
with massive data  predictions was
results as inputs to  obtained, within an
cover a errof ot 5%
comprehensive set
of variables
Amiri, Mottahedi, and ~ Commerdial 23216 2 San Jose, USA Tao create a Monte Carlo was Stepwise Annual energy DOE-2 to generate
Asadi [31] multiple regression  uased to define a TEEression. consumption data
model, flexible and  set of 30,000 multiple linear
simple, toevaluate  simulation FEgression
the building energy  scenarios
consumpkion and
performance
Pedersen, Stang, and Residential, office,  Case studiesrange N/A Trondheim, Perform a load Model flexible and  Fiece-wise linear Annual heating and  DOE-2 to generate
Ulseth [32] educational from 70 to 7000 m? Morway prediction method  simple with high regression and electricity demand  data
for heat and accuracy to probahility
electricity demand  evaluate the distribution
in buildings and a building energy analyses
method for load consumption
aggregation based  and performance
on the building
categories’ load
profiles
Fumo and Rafe Biswas  Residential NjA NiA Texas, USA Analyze previous Results from a case  Simple linear, Hourly and daily N
[33] information on study, as the time simple quadratic energy
regression analyses  interval of the and multiple linear consumption

on prediction of
ENEEY
consumption in
buildings

observed data
increases, the
guality of the
madels improves



Yun et al. [34] Residential, office 4645 ] Atfanta, USA Develop an the performance of ARX model (Fourth  Cooling and EnergyPlus to
efficient ARX a properly indexed  order auto heating Foads generate data
indexed model ARX model is regressive model
more accurate, better than thatof  with exogenous
easily non-indexed inputs}
implementzble and models and
computationally comparable to that
efficient Al-based of the BPFNN
models for cooling
and heating loads
in buildings

E. Wang, Shen, and Residential Wide range given Wide range given lowa, USA Selective PCA allows to Multivariate linear  Energy efficiency of MNjA

Grosskopf [35] 4B0 case study 480 case study residual-clustering  represent multi regression analysis  existing building
benchmarking correlated with principal envelopes
method is variables with less  component
proposed for principal analysis to address
building envelope  uncorrelated the
energy efficiency components in multicollinearity
evaluation with terms of data risk, PCR, PCA,
multi or high variabifity. Results  MRA, Fuzzy
dimensional data obtained are C-Means
set. comparable with

refiable infrared
thermography

Qiang et al. {3&] Office 12,770749,800 NA Tianjin, China An improved A dymamic Multivariable Daily cooling load  MjA
mutivariable two-step linear regression
linear regression correction is
model is presented,  proposed. PCAis an
based on a better applicable measure
selection of to avoid the
metecrological negative effect of
variables amd multicollinearity
better description  on predichion
ofinternal factors

Majcen, Itard, and Residentizl 105 NfA The Netherlands Analyze key factors  Average indoor Descriptive Gas consumption MiA

WVisscher [37] that cause temperature and statistics and
discrepancies ventilation rate regression analysis
between were found to have
theoretical and a large influence on
actual gas the theoretical gas
consumptions by consumption
using regression whereas number of
analysis. occupants and

internal heat load
hawve limited
impact
Publication/Reference  Building description Aim of the work Key contribution Algorithm/Method  Data variable Software used
Type of building Sizzlm’] Number of floors Location
Majcen, ftard, and Residential NjA N/A The Metherlands Examine Occupant behavior  Multiple regression  Gas consumption NjA
Visscher [38] discrepancies has larger effect
between the that the considered
normalized by calculation
theoretical and method. Factors
actual heating with significant
consumption, in effect are different
order to improve for overpredicting
energy label and
certification underpredicting
calculation cases
method.
Hoggdr and Fischbeck Residential N/A NjA Gainesville, Florida, To explore the Publicly available PRISM | Princeton Electricity, heating ~ NJ/A
[39] Texas effect of statistical inft ion can 5o ping and cooling
modeling help predict energy  Method) demand
structural and efficiency
demographic parameters and
characteristics on savings potential.
residential energy  Predictive
efficiency regression models
parameters using can be applied
Princeton anywhere and
Scorekeeping models with R2
Method and wvalues higher than
publicly available 30% can be
dataon house interpreted to have
energy efficiency a relatively high
explanatory power
US Environmental Medical Building portfolic Building portiolio USA; Canada To use The ordinary  Emergy MNiA
Protection Agency models to identify  allows to compare  least squares consumption
|40-42] the aspects of energy use FEression expressed in
building activity prediction fora SOUFCE BNeTgy use
that are significant  building to its intensity
drivers of energy acutal energy use
use, normalize and give a score of
those factors and performance,
proposeamethod  relative to the
to score energy mational
efficiency in population
Hospitals.
Chnstiansen et al. [43]  Medical 00 individual NA Hamburg, Germany  To give a better Only a few plug Cumulative load Electricity MNiA
‘buildings, understanding of load groups predictions consumption
400,000 m? the contribute the
time-dependent greater part of the
energy total electrical
consumption of a energy demand
medical building
laboratony plug
loads under

consideration of
uncertainties



Zhou ek al. [45] Office 15 buildings, from  N/A Beijing and Hong To analyze the The resubts are Least squares Hourly lighting’s MiA
24,000 o Keng, China main applicable to large  regression electricity
99,000 m* characteristics of office buildings consumption
lighting energy use  without
over various daylighting
timescales controls or any
CAPLUTing energy other automatic
use patterns lighting controls.
Lighting energy wee
was found to be
mainly driven by
the occupant
schedule and the
influence of the
outdoor
illuminance was
very weak
Palacios-Garcia et al. Residential MiA NiA Andalusia region, Perform a Results Stochastic model Hourly lighting’s MA
[46] Spain high-resolution demonstrated a electricity
stochastic model strong relationship consumption
for simulating between sunlight
lighting availability and
consumption active
profile with high eccupancy of
temporal dwellings with
resolution and electricity
analyze the consumption for
economic and lighting
environmental
impact of applying
LED technology's
penetration into
domestic lighting
systems
C Yan, Wang and Xiao Commercial 321,000/54.490 108 fioors the first  Hong Kong and Develop a The proposed Optimiz ation Disaggregated MA
[47] case study, not Beijing, China simply-use energy  simplified method algorithm using ENErZy
provided in the performance provides trial-and-error consumptions and
second assessment satisfactory results  method the energy
method of cooling on the annual performance
load in existing analysis, given a indicators of HVAC
buildings. basedon  higher error rate systems
the electricity for monthly
consumption data  analysis,
and cooling energy
balances between
demand side and
supply side of
HWVAC systems.
PublicationReference Building description Aim of the work Key contribution Algorithmi{Method  Data variable Software used
Type of building Size [m?] MNumber of floors Location
Category: Machine Learming Models
Bagnasco et al. [43] Medical clinic, 2500 3 blocks Turin, ltaly Predict EEC from: Original data and Time series: ANN Daily — season Matlzb
three building set previous values ANN algorithm {MLP)with RPFROP  separation —,
previous day
consumption
Jovamovit, Sretenovic,  University campus, 300,000 Trondhei, Norway  Predict EEC from Original data and Time series: Daily — cold period  Matlab
and Zivkovit [49] 35 buildings previouos values ensemble ANN Ensemble of 3 ANMs - [January-March),
(FFNN +RBFN + ANFIS pnly working days
— previous day info
Papantoniou and Sewveral cities MNA Ancona {Italy), Predict air Predicting outdoor  Time series: ANN Every 12hor24h,  Matlab
Kolokotsa [50] Chania [Greece}, temperature for a air temperature one year —
Granada {Spain}, 4h-24 h horizon with ANN
Mollet {Spain)
Chaeetal. [51] Three office 15,224 Korea Predict EEC every Predicting Time series: ANN Every 15-min. few  N/A
buildings in urban 15-min electricity with Bayesian weeks of 2012 —
area consumpution for regularization short-term
next day with {comparison with monitoring —
15-min data SVM, LR, REF, HVAC set temp, OT,
resolution lazy.. .} RH, sky, W5, HVAC
wariables
Popoola, Munda, and Sewveral cities N/A South Africa Estimate and Lighting lpad Regression: ANFIS ~ Survey data for 417 Matlah
Mpanda [52] understand profile prediction buildings —
lighting Ioad with neuro-fuzzy ocoupancy, income
systems
Platen, Dehkordi, and Institutional 16,790 Calgary, Canada Predict EEC fora Prediction of Time series: ANN, Hourly, one year MIA
Martel [53] building 1h-6 h harizon electricity PCA, CBR March 2013-May
consumptuion 2014 - OT, RH,IT, 8
with1hto6h vars. of HVAC
horizon
Koo and Hong [54] School 2000 test in Seoul, South  Historical trends Studying historical ~ Regression: CBR 1999-2010, yearly  Evolver for GA
Korea 002 emission trends in the and GAas — different
(energy ENeTEy optimizer building and using
performance jof a performance of {comparison with factors {people,
building existing buildings MRA and ANN) classes, etc.)
Edwards, New, and 3 test residential MNiA Knox County, Predict EEC forthe  Predicting hourly Time series: LR, Year 2010, every Matlzb, LIBSVM,
Parker [55] houses Tennessee, USA next hour electricity ANN, 5VR 15 min — artificial L5-5VMIzb
Consumpution oocupancy and
usage of test

houses — many
wariables on house
controlled
conditicn



Yu etal. [56] B0 residential NiA 6 districts in Japan  Energy demand Energy demand Classification: Year 2003, every NiA
building modeling modeling Decision trees 15 min — 10 vears
weather, indoor,
occupants
Li. Su, and Chiu [57] 2 buildings: a big 25542 10 floors Hangzhou, China Predict EEC Predicting energy Time series: ANN,  Sep 1980-Feb 1290 NJA
building and a consumption with GA-ANFIS {hourly} and
10-floors library genetic-neuro furzy Oct-MNow 2002
systems {hourly} — OT, SR,
RH, W5
Tsanas and Xifara [5B] 12 simulated TILI5 Athens, Greece Predict heating Analysis of energy Regression: Simulation, 768 NJA
buildings. load and cooling performance in Ensemble learning  samples, {surface,
load buildings by machine {Random Forests),  wall, roof areas,
learning IRLS height, orientation.
glazing})
Castelli et al. |59] Same than [38] T35 Same than |58] Same than [ 58] Analysis of energy Regression: Same than |58] NIA
performance in Genetic
‘buildings by Frogramming
evolutionary {with local search
computation and linear scaling)
Category: Grey Box/Hybrid models
Raftery, Keane, and Office 30,000 4 floors Leidip, Ireland Dymamic A systematic Dynamic All E+with hourly  EmergyPlus,
ODonnell [61] Simulation Model evidence-based Simulation with measurements of TortoiseSWVN
Calibraticn methodology for the  systematic version  plugs & lights
{Methodology | «calibariotn of control electrical energy
dynamic simulation consumption
models, using E+ and
SVN ools
Raftery, Keane, and Office 30,000 4 floors Leixlip, Ireland Dynamic Application case Dynamic All E+ with houely  EmergyPlus,
Costa |62] Simulation Model  study of the Simulation with measurementsof  TortoiseSVN
Calibration {Case methodolozy systematic version  plugs & lights
study) proposed in [61] controf electrical energy
consumption
Coakley et al. [63] Office 700 3 fioors Gabway, Ireland Dymamic A methodology for Lincertainty All E+ with hourly  OpenStudio,
Simulation Model the calibariotn of analysis on Monte  measurements of EnergyPlus
Calibration dynamic simulation  Carlo based space temp, CO2,
(Methodology ) models combining multiple dynamic  electrical & heat
evidence-based simulation outputs  energy
model developent consumption
with statistical
optimization
techniques
Coakley, Raftery.and Office 700 3 floors Galway, Ireland Dynamic Application case Uncertainty All E+with hourly  OpenStudio,
Molloy [64] Simulation Model study of the analysis on Monte  measurements of EnergyPlus
Calibration {Case methodology Carlo based space temp, CO2,
study) propased in [E7] multiple dynamic  electrical & heat
simulation outputs  energy
consumption
Mustafaraj et al. |65] Office with 4500 3 floors Cork, Irefand Dymamic Methodology to Dynamic Alll E+ with DesignBuilder,
underfloor heating Simulation Model  calibrate the Simulation maonthly electricity  EmergyPlus
Calibration dynamic models for Begas bills and
predicting the hourly
thermal behavior of measurements of
underfloor heating. temperature &
heat-pump and humidity
natural ventilation
Publication/Reference  Building description Aim of the work Key contribution Algorithm{Method  Data variable Software used
Type of building Size [m?] Number of floars Location
Roberti, Oberegger, and  Historical building 3000 3 floors plus attic Bolzana, ltaly Dynamic Sensitivity analysis  Dynamic Al E+ with hourly  EnergyPlus
Gasparella [65] and basement Simulation Model  on parameters of Simulation space temperature
Calibration historiic buildings’
models
Royapoor and Roskilly  Office 8365 5 floor Newcastle, UK Dynamic Building model Dynamic All E+ with hourly  EnergyPlus
[67] i ion Model i ion case i ! of
Calibration study space temperature,
electrical & gas
energy
consumption
Lii et al. [68] 4 sport hauls 3000 to G000 Single Volume Finland Simplified models  Physical model Physical, ARIMA, Qenvelope, Qsolar,  Matiab LibSVM
for the prediction with stochastic SVD, Convex hull Quentilation,
of energy parameters Qoccupancy
consumption Qlighting
Heo, Choudhary, and Office NA N/A Cambridge, UK Calibration of Uncertainty Bayesian Envelope thermal EnergyPlus (for
Augenbroe |69] normative energy quantification and  Calil i . internal idation and
models for retrofit  calibration of quasi loads, ventilation,  performance
analysis steady state IS0 HVAC generation comparison)
normative model effidency &
distribution loss
factors
Brohus et al. [70] Szone test model NA 1 NiA Uncertainty Uncertainty Stochastic Zone thermal
guantificationina  guantification by Differential capacity, specific
physical model means of stochastic  Eguations heat loss,
differential temperature,
equations internal heat
generation
L. Wang, Mathew, and  DOE reference 4082 3 Multiple {virtual} Uncertainty Investigation of Monte Carlo based Al E+ EnergyPlus
Pang [71] office building guantificationina  uncertainties and multiple dynamic
dynamic understanding of simulations
simulation model the impacts of key
aperation
parameters in
energy
consumption
Fhao et al. [74] DOE reference 4082 3 Multiple {virtual} Create anoccupant  Development of an - Decision Tree, Occupancy EnergyPlus
office building behavior and indirect practical LWNE, 5VM, LR, Schedules
schedule modeling  data mining LWR and Dynamic
method approach using Simulation
office appliance
power
consumption data
in order to learn
the occupant
behavior
DOca and Hong [75] Office 17,402 & Frankfurt, Germany Create an occupant  Development of a Decision Tree, Occupancy RapidMiner
behavior and three-step data k-means Schedules
schedule modeling  mining framework
method to discover

occupancy patterns
in office spaces
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3.1.  White box / Physical / Forward models

A comprehensive introduction to important physical properties, processes and respective
improvements related to important building envelope components appears in [14], including energy-
efficient walls, fenestration technologies, advances in energy-efficient roofs and effects of thermal
mass and phase change material on building air tightness, infiltration and cooling/heating loads and
peak loads. The effects of microclimate around a building are discussed in [15], presenting a building
energy performance quantitative analysis method, linking a microclimate model to the EnergyPlus®
simulation program, in order to study effects of solar and long wave radiation, temperature,
humidity, and wind speed. One limitation of [15] is the assumption that the surface temperatures of
the ground and the obstructions are the same as the outdoor air temperature, assuming that the
obstruction materials have no impact on the microclimate model. In this context, the positive effect
of passive energy-saving techniques, such as fagades shading by trees, cannot be simulated entirely,

minimising the effect of urban contexts on the simulation process.

A methodology based on dynamic simulations analyzing the parameters that mostly affect the
cooling energy performance of the building space is discussed in [16], showing the secondary role of
thermal and solar parameters of the opaque surface in contrast to the glazed surface, as well as the
weak influence of the office building envelope compared to the more significant influence of internal
heat sources in contrast to residential buildings. The effects of thermal insulation and in particular the
usage of Phase Change Materials (PCM) are studied in [17] through an experimental validation of a

semi-empirical model for the simulation of the phase change process.

The unbalanced study of summer versus winter performance indicators is the driving force behind
the work [18], presenting results of comparison between actual and normalized energy performance
of a cooling plant that equipped a Milan residential building. Real energy requirements, estimated via
monitoring, were lower than those calculated with the Lombardy standard energy certification

procedure, yet consistent with EnergyPlus® building simulation calculations. The real performance
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calculated for the winter case is consistent with the certification procedure calculation [19]. User

behavior may lead to output differences.

Similar results appear in [20], where the simple hourly dynamic calculation method of EN ISO
13790 standard is applied using Matlab/Simulink® for an indicative building in 5 climate zones in
Poland. The normative monthly method calculations show significant differences to EnergyPlus
simulated values. The Dynamic method and steady-state monthly method of Italian standards are
compared in [21], showing dynamic method adequacy to deal with structure inertial properties, with
the model being validated by a measurement campaign. A methodology for heating and cooling
energy consumption estimations, simplifying dynamic simulation methods, is presented in [22],
implemented in Excel and validated against actual hospital measurements, as well as against the

EnergyPlus simulation and the EN ISO13790 implementation.

Besides specialized civil, mechanical and electrical engineering sources, physical / forward models,
at a building, system or plant level can be also found in literature of building control systems and
algorithms, especially related to model predictive control, although most of them are better classified

as grey models, as in [23] and [24].

As mentioned before, white box models require a thermal engineering expert to model and interpret
their results. The study of dynamic driving forces, made by the reviewed works, clearly calls for a
previous extended knowledge on dynamic heat transmission in buildings. The output of these models
is not directly interpretable by building managers and the adaptation of the technique results to
manageable information is done under the user criteria, overlooking sometimes interesting
information for building managers. These models perform an exhaustive modeling of outdoor
conditions, requiring detailed data (usually hourly data) on solar radiation, outdoor temperatures and

wind velocity. The access to these databases is not always free for researchers and users. In addition,
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it is common to find data gaps for specific locations far from important cities and climate stations,

making it difficult to model buildings in certain locations.

3.2. Black box / Statistical / Inverse models

3.2.1 Conventional Statistics / Regression-based models

An improved method for the application of Cooling Degree Days (CDD), base temperature
determination and CDD calculation technique including latent loads is presented in [25]. An
approach to simplify and avoid detailed hourly simulations that uses predetermined coefficients to be
applied to monthly energy consumption actual data from energy bills is presented in [26], showing

errors within 10% [27].

Simplified regression models producing required data by dynamic simulation can overcome lack of
adequate measurement data as in [28], utilizing different regression inputs for 16 French cities, with
the deviation between predicted and simulated results being 5.1% with average error of 2%. The
same methodology with different regression inputs is used in [29][30]. An extensive Monte Carlo
simulation campaign is used in [30], with the regression equation showing a maximum error less
than 5% to simulation outputs. The Monte Carlo simulation with the DOE-2 simulator generating 30
thousand design parameter combinations and using 17 key building design variables is presented in
[31], with the resulting statistical analysis of data including stepwise regression, linear regression

equations and the most effective parameter sensitivity analysis.

Estimation of heat and electricity load profiles based on regression analysis (heat load) and statistical
analysis (electricity load) of district heat and electricity consumption measurements is discussed in
[32]. Various regression analyses are performed in [33], suggesting the use of both the coefficient of
determination and the root mean square error metrics for model quality comparison and assessment.
A computationally efficient autoregressive model for thermal load prediction using different sets of

coefficients is presented in [34], validating prediction accuracy with the EnergyPlus® simulator.
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The Principal Component Regression can solve multi-collinearity effects transforming collinear
variables to orthogonal components [35]; the method is validated through infrared thermography
showing superiority against statistical rating method. The prediction accuracy of cooling load in
office buildings can be improved by simultaneous application of Principal Component Analysis of
meteorological factors, cumulative effect of high temperatures and dynamic two step correction; the
validation was done in Tianjin office buildings showing a prediction accuracy of a mean absolute

relative error less than 8% [36].

Energy labeling data and primary energy consumption of Netherlands dwellings, with nearly 200k
entries being used in a top-down approach [37][38] reveal different parameter influences of
theoretical and actual gas and electricity consumptions. The PRInceton Scorekeeping Method
(PRISM) is used to examine the energy-efficiency profile of individual single-family houses from
Gainesville, Florida [39], by processing weather and usage data as inputs to an iterative regression
approach computing energy efficiency parameters. Various regressions have been tried over building
databases of Portfolio Manager/EnergyStar scoring applications; the most notable and relevant ones

were those addressing US and Canada hospital population [40—42].

A model approach focusing on medical equipment and over 33,500 hours of measurement in the
University Medical Centre of Hamburg shows that cumulative load predictions for an entire building
are possible with an error of less than 6% [43]. The overall energy footprint of a CT scan is

calculated in [44].

The stochastic nature of lighting energy use due to occupant behavior is analyzed in [45], based on
relative measurements from 15 large Beijing and Hong Kong office buildings and a stochastic
lighting energy use model is proposed to improve simulation accuracy. Similarly, [46] a stochastic

model is proposed to be used in simulations of residential building cases.



10

15

20

A specific usage of disaggregation techniques for energy bills has been studied in [47], proposing an
optimization algorithm to establish best possible cooling energy balances and disaggregate energy
consumption of different users. The algorithm has been validated through cooling season

measurement data from two Hong Kong and Beijing buildings.

Although allowing a detailed energy consumption comprehension, the statistics and regression-based
techniques rely on a large amount of historical information, apart from the data needed to calibrate
and validate the model. This sort of information may not be always available to users, both due to
technical and managerial reasons. One of the main limitations is that energy consumption must be
assigned beforehand to end-uses, lacking the chance of detecting marginal consumers [4].
Furthermore, these techniques require a former estimation of occupant behavior, taking into account

the demonstrated variability in determining occupant behaviour in building energy modelling.

Although these techniques perform accurate predictions and reduce error from 6% [43] to 2% [28],
they are not the best option for detecting the reasons of consumption and designing energy saving
measures, as the models are more focused in the prediction, rather than the identification of energy

saving opportunities.

The Regression analysis is a validated technique for explaining major consumers in buildings.

However, residuals are usually not accurately explained, as no specific pattern is found [29].

There is still a gap in knowledge about regression techniques for explaining residuals, those smalls
energy consumers that, although may not be significant in amount, reflect non-considered
phenomena in the buildings that hide behaviors or appliances beyond the building manager’s control.
The accurate consideration and explanation of residuals is still an open research challenge in the

evolution of these techniques.

3.2.2 Machine Learning
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A large number of papers exploit the potential of Artificial Neural Networks (ANN) in energy
consumption predictions. A multi-layer perceptron ANN, based on a backpropagation training
algorithm for load prediction is presented in [48]. Various types of ANNs for the prediction of the
heating energy consumption of a university campus are studied in [49], trained and tested on actual
measurement data; usage of an ensemble of more than one types leads to better results. Different
Matlab implemented neural network topologies for the prediction of outdoor air temperatures using
data from four European cities are shown in [50]. A short-term (15 min) forecasting model for a
commercial building energy usage based on an ANN with Bayesian regularization is presented in

[51].

An Adaptive Neural Fuzzy Inference System (ANFIS) is proposed for residential lighting load
prediction in [52], showing better correlation and root mean square error to regression models on
metered data. The ANN and Case-Based Reasoning (CBR) techniques were used for an hourly
electricity consumption prediction in a Canadian facility in [53], with ANN models outperforming
CBR models. Simplified CBR (S-CBR) was applied on the energy performance of a Seoul school
building and validated in [54]. A comparison of the application of 7 machine learning techniques to
data from the residential and commercial building sector is presented in [55], with ANN-based
methods performing better in the commercial building and the Least Square Support Vector

Machines outperforming ANNSs in the residential buildings.

Besides the ANNs, other approaches receive attention in literature. A decision tree-based predictive
model is presented in [56], facilitating the easy extraction of information, accurately predicting
building energy demand levels (92%) and providing a combination of factors and thresholds, leading
to high building energy performances. A hybrid Genetic Algorithm-Adaptive Network based Fuzzy
Inference System (GA-ANFIS) is presented in [57], providing better prediction accuracy to ANNs. A
random forest-based statistical machine learning framework is used in [58] to estimate heating and

cooling load, validated through simulation of 768 residential buildings. The same dataset is used in
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[59] for residential building load estimation, via a genetic programming-based framework combined

with a local search method and linear scaling.

Similar to regression techniques, a large amount of historical data is necessary for training and
predicting energy consumption. Another limitation is the time-consuming calculations and specific
software tools user-expertise. One disadvantage observed in the reviewed works is the need for pre-
processing a large amount of data in order to decide the number of networks before building the
model [48] or identify significant variables and outliers [49]. Like regression models, machine
learning techniques do not give any explanation to outliers as residual data is removed in the pre-

processing analysis [49].

Such techniques could predict energy consumption more accurately. However, they face the
challenge of a deeper explanation of existing phenomena, as they do not calculate dynamic heat
transfer phenomena. In fact, from the user point of view, it could be claimed that machine learning

techniques represent an opposite approach to white box and physical techniques.

Machine learning developers also face the problem of easy generalization to different buildings

without requiring significant change of the model or by endangering the precision of predictions.

3.3.  Grey box / Hybrid models

A recent review of approaches to model calibration is presented in [60], assessing various analytical
and mathematical/statistical tools. Yet, no consensus exists on standard calibration procedures and

methods to be generally used on a variety of buildings.

A systematic evidence-based methodology for calibration of simulation models is presented in [61—
64]. Parameter values reference the source of information used to make changes to the initial model,
using version control software to store the records of the calibration process. A demonstration case
calibrating an Ireland Intel campus four-floor office building is presented in [62], with the results

showing excellent correlation with measured HVAC consumption data. The methodology is



10

15

20

combined with statistical Monte Carlo-based optimization techniques in [63][64], applied in a

naturally ventilated library building at the National University of Ireland, Galway.

A detailed example of calibration flow for an EnergyPlus® simulation of a building with underfloor
heating system and natural ventilation is shown in [65], taking into account heat pump, energy
consumption and zone temperature measurements. The possibility of poor calibrated models based
on only one measured parameter is shown in [66], showcased for a medieval building EnergyPlus
model. A similar example appears in [67], where a set of two environmental sensors and a weather

station are used for annual space air temperature predictions.

A hybrid physical-statistical approach is described in [68], where stochastic parameters are
introduced into the physical model and the statistical time series model is formulated to reflect model
uncertainties, while a methodology based on Bayesian calibration of the normative EN ISO 13790
energy models is presented in [69], focusing on model parameter uncertainty quantification to
generate probabilistic predictions of retrofit performances. The uncertainty is also quantified in [70]
by means of stochastic differential equations applied to a general heat balance for an arbitrary
number of loads and zones in a building, to determine the dynamic thermal response under random
conditions. Uncertainty in energy consumption due to actual weather and building operational
practices is investigated in [71], using simulation-based analysis of a medium size office building

and Monte Carlo sampling of possible parameter combinations.

The need for more accurate occupant behavior models is among the results of [72], showing
differences of 50% in average between design time predicted energy use of a low-energy building in
Sweden, obtained through dynamic simulation, and actual measurements after tenants moved in.
State-of-the-art occupant-related data collection and monitoring, modeling approaches, model

evaluation, and model implementation into simulation tools is presented in [73].
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An indirect data mining approach to learn occupant passive behavior and create the occupancy
schedules of the EnergyPlus dynamic simulator is also presented in [74]. A similar data mining
framework in presented in [75], where a learning process is used to extrapolate office occupancy
patterns and working user profiles from big data streams in order to feed typical building energy

modeling tools.

Accurate occupant behavior models deal with difficulties in the acquisition of information from
building occupants. These models rely on their responses for a first modelling stage but need an
exhaustive fitting once the first results are obtained. The step of occupant interviews and response
analysis is also time-consuming. In addition, occupants are not always accessible for interview (for

example in medical buildings).

Visual-based approaches such as the Energy Performance Augmented Reality are considered as
powerful tools to know the real state of behavior of the building. The authors of [76] proposed a
model approach that combines digital and thermal imagery with fluid dynamics models. The
approach proposed consisted of three parts: 1) thermal data and digital building data collection with a
thermal camera; 2) building energy performance simulation through a computational fluid dynamics
analysis; 3) both models are superimposed in a common 3D environment, obtaining reasonable
accuracy. In [77] this model was also used to visualize deviations between buildings’ state and
simulated energy performances and visualize the potential performance problems in the Energy
Performance Augmented Reality environment. The model identified thermal bridges in the tested

rooms.

In [78] the authors used a Graphic Processing Unit structured by Motion and Multi-View Stereo
algorithms to reconstruct in 3D the geometrical conditions of the building that was studied. Then,
this model was superimposed to a 3D thermal point model. The model was used to represent six

interior and exterior spaces, concluding that thermal imagery is a feasible and relatively quick
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method for analysing the actual energy performance of existing buildings. In [79] this method was
used to conduct a cost-benefit analysis of different retrofit alternatives of two existing buildings. The
results demonstrated the reliability and accuracy of the method in estimating the return on investment

from retrofitting thermal performance problems.

Visual models containing thermal values facilitate the recognition of temperature distribution and the
detection of building performance failures. These methods facilitate the detection of building
performance deviations and identify disparities between building information and real conditions.
Usually, these techniques are combined with more detailed approaches in order to extract

information from the visual analysis.

Vision based methods have potential in reducing time and effort in collecting data and high level of
accuracy in detecting thermal bridges and defaults in the building. These methods present an
adequate balance between effort and quality of the analysis that they perform, and they also present a
great advantage by facilitating the visualization of the data and the immediacy of their analysis. To
the contrary of other approaches, visual-based methods do not require detailed previous information
of the building in order to provide immediate results without the need of exhaustive data analysis.
These methods accurately examine the exterior energy performance of the building in real time.
However, they2 are not easily applicable to interior performance and generally they need to be

supported by another approach.

Compared with the approaches cited in previous sections, these models have the limitation that are
not applicable in all the project’s phases, but only in the operation phase of existing buildings. Some
aspects still need to be improved: for example, achieving more accuracy and reliability in the
identification of the threshold for performance detection under different external and internal

conditions. These approaches require an exhaustive on-site inspection of the building, and some



drawbacks could come across during this process, such as difficulties accessing some rooms or

conflict with the performed activities (for example, in educative buildings or medical centers).

4. Discussion on the Suitability of Approaches

5  Some authors [6][80] provide qualitative comparison frameworks for the identified methods on the
axis of the application and use-case on the level of building details or on the amount of measurement
data needed, on the computation time and on the level of insight to the underlying physical processes
revealed. Quantitative comparisons exist in the literature too, but they are inherently less generic, as
they must compare a restricted set of explicit method instances (i.e. explicit model implementations)

10 [7-9].

In this work, we follow a horizontal, selective but highly generic view. We sort out three of the
presented approaches: bill-based methods, monitoring-based methods and dynamic simulations

offering a comparison against a set of specific parameters as shown in Table 2 and Fig. 2.

The selected approaches are characterized based on the following features:

15 < Simplicity: inversely relates to development effort, the total work done to apply the approach, the
required information volume, specialized skills of staff, need of an interdisciplinary team, etc.
Lower values of these concepts lead to a higher simplicity (lower complexity) which is preferable,

as it has a higher guarantee of being successfully and on time applied.

» Completeness: is the quality of explaining the total reality involved in an energy consumption
20 system. This property depends largely on the degree of specificity reached and can vary

significantly among different methods of the same approach.

* Generality: stands for the quality of the obtained results, being general enough as to be useful for a

standardized comparison among different buildings. Higher generality is preferable as the effort to



10

15

20

extrapolate conclusions is lower and easiness to introduce the approach in new buildings is

greater.

» Usefulness: relates to the utility of the derived knowledge for making decisions on energy
efficiency strategies. Models that discover complex and interesting variable relationships and get
further insight are preferable, since they represent an advance in the field. The level of detail of
the results of the models compared in this article is variable. This parameter evaluates the
exploitation of the results and predictions obtained by the model for its use in a later analysis,
especially its applicability for the decision-making in the prioritization of economic investments
in order to reduce the energy demand of the studied building. This feature also values the utility of

results of each model for the stakeholders in investments for energy efficiency in buildings.

* Innovation: represents the space to provide original results by using cutting edge techniques.
Although the field of energy modeling has been highly explored and refined in recent years, as it
has been pointed out in the critical analysis of the limitations of each of the approaches compared,
there are still open research challenges that need to be addressed in the future. This feature
evaluates the degree of flexibility that each approach presents in order to improve itself and the

introduction of new tools to continue the innovation in its field of application.

Table 2 summarizes the level of achievement of the five features above explained by each model

compared. Three levels of achievement are identified: low, medium and high.

This tabulation system allows to clearly differentiate the strengths and weaknesses of each of the
approaches compared. The evaluation has been made based on: the literature review made in the
previous sections, the critical analysis performed during this literature review, the study of the depth
of detail of the works reviewed. A low level means that the feature is not an identifiable or achieved

characteristic by the model. A medium level indicates that the model presents this feature, although
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with deficiencies or shows obvious improvement. Finally, a high level means that this feature is

clearly identifiable at a satisfactory level during the use of the model and the results obtained.

Table 2
Comparison of selected approaches.

Approach Simplicity Completeness Generality Usefulness Innovation
Bill-based methods High Medium High Low Low
Maonitoring-based methods Low Medium Medium High High
Dynamic simulations Low High Low High Medium

From table 2, it can be seen that the bill-based methods reach a high level of simplicity and
generality, while an intermediate level in completeness is reported. However, it shows a low score on
both usefulness and innovation. Bill-based methods are more easily applicable and, therefore, more

general; nonetheless, they do not go beyond the state-of-the-art, so the innovation degree is poor.

The level of simplicity of monitoring-based methods is low, as it can be hard to implement
(depending on the measurement they may require sensors or specific information) and may be
difficult to extrapolate to other environments. However, margin to innovate is very good and the
obtained knowledge very useful for decision-making, reaching a high score on both usefulness and
innovation. Finally, dynamic simulations need an important development effort and are hardly
general; however, they provide the most detailed description of energy use distribution and are useful
for energy retrofitting in buildings, showing a medium score in general. Finally, dynamic simulations
reach high levels of completeness, as they allow a detailed description of the energy consumption of
the building. Dynamic simulations also reach high levels in usefulness, as the results obtained are
effective and applicable in decision-making regarding economic investment in energy retrofit of
buildings. They have a medium score in innovation (halfway between detailed monitoring-based
methods and generalists bill-based methods). Regarding simplicity, they are characterized by a low
score given that specific knowledge by the user is necessary prior to perform a simulation. They also

obtain a low score in general, since these models require specific details of the building (especially



regarding construction materials and occupation profiles) and their exportation to other buildings is

not direct and requires a detailed change of parameters.

The advantages of the three approaches are fairly matched, so choosing the best method is a matter
of importance of the aforementioned properties. To guarantee minimal and general results, bill-based
5  methods seem the best option; in order to innovate, monitoring-based methods are recommended; for

obtaining the deepest knowledge, the dynamic system method is preferable.

With a level of intermediate effort in data collection and by attributing much of the quality of the
taken information to the user instead of to the existence of monitoring systems (as in machine
learning), hybrid models allow obtaining predictions with low error rates. In addition, the approach is

10 useful for identifying opportunities for energy saving.
Figure 2 compares these approaches according to the five proposed criteria.

Simplicity —Bill-based methods

=—Monitoring-based methods

Dynamic simulations

Innovation v H - Completeness

Usefulness Generality

Fig. 2. Comparison of selected approaches.

A known barrier among the open research challenges in delivering optimal hybrid models is the data
collection process. Machine learning and calibrated methods need detailed metered information from

15  the building, usually collected by advanced meters, whose cost is still not feasible for most of the
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buildings or housing owners. In order to achieve a higher market penetration of such meters, the
challenge of their cost reduction has to be met. Furthermore, model predictions are necessary to be
compared with real energy bills. Researchers usually find barriers in accessing such information,
usually stored by energy companies. Access to larger portions of information on energy consumption
of districts or cities would provide a starting point to implement accurate predictive models at high
scale. This would in turn help the identification of big consumers and the implementation of specific
energy saving measures at district level. This is also associated to a challenge in the legal dimension,
in order to make such data available to the research community, without including sensitive

information.

5. Concluding Remarks

A revision of existing approaches for modeling energy consumption and efficiency in buildings has

been conducted.

The main features that characterize the methodologies are identified. A performance analysis of the
methodologies is conducted, and a rating system is proposed. According to this rating, to guarantee
minimal and general results, bill-based methods are the best option. Measurement-based methods
present higher degree of innovation, whereas to get the deepest knowledge, dynamic system

modeling is the best option.

This assessment methodology facilitates the comparison of different approaches when energy
modeling in buildings is concerned. The selection of the most appropriate method is relevant to the

individual expectations and needs.

A hybridization of the analyzed approaches could offer a more complete solution, by taking profit of
their main advantages and mitigating their individual drawbacks. In this context, bill-based methods
could be utilized to set dynamic models that can be subsequently optimized by measurement-based

methods.
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