
Array-based Data Management for Genomics

Olha Horlova
Politecnico di Milano

olha.horlova@polimi.it

Abdulrahman Kaitoua
TU-Berlin & DFKI

abdulrahman.kaitoua@outlook.com

Stefano Ceri
Politecnico di Milano

stefano.ceri@polimi.it

Abstract—With the huge growth of genomic data, exposing
multiple heterogeneous features of genomic regions for millions
of individuals, we increasingly need to support domain-specific
query languages and knowledge extraction operations, capable
of aggregating and comparing trillions of regions arbitrarily
positioned on the human genome. While row-based models
for regions can be effectively used as a basis for cloud-based
implementations, in previous work we have shown that the
array-based model is effective in supporting the class of region-
preserving operations, i.e. operations which do not create any
new region but rather compose existing ones.

In this paper, we remove the above constraint, and describe an
array-based implementation which applies to unrestricted region
operations, as required by the Genometric Query Language.
Specifically, we define a wide spectrum of operations over datasets
which are represented using arrays, and we show that the array-
based implementation scales well upon Spark, also thanks to
a data representation which is effectively used for supporting
machine learning. Our benchmark, which uses an independent,
pre-existing collection of queries, shows that in many cases
the novel array-based implementation significantly improves the
performance of the row-based implementation.

I. INTRODUCTION

Among life science applications, genomics is the most

relevant for the database community. The recent development

of massive genome sequencing technologies is producing

a huge amount of genomic datasets: by 2025, the global

size of genomic data is expected to exceed the size of all

YouTube videos by two orders of magnitude [1]. World-

wide international data sequencing efforts are continuously

producing important results in terms of curated repositories;

classical examples include the Encyclopedia of DNA Elements

(ENCODE, [2]) the Cancer Genome Atlas (TCGA, [3]), the

1000 Genomes Project [4], the 100000 Genomes Project [5],

the International Cancer Genome Consortium [6], and others.

Their common aspect is to present genomic data by means of

efficient region-based formats, where region sizes may range

from a single basis (in the case of single nucleotide variations

- SNVs) to huge genome segments describing large genes or

genome copies created by rearrangements. According to many

biologists and clinicians, a wealth of information is already

undisclosed within such repositories; their discovery requires a

combination of data extraction, analysis, and exploration tools.

So far, very few systems are specifically dedicated to region-

based genomic calculus. Among them, the GenoMetric Query

Language (GMQL) [7] provides a high-level, declarative ap-

proach to data extraction and a cloud-based implementation for

managing region-based genomic repositories, which have the

typical big data dimensions. Regions produced by the same

experiment share the same data format and are assembled

in a GMQL sample; several samples are assembled in a
GMQL dataset. The GMQL system is best suited to support

batch queries over large datasets, typically part of complex

pipelines. After testing several cloud engines [8], [9], the

current implementation uses Apache Spark [10]; depending

on data sizes executions can require hours of computing time,

hence performance optimization is important.

With a cloud-based relational engine as target, the most

obvious data model maps each region to a table row, with

genomic coordinates representing the region’s position on

the genome and a feature vector representing the region’s

properties. As in classic relational engines, this representa-

tion quickly hits performance bottlenecks when regions of

different datasets are combined by using binary operations,

and specifically join, which is the heaviest binary operation

also in the genomic domain. For scalability, join algorithms

use binning [11], a partitioning of the genome into segments

of equal size, such that each bin is processed in parallel.

Optimal binning strategies, discussed in [12], highly improve

the join performance, but the scale up is limited due to intrinsic

synchronization requirements of the method: contiguous bins

may produce replicated regions in the results, their pruning

induces a need for data shuffling, and at some point the data

shuffling overhead becomes predominant.

In our previous work [13] we discovered the potential of

using a multi-dimensional representation of genomic data on

top of data flow engines. Our approach was concerned only

with region-preserving operations, i.e. operations in which all
the regions of the results are a subset of the regions of some

of the operands. As region-preserving chains of operations

frequently occur in GMQL programs, we used data model

transformations from row to array prior to executing the

chains, and from array back to rows at the end of the chains.

In this paper, we present a full implementation on the array-

based model of all GMQL operations, by including also the

operations which are not region-preserving. We store array-

based genomic datasets by taking advantage of a novel orga-

nization of Spark RDDs inspired by a solution already in use

in MLSpark, a library for managing big datasets in machine

learning applications. In previous works, we experienced the

use of a pure array-based engine such as SciDB (see [14]

and more recently [13]); we found that the use of an array-

based engine does not outperform the combination of an

array-based model and Spark. Our choice of concentrating on

109

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00017

Spark has also some pragmatic motivations, as we reuse many

architectural components. Overall, we make the following

contributions:

• We describe region-based abstractions in terms of the
array-based model.

• We present a novel structure for managing array-based
genomic datasets using Spark RDDs.

• We present an implementation of the most critical region-
based genomic abstractions on the Spark engine.

• We provide a thorough experimental evaluation which
shows the advantages of our solution.

In particular, we use as benchmark a set of queries defined

in the context of the STQL language [15], already encoded in

GMQL (see [16], supplemental material) in order to compare

languages both in terms of performance and of expressive

power. For complex queries, we show that the array-based

solution has significant speedup (up to 35) over the row-based

solution. As discussed in the evaluation, the most significant

factor which explains such huge gain of performance is a

high region replication factor; note that many datasets have

hundreds or thousand of samples, and each sample is typi-

cally associated to a different patient or tissue or biological

condition. In these cases, samples may have many regions

with identical coordinates, e.g. corresponding to genes, or to

highly recurrent mutations, or to protein binding sites.

The paper is organized as follows. Section II presents

background material, Section III presents how the array-based

model supports all GMQL abstractions, Section IV describes

the management of the array-based data model and operations

in Spark, and Section V presents a comparative performance

evaluation, including both operation-by-operation evaluation

on synthetic data and a benchmark consisting of fourteen

queries defined in [15]. We then present related work and our

conclusions.

II. BACKGROUND

A. GenoMetric Query Language (GMQL)

GMQL is a data management and query system for genomic

data management. The main components of the system are: (a)

a repository where we import large public datasets as well as

private data; (b) a query language, which combines classical

relational algebra operators with domain specific ones; (c) a

Web accessible interface for browsing the repository, compos-

ing and launching queries and retrieving the results; and (d)

an implementation based on cloud computing technologies to

cope with the big data nature of genomic datasets.

In the repository, data are organized using a data model

based on the concepts of dataset and sample; a dataset is a

collection of homogeneous samples (e.g., samples produced

by the same technology, hence exposing the same schema).

Each sample is typically associated to a distinct biological

tissue (that in turn may have a human donor) and consists of

two components: region data (for representing features such as

genomic annotations, DNA variants, genome rearrangements,

and results of experiments measuring expression levels or

peaks of expression) and the associated metadata (providing

clinical and biological features of the sample as well as

information on how the experiment has been performed).

Region data can be very large, e.g. including trillions of

regions. Metadata are typically much smaller. GMQL is an

algebraic language whose operations apply to either one or

two datasets and produce a result dataset; a GMQL query is

invoked by requiring the materialization of its result, which

in turn causes the recursive computation of all the datasets

building intermediate results, up to the source datasets stored

in the repository.

B. Row-Based Genomic Data Model

GMQL currently supports a row-based data model, which

is next described. The genome can be considered as a long

sequence of positions, divided into sub-sequences or chromo-

somes; thus, each region belongs to a chromosome, starts at
a specific position and stops at a specific position; a binary
strand denotes the reading direction of the chromosome and
can be missing. Regions of the same dataset have the same

structure: all regions have coordinates, denoted by attributes

chr, start, stop and strand. Each region is further
characterized by a signal, consisting of an array of typed

values. Metadata are in the form of semi-structured data,

with an sid to indicate the sample to which each metadata
information refer to, and then attribute and value corre-
sponding to specific factual information. Our work is focused

on region management; we disregard metadata structure and

their processing, whose organization in not affected by the

choice of data model.

Fig. 1 shows an example of row-based data model for a

small dataset with regions and metadata. The region schema

has a sid to indicate the sample, then the coordinates, and
then two attributes signal and pvalue, representing the
signal. The example describes three samples S1, S2 and S3,
each containing 3 regions. Metadata describe the properties of

the experiments producing the three samples.

sid, chr, start, stop, strand, pValue, signal
s1, chr1, 50, 70, *, 0.1, 50

s1, chr1, 50, 70, *, 0.3, 30

s1, chr7, 25, 100, *, 0.1, 15

s2, chr2, 30, 90, *, 0.9, 30

s2, chr7, 100, 150, *, 0.9, 10

s2, chr7, 100, 150, *, 0.4, 25

s3, chr1, 50, 70, *, 0.5, 35

s3, chr2, 30, 90, *, 0.5, 95

s3, chr7, 100, 150, *, 0.5, 90

Regions table

sid, attribute, value
s1, cell, blood

s1, antibody, CTCF

s2, cell, brain

s2, antibody, CTCF

s3, cell, blood

Metadata table

Fig. 1. Samples in row-based model supported by GMQL system.

C. Array-Based Genomic Data Model

In this paper, we investigate the use of the multi-dimensional

data model, expanding on our previous work [13].The array-

based representation of genomic datasets has three dimensions:

• The first dimension is associated to genomic coordinates;
it includes a distinct entry for each distinct region of the

dataset.

110

• The second dimension is associated to samples; it in-
cludes a distinct entry for each sample.

• The third dimension is associated to signals; it includes
a distinct entry for each attribute of the dataset schema.

• Cells include attribute values corresponding to a specific
triple of region/sample/attribute; regions within one sam-

ple may have several replicas, therefore cells may include

arrays of values.

Fig. 2 shows an example of array organization; the figure

highlights that cells are provided with a fast associative index

access, which enables the extraction of specific cells by

providing specific values of their dimensions. Arrays can also

be effectively segmented by slice and dice operations, also

effectively supported by means of the index accesses.

Regions

Attributes

Samples

Region ID Sample Attribute Value

chr1 100 200 + S3 score [100]

Fig. 2. Array-based genomic data model.

III. GENOMIC OPERATIONS UPON ARRAYS

Genomic operations on arrays are classified in Table I; the

main distinction is between unary operations (which apply

to one dataset) and binary operations (which apply to two

datasets); in addition, operations are region preserving when
no new regions are created during processing, as discussed in

[13]. Another important quality of operations is being space-
localized; this occurs when the processing of each region
occurs independently from other regions. In contrast, we call

space-rearranged those operations which require merging

the contribution of several input regions to create the result

regions. It turns out that all unary operations except histogram

and cover are both region-preserving and space-localized, and

that some binary operations are region-preserving but none of

them is space-localized, as shown in Table I.

TABLE I
ARRAY OPERATIONS

Region-preserving Arbitrary
Space-Loc Space-Rearr Space-Rearr

Unary Select, Project,
Merge, Group

Cover, Histogram

Binary Left/Right Join,
Map Difference

Intersect/Contig
Join, Union

A. Simple Unary Operations

We first discuss four unary operations: Select, Project,
Merge and Group. They are classified as simple because they
are both region-preserving and space-localized.

1) Select: The selection predicate is a conjunction of two
parts, which apply respectively to coordinates or to features.

The region predicate selects the regions that belong to the

result; for those regions, the feature predicate then selects the

features that belong to the result. When a sample remains

empty as result of the selection, it is not included in the

result dataset. Fig. 3 shows the effect of applying the selection

predicate chr=2 and A>50 to a given array, where the

condition on the coordinates eliminates some regions and the

condition upon features eliminates some values from the array.

S1

(chr1, 50, 70, *) 50

0.1

S2

−
−

S3
A

35 B
0.5

S1

(chr2, 30, 90, *) −
−

S2

30

0.9

S3
A

95 B
0.5

S1

(chr2, 25, 150, *) 15

0.1

S2

10

0.9

S3
A

90 B
0.5

S1

(chr2, 30, 90, *) −
−

S2

−
−

S3
A

95 B
0.5

S1

(chr2, 25, 150, *) −
−

S2

−
−

S3
A

90 B
0.5

Select

Fig. 3. Example of Select operation with the predicates "chr=2" and
"A>50".

2) Project: The operator filters attributes away; from the

input array it creates a new array with all the regions and

samples as the input one, but keeping only those attributes

expressed in the operator parameter list. The operator can

also be used to create new attributes, resulting from applying

arbitrary expressions to the input attributes. For instance, the

projection shown in Fig. 4 includes in the result tha attributes

B and newA, where newA is a new region attribute whose

value is obtained by applying the expression 0.45× A to the

A and attribute.

S1

(chr1, 50, 70, *) 50

0.1

S2

−
−

S3
A

35 B
0.5

S1

(chr2, 30, 90, *) −
−

S2

30

0.9

S3
A

95 B
0.5

S1

(chr7, 25, 150, *) 15

0.1

S2

10

0.9

S3
A

90 B
0.5

S1

(chr1, 50, 70, *) 22.5

0.1

S2

−
−

S3

15.75

0.5
B

ne
w
A

S1

(chr2, 30, 90, *) −
−

S2

13.5

0.9

S3

42.75 B
0.5

ne
w
A

S1

(chr7, 25, 150, *) 6.75

0.1

S2

4.5

0.9

S3

40.5 B
0.5

ne
w
A

Project

Fig. 4. Example of Project operation that creates a new attribute named newA
and includes in the result B and newA attributes.

3) Merge: The operator merges all samples of the input
array into one. It builds a new array consisting of a single

sample, having as regions all the regions of all the input

samples, with the same attributes and values. Fig. 5 illustrates

the example of merging an input array into one sample; the

resulting array has a single sample, with a new attribute name

Snew, storing in its cells the vector of values from all samples.

S1

(chr1, 50, 70, *) 50

0.1

S2

−
−

S3
A

35 B
0.5

S1

(chr2, 30, 90, *) −
−

S2

30

0.9

S3
A

95 B
0.5

S1

(chr7, 25, 150, *) 15

0.1

S2

10

0.9

S3
A

90 B
0.5

Snew

(chr1, 50, 70, *) [50; 35]

[0.1; 0.5]

A

B

Snew

(chr2, 30, 90, *) [30; 95]

[0.9; 0.5]

A

B

Snew

(chr7, 25, 150, *) [15; 10; 90]

[0.1; 0.9; 0.5]

A

B

Merge

Fig. 5. Example of Merge operation.

111

4) Group: This operation groups the input array by regions
and computes aggregate values on each group. An example is

show in Fig. 6, which applies to the array resulting from the

merge operation of Fig. 5 and computes the two functions

MIN(A) and MAX(A). The resulting array has two distinct
attributes, one for each computed aggregate function.

S1

(chr1, 50, 70, *) [50; 35]

[0.1; 0.5]

A

B

S1

(chr2, 30, 90, *) [30; 95]

[0.9; 0.5]

A

B

S1

(chr7, 25, 150, *) [15; 10; 90]

[0.1; 0.9; 0.5]

A

B

S1

(chr1, 50, 70, *) 35

50

m
in
m
ax

S1

(chr2, 30, 90, *) 30

95

m
in
m
ax

S1

(chr7, 25, 150, *) 10

90

m
in
m
ax

Group

Fig. 6. Example of Group operation that computes the two functions MIN(A)
and MAX(A).

B. Histogram and Cover

S1

(chr1, 10, 35, *) 50

0.1

S2

−
−

S3
A

35 B
0.5

S1

(chr1, 25, 45, *) −
−

S2

30

0.9

S3
A

95 B
0.5

S1

(chr1, 30, 40, *) 15

0.1

S2

10

0.9

S3
A

90 B
0.5

S1

(chr1, 50, 65, *) 15

0.1

S2

10

0.9

S3
A

90 B
0.5

S1

(chr1, 55, 75, *) 15

0.1

S2

10

0.9

S3
A

− B
−

S1

(chr1, 60, 70, *) −
−

S2

10

0.9

S3
A

− B
−

Snew(chr1, 10, 25, *)

2
c

AA
ccc
A

Snew(chr1, 25, 30, *)

4

A
cc

Snew(chr1, 30, 35, *)

7

A
cc

Snew(chr1, 35, 40, *)

5

A
cc

Snew(chr1, 40, 45, *)

2
c

AA
ccc
A

Snew(chr1, 50, 55, *)

3

A
cc

Snew(chr1, 55, 60, *)

5

A
cc

Snew(chr1, 60, 65, *)

6

A
cc

Snew(chr1, 65, 70, *)

3

A
cc

Snew(chr1, 70, 75, *)

2
c

AA
ccc
A

Snew(chr1, 25, 40, *)

7

A
cc

Snew(chr1, 50, 70, *)

6

A
cc

H Cover

Fig. 7. Example of Historgam and Cover operations with minAcc=3 and
maxAcc=ANY.

Histogram is a domain-specific genomic operation that

applies to a multi-sample dataset and produces a single sample

having as regions the intersection of the input regions; the

attributes are results of aggregate functions applied to con-

tributing regions. In the example provided in Fig. 7 we show

the Count (also called accumulation index). Computing the
counts is facilitated in the array-based model, as the region

coordinates can be used to access the input cells; however,

the operation is space-rearranging and the output regions have

new coordinates. Note that in Fig. 7 we start with six regions

and we end up with ten regions. Histograms can be filtered

based on the minimum and maximum accumulation index;

if we filter the result with the condition minAcc=3 and

maxAcc=ANY, then the regions having counters less than 3
are removed from the result1.

Cover connects all the regions in the histogram that satisfy
the condition on the accumulation filter; technically, it is

1The keyword ANY can be used as maxAcc, and in this case no maximum
is set; the keyword ALL stands for the number of samples of the operand,
and can be used for minAcc or for maxAcc.

the contiguous intersection of at least minAcc and at most
maxAcc contributing regions. A typical property of the region
is the Jaccard Index, measuring the degree of overlap of con-

tributing regions, which is computed as default. Other values

may be given by computing aggregates over the connected

regions. In the example of Fig. 7, we show the result of a

cover operation also expressed with the condition minAcc=3
and maxAcc=ANY, which produces two regions in the result,
from 25 to 40 and from 50 to 70. In the specific example

we compute the Max aggregate function, hence the region’s
values are respectively 7 and 6.

C. Binary Operations

Binary array operations include: Join, Map, Difference and

Union. Operations are space-rearranged (cells in the result

generally depend on more than one cell); moreover, some join

operations are not region-preserving.

1) Map: TheMap operation applies to two datasets, respec-
tively called Reference and Experiment. It computes, for each

region R of each sample in the reference dataset and for each

sample in the experiment dataset, aggregates over the values

of the experiment regions that intersect with R; we say that

experiment regions are mapped to the reference regions R. The

number of generated output samples is the Cartesian product

of the samples in the two input datasets, but the output has

the same regions as the input reference dataset, with their
original attributes and values, plus the attributes computed

as aggregates over Experiment regions which intersect with

the Reference regions. Although the operation is defined for

arbitrary arrays, its most typical application occurs when the

reference consists of just one sample (e.g., a collection of

genes) and then the aggregate function computes a property

of its regions (e.g., the average gene expression over multiple

experiments).

S1

(chr1, 50, 70, *) 50

0.1

S2

−
−

S3
A

35 B
0.5

S1

(chr2, 30, 90, *) −
−

S2

30

0.9

S3
A

95 B
0.5

S1

(chr7, 25, 150, *) 15

0.1

S2

10

0.9

S3
A

90 B
0.5

S1(chr1, 25, 60, *)

[5; 4]

S2

−
C

S1(chr7, 100, 185, *)

2

S2

[3; 2]
C

S11

(chr1, 50, 70, *) 50

0.1

2

S12

50

0.1

0

S21

−
−
−

S22

−
−
−

S31

35

0.5

2

S32

35

0.5

0

A

B
co
un
t

S11

(chr2, 30, 90, *) −
−
−

S12

−
−
−

S21

30

0.9

0

S22

30

0.9

0

S31

95

0.5

0

S32

95

0.5

0

A

B
co
un
t

S11

(chr7, 25, 150, *) 15

0.1

1

S12

15

0.1

2

S21

10

0.9

1

S22

10

0.9

2

S31

90

0.5

1

S32

90

0.5

2

A

B
co
un
t

Map

Fig. 8. Example of Map operation with count as aggregate function.

Fig. 8 illustrates an example of applying Map operation to 2

input arrays, with count as aggregate operation. Note that it
builds the cross-product of samples, it replicates the attributes

of the first operand, and adds a counter of the intersecting

112

regions. In the specific example, the only intersections occur

between the first and last regions of the two operands; the

counter is 2 when the second operand has 2 intra-sample

replicates.

2) Join: The Join operation applies to two datasets, respec-
tively called Reference and Experiment. It produces a result

sample for every pair of samples of the operand datasets.

The regions within each result sample are built from either

Reference, or the Experiment, or from both of them:

• With the Left option, the Join result keeps only those
regions from the left operand that intersect with regions

of the right operand.

• With the Right option, the Join result keeps only those
regions from the right operand that intersect with regions

of the left operand.

• With the Contig option, the Join result creates new

regions composed by the concatenation of regions from

the operands (on the same chromosome).

• With the Intersect option, the Join result creates new
regions as the intersection of regions from the operands.

S1

(chr1, 50, 70, *) 50

0.1

S2

−
−

S3
A

35 B
0.5

S1

(chr2, 30, 90, *) −
−

S2

30

0.9

S3
A

95 B
0.5

S1

(chr7, 25, 150, *) 15

0.1

S2

10

0.9

S3
A

90 B
0.5

S1(chr1, 25, 60, *)

5

S2

−
C

S1(chr7, 100, 185, *)

2

S2

3
C

S11

(chr1, 25, 70, *)(chr1, 50, 70, *) 50

0.1

5

S12

−
−
−

S21

−
−
−

S22

−
−
−

S31

35

0.5

5

S32

−
−
−

A

B

C

S11

(chr7, 25, 185, *)(chr1, 25, 150, *) 15

0.1

2

S12

15

0.1

3

S21

10

0.9

2

S22

10

0.9

3

S31

90

0.5

2

S32

90

0.5

3

A

B

C

(b) Contig(a) Left

Fig. 9. Example of Join operation with (a) Left option and (b) Contig option.

The first two options above are region-preserving, while the

last two options are not. Fig. 9(a) illustrates an example of

Left Join operation; the only non-empty intersections occur

between the first and last regions of the two operands. Fig.

9(b) illustrates the result of the same operation with the Contig

option; note that the result is identical except for the regions,

which are the intersection of the first and last regions of the

operands.

3) Difference: This operation applies to two arrays and

produces the result by keeping only those regions (with their

attributes and values) of the first operand which do not

intersect with any region in the second operand (also known

as negative regions). Fig. 10 illustrates an example of applying

Difference operation on two input arrays; the resulting array

has only one region.

4) Union: This operation is used to integrate possibly

heterogeneous samples of two datasets within a single dataset;

each sample of both input datasets contributes to one sample

of the result with merged region schema. The merging of two

S1

(chr1, 50, 70, *) 50

0.1

S2

−
−

S3
A

35 B
0.5

S1

(chr2, 30, 90, *) −
−

S2

30

0.9

S3
A

95 B
0.5

S1

(chr7, 25, 150, *) 15

0.1

S2

10

0.9

S3
A

90 B
0.5

S1(chr1, 25, 60, *)

[5; 4]

S2

−
C

S1(chr7, 100, 185, *)

2

S2

[3; 2]
C

S1

(chr2, 30, 90, *) −
−

S2

30

0.9

S3
A

95 B
0.5

Difference

Fig. 10. Example of Difference operation.

schemas is performed by adding the schema of the second

dataset to the schema of the first one; missing fields are set to

NULL value. Fig. 11 illustrates how the resulting array is built
after applying the Union operation. The two input arrays has

one common region on chromosom 7, which is aggregated in

the result.

SL1

(chr1, 50, 70, *) 50

0.1

SL2

−
−

SL3
A

35 B
0.5

SL1

(chr2, 30, 90, *) −
−

SL2

30

0.9

SL3
A

95 B
0.5

SL1

(chr7, 25, 150, *) 15

0.1

SL2

10

0.9

SL3
A

90 B
0.5

SR1(chr1, 25, 60, *)

[5; 4]

SR2

−
A

SR1(chr7, 25, 150, *)

2

SR2

[3; 2]
A

SL1

(chr1, 50, 70, *) 50

0.1

SL2

−
−

SL3

50

0.1

SR1

−
−

SR2

−
−

A

B

SL1

(chr2, 30, 90, *) −
−

SL2

30

0.9

SL3

95

0.5

SR1

−
−

SR2

−
−

A

B

SL1

(chr7, 25, 150, *) 15

0.1

SL2

10

0.9

SL3

90

0.5

SR1

2

null

SR2

[3; 2]

null

A

B

SL1

(chr1, 25, 60, *) −
−

SL2

−
−

SL3

−
−

SR1

[5; 4]

null

SR2

−
−

A

B

Union

Fig. 11. Example of Union operation.

IV. IMPLEMENTATION

The implementation of each operation using the array data

model is facilitated by the modular architecture of the GMQL

system as consolidated in [11], whose main building blocks

are shown in Fig. 12. Many language interfaces are all served

by the same Scala API; the dataflow for a given query is an

internal Acyclic Directed Graph (DAG), whose nodes corre-

spond to calls to operation and whose arcs describe parameter

passing. Typically, every GMQL operation is mapped into a

workflow of 4-5 smaller granularity DAG operations, which

are designed for optimizing sharing and reuse among GMQL

operations. Using a Service Manager, the DAG operations are

passed to the available implementations; in the past, we sup-

ported implementations in Flink [17] and SciDB [18], but our

currently maintained implementation is based on Spark with

the row-based implementation. In order to support the array-

based data model, we developed a second implementation

in Spark, shown as the red block of Fig. 12; availability of

paired row-based and array-based implementations allows us

113

to highlight the differences between them (in this section) and

then compare their performances (in the next section).

Fig. 12. Architecture of the GMQL system

A. Array Model Representation using Spark RDDs
In the design of an internal data structure for arrays, we

were inspired by MLlib, a popular Apache Spark library for

machine learning [19]. The main purpose of ML applications

is to ingest huge matrixes of training sets so as to repeatedly

train classifiers. Matrixes in MLlib are represented as vectors

inside a Spark RDD; to overcome issues due to data sparsity,

matrixes are represented as vectors of two arrays, where the

former is an internal index pointing to the latter, which in turn

is a compact data array.

Fig. 13. Organization of Spark RDDs to support the array data model

The data organization used for storing the array data model

within a Spark RDD is shown in Fig. 13; note that its data con-

tent is equivalent to the data content of Fig. 1, which uses the

row-based model. In comparison, our data organization is more

complex than the MLlib data representation, because regions

can be replicated either inside a sample (intra-replication) or

across samples (inter-replication).

The core of the structure is a key/value record in Scala,

where the key (named region key) is a quadruple of region
coordinates. The value is further sub-structured as two paired

arrays, respectively called replication vector and attribute
vector, where the former behaves as a map for accessing the
latter. As shown in Fig. 13, each region key points to several

entries of the replication vector (their number corresponds to

the inter-sample replication). In turn, the replication vector

contains pairs (sample-id,repl), where the latter indi-
cates the number of intra-sample replicates; each entry of the

replication vector points to an entry of the attribute vector.

Thus, the region denoted by cardinalities <chr1,50,70,*>
is replicated within samples S1 and S3, and in turn sample S1

has two replicates of that region.

Data within the attribute vector is organized as arrays of

arrays, where the enclosing array has a fixed number of entries,

dictated by the schema; in the particular example of Fig.

13 the enclosing array has two coordinates, corresponding

to attributes pvalue and signal. The internal array has
a number of values for each attribute that depends on intra-

replication, thus the internal array for the first entry pointed

by <chr1,50,70,*> and sample S1 has two values - note
that values must be paired to recover row values, e.g. values

<0.1,50> and <0.3,30> correspond to the pvalue and

signal of two regions of sample S1 with the above coordinates.

The array data model is implemented as a key/value record

in Scala. The region coordinate act as key (denoted as Region-

Key), the value (denoted as RegionData) is further structured

as two arrays respectively storing the data replication map

and the attribute values. RegionKey is used by the Spark im-

plementation for data partitioning, according to a partitioning

function. Listing 1 describes the Scala data types; GValue used

for representing attribute values is a Trait in Scala with several

implementations: GInt, GDouble, GString, and GNull.

1 ArrayModel(key:RegionKey,value:RegionData)
2

3 RegionKey (chrom:String, start:Long, stop:Long, strand:Char)
4

5 RegionData (Replication:Array[(Long, Int)],Attribute:Array[Array[Array[GValue]]])

Listing 1. Scala Types for the Array Data Model.

The implementation of several operations in GMQL requires

binning [11]; the method assigns regions to bins (i.e., partitions

of the genome) whose size typically ranges between few

hundreds and several thousands of base pairs; through suitable

algorithms, operations are executed in parallel at each bins,

and then results are gathered and processed to recover the

correct resulting regions. The effect of binning is to generate

additional region replication, as regions which fall within many

bins have as many replica as the number of overlapping bins.

In order to speed up operations which involve binning, the

bin number is added to the region key, which therefore be-

comes: <chrom, start, stop, strand, bin>. The

114

representation of Region Data is not changed – it is identical

for every replicated region.

We next illustrate the most interesting aspects of the array-

based implementation, by using the row-based implementation

described in [11] as baseline; we discuss simple unary oper-

ations, then address Cover (which includes Histogram), then

Join and Map, the most interesting binary operations.

B. Simple Unary Operations

Unary Operations are space-localized, hence they are exe-

cuted by first using the region key to perform data access and

then applying a function to its value, independently from the

content of other regions, for producing the resulting region. For

example, in case of Select operation, the selection predicate is
separated into two components, respectively on the coordinate

key and on the value; for each input region ri we first check
the region predicate; if it is satisfied, we produce an output

region r′i when some data in the region’s value exists for which
the value predicate is true, as illustrated in Algorithm 1. From

the point of view of Spark, these operations consists of one

FlatMap block that iterates over the input regions and applies
an operation-specific function.

Algorithm 1: Select operation
Input : Array M and a predicate P = Pc ∧ Pv
Output: Array RES
RES ← ∅

foreach region ri ∈M do
begin

if P(ci) and ∃ v ∈ vi: P(vi) then
RES.insert(ri)

end

C. Cover

In contrast to simple unary operations, all the other oper-

ations described in this section require complex processing

by means of multiple Spark blocks. In all these operations,

given the size of the genome, we opt for a parallel execution

rather than a sequential one; this requires the use of binning,
hence we perform a preliminary transformation of the data

model, as discussed in Section IV-A - in a similar way, bin

numbers are added to region coordinates in the row-based

model, see [11]. Instead of using Spark listings, we describe

them using logical blocks; Fig. 14 illustrates the algorithm

blocks for implementing a cover operation. Since the purpose

of this section is to illustrate the differences between row-

based and array-based implementations, we start by describing

the former, and then we describe how the latter differs; green

blocks indicate substantially different implementations.

Computing the Cover requires computing the Histogram; for
this, the row-based algorithm consists of scanning the genome

from left to right and maintaining an accumulation count. At

every start of a region the count is incremented, and at every

stop is decremented; the result is given by intervals associated

with the same counter, skipping all the bin’s ends. Final steps

Experiment row-based

Binning1

Building of Hash-Map2

Result creation3

Filter4 Filter

Border merge

Union5

Computation of aggregates6

Store

(a) Row-based

Experiment array

Binning1

Building in-bin Histograms2

Filter3 Filter

Border merge

Union4

Computation of aggregates5

Store

(b) Array-based

Fig. 14. Operators for encoding the COVER algorithm

consist of selecting the Cover results out of the Histogram and
associating its regions with aggregate functions as specified in

the operation.

• Block 1 (Binning) is responsible for the binning. For each
region, it emits a new tuple for each bin it intersects.

The output tuple contains the chromosome, the bin and

a hash-map; in the hash map, we associate every region

start with +1 and every region stop with -1. In the case

a region crosses the border between two bins, we split

it into two contiguous regions; one from the start to the

border and one from the border to the stop.

• Block 2 (Building of Hash-Map) is responsible of group-
ing the output dataset of the previous block by chromo-

some and bin. Then an associative function is applied

by the Reduce, which builds a single tuple for each

chromosome and bin containing a hash-map with all the

starts and stops of the regions in the bin.

• Block 3 (Result creation) returns the list of produced
regions, along with their accumulation value, with each

region placed within a bin, thus creating a raw histogram.

• Block 4 (Filter) starts with two filters that separate the
regions properly contained in the bins (left filter) from

the regions overlapping with bins (right filter). The latter

regions must be merged when they are adjacent and with

the same count. This processing requires a GroupBy and

a ReduceGroup.

• Block 5 (Union) performs the union of the regions
separately produced.

• Block 6 (Computation of aggregates) computes aggregate
functions as specified in the COVER operation (if any)

using a Genometric Map operation.

The array-based algorithm takes advantage of the replication

count available in the replication vector, that indicates the

intra-replication factor of each region (see Fig. 13). The main

difference between the row-based and the array-based method

is in Block 2, which is executed within each bin by doing a

sequential scan of regions and keeping a cache. If the cache

115

is empty, the current region is added to the cache. with an

associated value equal to the replication count of the region.

Otherwise the current region is compared with all the regions

in the cache. When a cached region is found to be before

the current one, it is removed from the cache and added to

the output (given the ordering, if a region does not intersect

with the current one, it will not intersect with any subsequent

region). Instead, if a region in the cache is intersecting the

current one, it is "split" into two, and the counters of the

common part are summed up.

The array-based algorithm takes advantage of the key-value

structure of the model also in Block 5, describing how aggre-

gations are produced. With the array-based solution, the values

of the contributing regions are accumulated within the value

part while the computation proceeds, so aggregation functions

can directly be applied. In the row-based implementation, this

step requires a mapping to the input regions, to recover the

original attribute values.

D. Binary operations

Next we discuss three binary operations: Join, Map and

Difference. All these operations are based on the intersections

of reference and experiment regions, so they have common

steps, however the internals of such common steps require

different algorithms; a gray shade indicates the steps that need

to be performed differently. Fig. 15 illustrates the algorithm

for implementing binary operations with (a) row-based and (b)

array-based models.

Reference

row-based

Experiment

row-based

Binning Binning1-2

Intersection3

Result creation4

Computation of aggregates5

Store

(a) Row-based

Reference

array

Experiment

array

Binning Binning1-2

Intersection3

Reduction by Region4

Computation of aggregates5

Store

(b) Array-based

Fig. 15. Operators for encoding binary algorithms

The row-based method requires to bin the two datasets, to

group them by sample pair, chromosome and bin number, to

compute intersections within the bins, to compute aggregate

functions (if necessary), and output the results. By contrasting

the row-based and array-based implementation, we note that

blocks 1-2 (Binning) and blocks 4 (reduction by region) are

simplified by the array data model, as the region keys are

not replicated. Thus, binning is simpler and bin reconstruction

takes advantage of such simplification. The construction of

region coordinates in block 3 is however more complex in

the array-based algorithm for joins with the intersect
and contig options, which are not region-preserving, as

they require connecting regions in a way that is not directly

supported by the region key.

E. Union

In a union, compatible attributes from two input datasets

are merged, and then incompatible attributes are listed at the

end, by putting the reference first and the experiment second.

Fig. 16 illustrates the operations required for implementing a

union operation using the two models.

The row-based method is very simple - it first updates the

values of experiment regions (Block 1) and then just makes

the union of the two datasets (Block 2). As the array-based

model requires to have non replicated regions (reflected in their

coordinates), the array-based method is more complex; it first

requires a join of the two arrays by their region coordinates,

and a rearrangement of region cells when the coordinates

exactly match (Block 1) . Then, values of experiments are

updated (Block 2) to become compatible with the reference

array schema and then reference and experiment values are

merged (block 3). Blocks 2-3 can be performed together.

Reference

row-based

Experiment

row-based

Update

values
1

Union 2

Store

(a) Row-based

Reference

array

Experiment

array

Join by coordinates1

Update experiment values2

Merge values3

Store

(b) Array-based

Fig. 16. Operators for encoding the Union algorithm

V. EXPERIMENTS AND EVALUATION

A. Experimental Setup

We conducted our experiments on our server, which con-

tains an Intel® Xeon® Processor E5-2650 at 2.00 GHz (32

hyper-threads), 192 GB of RAM, and 4x2 TB hard disks.

The software stack includes Apache Hadoop 2.7.2 and Apache

Spark 2.2.0.

B. Performance Evaluation at Operation Level

We first compare the row-based and array-based implemen-

tations for each operation separately. For unary operations

we generated a dataset that consists of 5 samples, contains

a total of 23 million regions, where each region consists of

5 attributes. For binary operations, which have Reference and

Experiment input datasets, we generated a Reference dataset

that consists of 5 samples with 3 attributes in the schema and

a total of 5 million regions; we then used the dataset of unary

operations as Experiment dataset.

Fig. 17 shows the performance comparison for unary op-

erations. The most expensive unary operations are Cover and
Group; in both cases, the array-based implementation outper-
form the row-based implementation, as the array-based takes

advantage of the region key. The row-based implementation

is slightly more efficient in the Select, Project and Merge

116

operations; these operations have an additional overhead due

to the unfolding of array structures.

0 50 100 150

MERGE

SELECT

PROJECT

GROUP

COVER

17

14

23

89

166

30

32

25

32

113

Exec. time (sec.)

Row-based Array-based

Fig. 17. Execution times of unary operations

0

20

40

60

80

100

120 115

79

E
x
ec
.
ti
m
e
(s
ec
.)

Row-based Array-based

(a) MAP

Left Right Int Contig
0

20

40

60

80 77
81 79

82

66 64 64 64

E
x
ec
.
ti
m
e
(s
ec
.)

Row-based Array-based

(b) JOIN

0

20

40

60

80

100

109

70

E
x
ec
.
ti
m
e
(s
ec
.)

Row-based Array-based

(c) DIFFERENCE

0

20

40

60

15

57

E
x
ec
.
ti
m
e
(s
ec
.)

Row-based Array-based

(d) UNION

Fig. 18. Execution times of binary operations

Fig. 18 shows the performance comparison of binary opera-

tions; each array-based operation except Union slightly outper-
forms its rival row-based implementation; the implementation

of these operations uses region intersection, which is facilitated

by the array model. The Union operation has a simpler

implementation in the row-based algorithm, as discussed in

Section 4.E.

C. Full Benchmark

A thorough performance comparison has been possible

thanks to the availability of a set of queries defined in the

context of the STQL language [15] and encoded in GMQL

in the supplemental material of [16]; as STQL does not use

metadata, the queries in the benchmark were only addressing

the regions.

For the complex query CQ5 of the benchmark we show

in Listing 1 its translation into calls to the Scala API; Fig.

19 shows the operation dataflow as a DAG. A query is

1 def CQ5(path: String): Unit = {
2 val step1results = Import(path + "/GENCODE")
3

4 val fun1 = DefaultRegionExtensionFactory.get(RELEFT(),Left("original_left"))
5 val fun2 = DefaultRegionExtensionFactory.get(RERIGHT(),Left("original_right"))
6 val fun3 = DefaultRegionExtensionFactory.get(RESUB(RESTART(),

REFloat(1500)),Right(COORD_POS.START_POS))
7 val fun4 = DefaultRegionExtensionFactory.get(READD(RESTART(),

REFloat(500)),Right(COORD_POS.STOP_POS))
8

9 val step2results = Project(None, Some(List(fun1, fun2, fun3, fun4)),
step1results)

10 val t2 = Import(path + "/T2")
11 val t3 = Import(path + "/T3")
12 val t4 = Import(path + "/T4")
13 val t5 = Import(path + "/T5")
14 val t2_on_step2 = GenometricMap(step2results, t2, 5000)
15 val t3_on_step2 = GenometricMap(t2_on_step2, t3, 5000)
16 val t4_on_step2 = GenometricMap(t3_on_step2, t4, 5000)
17 val t5_on_step2 = GenometricMap(t4_on_step2, t5, 5000)
18

19 val fun5 = DefaultRegionExtensionFactory.get(REDIV(RESUB(REPos(25), REPos(26)),
RESUB(REPos(27), REPos(28))),Left("folding_value"))

20 val step6results_0 = Project(None, Some(List(fun1, fun2, fun5)), t5_on_step2)
21 val res = Select(Some(Predicate(29, REG_OP.GT, 3)), step6results_0)
22 }

Listing 2. CQ5 Scala GMQL complex query example.

executed by recursively traversing the DAG from the result

leaf, producing the sequence of calls that generate it from the

query input, and then executing operations in an arbitrary but

consistent order, passing parameters and results according to

that order. As shown in Fig. 12, operations inside the DAG

are implemented using both the row-based and array-based

methods.

Step1Results

Import

Project Import

T2

Map Import

T3

Map Import

T4

Map Import

T5

Map

Project

Select

Fig. 19. DAG of CQ5 query

Benchmark queries are classified as simple and composite

queries, based on their data size and complexity; Fig. 20 shows

the performance of eight simple queries. Queries SQ3, SQ6,
and SQ8 consist of a single operation running on biological
data from ENCODE public repository [2]. The performance

for most of the simple queries for both the array-based

and row-based models is comparable. SQ4 shows the most
significant performance improvement among for the array-

based implementation, as it achieves 2.4× speedup. It consists
of three nested Cover followed by a Union operation; the

speedup of the the array-based implementation of the Cover
compensates for the decrease of performance of the Union and
grants an overall advantage to the array-based implementation.

117

SQ1 SQ2 SQ3 SQ4 SQ5 SQ6 SQ7 SQ8
0

100

200

300

400
410

32
9

388

102

8 5 6

344

54

9

160

99

9 3 6

E
x
ec
.
T
im
e
(s
ec
.)

Row-based Array-based

Fig. 20. Performance of 8 simple queries (SQ1-SQ8)

Fig. 21 shows the comparative performance of the row

and array-based implementations upon the complex query

set, consisting of three medium size queries (CQ1, CQ2 and
CQ6, whose execution time stays below 5 minutes) and three
large size queries (CQ3, CQ4 and CQ5, whose execution
time is significantly more and approximates 6 hours in the

case of CQ5). Thanks to the complex interplay of operations,
the array-based implementation outperforms the row-based

implementation in all cases, with speedup of 5×, 19× and

35× respectively for CQ3, CQ4 and CQ5.
The query CQ3 has a region-preserving chain of two Map

and Join operations, then four Cover and one Union. The query
CQ4 consists of two Map operations with a Select-Group-
Merge sequence between them. The CQ5 query has a region-
preserving chain of 4 Map operations followed by a Project-
Select chain, as illustrated in Fig. 19. The huge speed-up is
motivated both by the existence of many region-preserving op-

erations and by the comparatively smaller size of intermediate

data, which benefit from the efficient accumulation of cells

with the same region coordinates.

CQ1 CQ2 CQ3 CQ4 CQ5 CQ6
0

20

40

60

3.9
1.6

28.7

53.8

300

5.2
1.3 1.5

5.6
2.8

8.6

3.5

E
x
ec
.
T
im
e
(m
in
.)

Row-based Array-based

Fig. 21. Performance of 6 composite queries (CQ1-CQ6)

D. Scalability

For testing scalability, we designed four scenarios of use,

respectively named small, medium, big and large, whose
features are summarized in Table II. We run unary operations

upon the 4 cases, and binary operations by using a new dataset

with 2 million regions as Reference and the four above datasets

as Experiments. We introduced replication in the row-based

data model (using a fixed replication factor β ≈ 2), regardless
of the mapping of regions to samples; thus, replication is

mostly inter-sample.

TABLE II
FEATURES OF THE DATASETS USED IN THE SCALABILITY TESTS (β ≈ 2)

Name Size
Total #
regions

Regions in
array

Samples

small 1.6 GB 54 M 26.5 M 400
medium 8.5 GB 285 M 133 M 2000
big 22.1 GB 740 M 338 M 5000
large 43.2 GB 1445 M 644 M 10 000

Execution times of unary operations are illustrated in Fig.

22 (a,b). Note that both space-localized and space-rearranged

operations scale linearly. Execution times of binary operations

are illustrated in Fig. 22 (c); scalability is no longer linear for

Map and Join, but this is to be expected due to the greater
complexity of these operations with sizes.

26.5 133 338 644
0

100

200

300

400

500

Number of regions (M)

E
xe

c.
Ti

m
e

(s
ec

.)

Select
Project
Merge
Group

(a) Unary Space Localized

26.5 133 338 644
0

20

40

60

Number of regions (M)

E
xe

c.
Ti

m
e

(m
in

.)

Cover

(b) Unary Space Re-arranged

26.5 133 338 644
0

50

100

150

200

Number of regions (M)

E
xe

c.
Ti

m
e

(s
ec

.)

Map
Join
Difference
Union

(c) Binary

Fig. 22. Execution times of array-based solution with increasing data sizes

Fig. 23 shows the execution times of array-based and

row-based solutions using datasets with approximately equal

number of regions and size but different replication factor

β. The array-based solution dominates over the row-based
solution in GROUP, MAP, JOIN and DIFFERENCE and is

dominated by the row-based solution in UNION. In the other

operations, the array-based solution has better performance

than the row-based solution with large values of the replication

factor; the break-even replication factor is different for the

various operations, it is smaller (below 2) for SELECT and

PROJECT than for COVER and MERGE.

We next consider a cluster of different size, ranging from

2 to 16 nodes. We performed our experiments on the Ama-

zon Web Services (AWS) cloud, using a configuration with

c5.9xlarge machines, each with 32 virtual CPUs, 72GB of

118

2 4 8 16

10

20

30

40

50

Replication factor β

E
xe

c.
Ti

m
e

(s
ec

.)

Array
Row

(a) Select

2 4 8 16

20

40

60

80

Replication factor β

E
xe

c.
Ti

m
e

(s
ec

.)

Array
Row

(b) Project

2 4 8 16

20

40

60

Replication factor β

E
xe

c.
Ti

m
e

(s
ec

.)

Array
Row

(c) Merge

2 4 8 16

0

100

200

300

400

Replication factor β

E
xe

c.
Ti

m
e

(s
ec

.)

Array
Row

(d) Group

2 4 8 16
0

5

10

15

Replication factor β

E
xe

c.
Ti

m
e

(m
in

.)

Array
Row

(e) Cover

2 4 8 16

0

50

100

150

Replication factor β

E
xe

c.
Ti

m
e

(s
ec

.)

Array
Row

(f) Map

2 4 8 16
0

20

40

60

80

Replication factor β

E
xe

c.
Ti

m
e

(s
ec

.)

Array
Row

(g) Join

2 4 8 16
0

50

100

150

Replication factor β

E
xe

c.
Ti

m
e

(s
ec

.)

Array
Row

(h) Difference

2 4 8 16
0

5

10

15

20

Replication factor β

E
xe

c.
Ti

m
e

(s
ec

.)

Array
Row

(i) Union

Fig. 23. Scalability evaluation of array-based solution with increasing
replication

memory, and 576 GB of storage. The testing setup contained

one driver node and four configurations of slave nodes, set at

2, 4, 8 and 16 nodes respectively.

Fig. 24 shows the scalability of binary operations on dif-

ferent cluster sizes. We generated two datasets, Reference

and Experiment, each with replication equal to 10. Reference

dataset has size of 43 MB and consists of 10 samples and 1

million regions in total. Experiment dataset has size of 93 GB

and consists of 1000 samples and almost 2 billions regions in

total. We also show the scalability of queries CQ4 and CQ5,

the most demanding queries in the benchmark of Section V-C.

2 4 8 16
0

5

10

15

20

Number of nodes in the cluster

E
xe

c.
Ti

m
e

(m
in

.)

Join
Map
Difference
Union

(a) Binary Operations

2 4 8 16
0

50

100

150

Number of nodes in the cluster

E
xe

c.
Ti

m
e

(s
ec

.)

CQ4
CQ5

(b) CQ4 and CQ5 applications

Fig. 24. Execution times of array-based solution with increasing nodes.

VI. RELATED WORK

Our work can be considered as a follow-up of [13], pre-

sented at ICDE 2019. In [13] we limited our analysis to region-
preserving operations; we used the array-based model only for
the operands whose regions were preserved, whereas we used

the row-based model for the other operands. Hence, we could

not consider Histogram, Cover, Union and Contig/Intersect
Join; moreover, we approached complex queries by converting

from the row-based model to the array-based model prior to

each chain of region-preserving operations, and from array-

based to row-based at the end of each chain. The array-based

data model provided significant speed-ups of queries with long

region-preserving chains, but was not a full-fledged data model

capable of encompassing any operation.

We next discuss array-based implementations for genomics,

by distinguishing native and Spark-based implementations. As

domain-specific join operations in genomics are similar to

theta-join, they are not well optimized by array-based orga-

nizations, which typically use indexes for slicing and dicing
arrays along dimensions. We also experienced that encoding

genomic operations using SQL or SQL-like languages, e.g. as

those provided in RasDaMan and SciDB, is rather difficult.

1) SciDB [18]: It provides its own shared-nothing storage
layer; it provides a variety of optimizations, like dealing

with overlapping chunks and data compressions. We con-

sidered SciDB as a possible target engine and built a full

implementation of the main GMQL abstractions using it,

presented in [14], focused on representative operations (filter,

aggregate, map, join). At the time of our experiments, SciDB

performed faster in filtering and aggregation over an array-

based physical data organization, but Spark performed faster

on massive binary operations (maps and joins). In [13] we

compared two implementations of region-preserving array-

based operations upon SciDB and Spark, showing that Spark

had better performance than SciDB on the AWS cloud for a

specific query consisting of a chain of Map operations (similar

to query CQ5).

2) TileDB [20]: It stores multi-dimensional array data in
fixed size data tiles, optimized for both dense and sparse multi-

dimensional arrays. It supports the same data model as SciDB,

but is currently a storage manager for array data rather than

an array database. GenomicsDB [21] is built on top of the

TileDB and it is used by the Broad Institute to store genomic

variant data in 2D arrays, where columns and rows correspond

to genome positions and samples, respectively.

3) ChronosDB [22]: It is a distributed array DBMS for
geospatial data with command-line tools; it provides a formal

multidimensional array data model to abstract from the files

and the tools. ChronosDB wraps the geospatial tools and nei-

ther supports Genomic data nor modifies the core algorithms

of the tools to support the array format. Two extensions of

Spark for supporting array data processing are not adapted to

genomics.

4) SciSpark [9]: extends Spark for scaling scientific com-
putations. It introduces the Scientific Resilient Distributed

Dataset (sRDD), a distributed-computing array structure which

supports iterative scientific algorithms for multi-dimensional

data. Therefore, SciSpark can repetitively manipulate multiple

array datasets at runtime. SciSpark requires users to provide

custom partitioning and file-loader functions.

5) SparkArray [23]: extends Spark with a multi-

dimensional array data model and a set of array operations

(e.g., filter, subarray, smooth and join).

119

VII. CONCLUSION

In this paper, we show that by coupling the array data

model with the Spark execution engine we obtain a high-

performance solution for supporting region-based operations

for genomics. While in previous work we considered the

subset of region-preserving operations, in this work we cover

the full spectrum of GMQL region-based operations; for each

of them, we first intuitively describe the meaning of operations

upon an array representation, then we discuss a method for

their implementation. For managing arbitrary operations upon

regions, we designed an internal representation adapted to the

needs of supporting region-based calculus within Spark RDDs;

performance analysis shows that our array-based solution

is superior to a row-based solution in most operations and

benchmark queries, especially with large replication factors

which occur in many practical cases.

We plan to apply our multi-dimensional data management

to spatial and temporal applications; as we can map genomic

coordinates to the longitude and latitude of locations in spatial

data or time intervals of temporal data, these applications are

similar in data types and operations to genomic applications. In

particular, the genomic join can be mapped to spatial/temporal

batch join between two datasets of locations/time-intervals.

Our multi-dimensional join shows promising results when it

produces several matches which must be ranked; this directly

maps to spatio-temporal queries where many equivalent op-

tions are available, e.g. find minimum distance offices of public

or private organizations closest to given locations (e.g. for

all banks, the closest bank office from home), or the closest

time events in different countries when a certain climate event

occurred (e.g., for each nation/state/region, the event closest

in time to Xmas 2019 when temperature was higher than 40

degrees Celsius).

Spark is a very popular big data engine, and several ongoing

efforts are focused upon improving its use for big data

analysis; in particular, large in memory data structures can be

exploited to improve the interconnection to machine learning

algorithms (e.g. [24]). In our future research, we plan to

investigate the direct use of arrays, as produced by genomic

queries, for training machine learning models.

ACKNOWLEDGMENTS

This research is funded by the ERC Advanced Grant

project 693174 "GeCo" (Data-Driven Genomic Computing),

and is also supported by an AWS Machine Learning Research

Award2.

REFERENCES

[1] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai,
M. J.Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson,
“Big data: astronomical or genomical?” PLoS biology, vol. 13, no. 7, p.
e1002195, 2015.

[2] ENCODE Project Consortium, “An integrated encyclopedia of dna
elements in the human genome,” Nature, vol. 489, p. 57, 2012.
[Online]. Available: https://doi.org/10.1038/nature11247

2https://aws.amazon.com/aws-ml-research-awards/

[3] J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. M.
Shaw, B. A. Ozenberger, K. Ellrott, I. Shmulevich, C. Sander,
J. M. Stuart, and Cancer Genome Atlas Research Network, “The
Cancer Genome Atlas Pan-Cancer analysis project,” Nature genetics,
vol. 45, no. 10, pp. 1113–1120, Oct 2013. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/24071849

[4] N. Siva, “1000 Genomes project,” Nature Biotechnology, vol. 26,
no. 3, pp. 256–256, 2008. [Online]. Available: https://doi.org/10.1038/
nbt0308-256b

[5] M. Caulfield, J. Davies, M. Dennys, L. Elbahy, T. Fowler,
S. Hill, T. Hubbard, L. Jostins, N. Maltby, J. Mahon-Pearson,
and et al., “The National Genomics Research and Healthcare
Knowledgebase,” Dec 2017. [Online]. Available: https://figshare.com/
articles/GenomicEnglandProtocol_pdf/4530893/5

[6] ICGC. (2019, oct) International cancer genome consortium. https:
//icgc.org/. [Online]. Available: https://icgc.org/

[7] M. Masseroli, P. Pinoli, F. Venco, A. Kaitoua, V. Jalili, F. Palluzzi,
H. Muller, and S. Ceri, “GenoMetric Query Language: a novel approach
to large-scale genomic data management,” Bioinformatics, vol. 31,
no. 12, pp. 1881–1888, 2015.

[8] M. Bertoni, S. Ceri, A. Kaitoua, and P. Pinoli, “Evaluating Cloud
Frameworks on Genomic Applications,” IEEE Big Data Conference,
Santa Clara, Nov. 2015.

[9] R. Palamuttam, R. M. Mogrovejo, C. Mattmann, B. Wilson, K. White-
hall, R. Verma, L. McGibbney, and P. Ramirez, “SciSpark: Applying
In-memory Distributed Computing to Weather Event Detection and
Tracking,” IEEE International Conference on Big Data (Big Data), pp.
2020–2026, 2015.

[10] Apache. (2019, oct) Spark. https://spark.apache.org/. [Online]. Available:
https://spark.apache.org/

[11] A. Kaitoua, P. Pinoli, M. Bertoni, and S. Ceri, “Framework for sup-
porting genomic operations,” IEEE Transactions on Computers, vol. 66,
no. 3, pp. 443–457, 2017.

[12] A. Gulino, A. Kaitoua, and S. Ceri, “Optimal binning for genomics,”
IEEE Transactions on Computers, vol. 68, no. 1, pp. 125–138, Jan 2019.

[13] O. Horlova, A. Kaitoua, V. Markl, and S. Ceri, “Multi-Dimensional
Genomic Data Managment for Region-Preserving Operations,” in 35th
IEEE International Conference on Data Engineering (ICDE), April
2019, pp. 1166–1177.

[14] S. Cattani, S. Ceri, A. Kaitoua, and P. Pinoli, “Evaluating Big Data
Genomic Applications on SciDB and Spark,” Proc. Web Engineering
Conference, June 2017; Rome.

[15] X. Zhu, Q. Zhang, E. D. Ho, K. H.-O. Yu, C. W. Liu, T. H.-M. Huang,
A. S.-L. Cheng, B. Kao, E. Lo, and K. Y. Yip, “START: a system for
flexible analysis of hundreds of genomic signal tracks in few lines of
SQL-like queries,” in BMC Genomics, 2017.

[16] M. Masseroli, A. Canakoglu, P. Pinoli, A. Kaitoua, A. Gulino,
O. Horlova, L. Nanni, A. Bernasconi, S. Perna, E. Stamoulakatou, and
S. Ceri, “Processing of big heterogeneous genomic datasets for tertiary
analysis of Next Generation Sequencing data,” Bioinformatics, 2018,
dOI: http://dx.doi.org/10.1093/bioinformatics/bty688.

[17] Apache. (2019, oct) Flink. https://flink.apache.org/. [Online]. Available:
https://flink.apache.org/

[18] P. 4. (2019, oct) SciDB array DataBase. http://www.paradigm4.com/.
[Online]. Available: http://www.paradigm4.com/

[19] Apache. (2019, oct) Spark mllib. https://spark.apache.org/docs/latest/
mllib-data-types.html. [Online]. Available: https://spark.apache.org/
docs/latest/mllib-data-types.html

[20] S. Papadopoulos, K. Datta, S. Madden, and T. Mattson, “The TileDB
array data storage manager,” Proceedings of the VLDB Endowment,
vol. 10, no. 4, pp. 349–360, 2016.

[21] Intel. Intel. GenomicsDB. [Online]. Available: https://github.com/
Intel-HLS/GenomicsDB/wiki

[22] R.A. Rodriges Zalipynis, “ChronosDB: Distributed, File Based,
Geospatial Array DBMS,” PVLDB, vol. 11, no. 10, pp. 1247–126,
2018. [Online]. Available: https://doi.org/10.14778/3231751.3231754

[23] W. Wang, T. Liu, D. Tang, H. Liu, W. Li, and R. Lee, “SparkArray:
An Array-based Scientific Data Management System Built on Apache
Spark,” IEEE International Conference on Networking, Architecture and
Storage (NAS), August 2016.

[24] L. Passing, M. Then, N. Hubig, H. Lang, M. Schreier, S. Günnemann,
A. Kemper, and T. Neumann, “SQL- and Operator-centric Data Analyt-
ics in Relational Main-Memory Databases,” in EDBT, 2017.

120

