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Abstract

N-nitrosamines are a group of potent human carcinogens that can be formed during oxidative
treatment of drinking water and wastewater. Many tertiary and quaternary amines present in
consumer products (e.g., pharmaceuticals, personal care and household products) are known to be
N-nitrosodimethylamine (NDMA) precursors during chloramination, but the formation of other
N-nitrosamines has been rarely studied. This study investigates the specific and total N-nitrosamine
(TONO) formation potential (FP) of various precursors from nitrogen-containing micropollutants
(chlorhexidine, metformin, benzalkonium chloride and cetyltrimethylammonium chloride) and
tertiary and quaternary model amines (trimethyl amine, N,N-dimethylbutyl amine,
N,N-dimethylbenzyl amine and tetramethyl ammonium). All the studied nitrogenous micropollutants
displayed quantifiable TONO FP, with molar yields in the range 0.04-11.92%. However, the observed
TONO pools constituted mostly of uncharacterized species, not included in US-EPA 8270
N-nitrosamines standard mix. Only the quaternary ammonium compound benzalkonium chloride
showed quantifiable NDMA FP (0.56% molar yield), however, explaining only a minor fraction of the
observed TONO FP. The studied model amines showed molar NDMA yields from 0.10% (trimethyl
amine) to 5.05% (N,N-dimethylbenzyl amine), very similar to the molar TONO yields. The comparison
of the FPs of micropollutants and model compounds showed that the presence of electron donating
functional groups (such as a benzyl group) in tertiary and quaternary amine precursors leads to a
higher formation of NDMA and uncharacterized N-nitrosamines, respectively. LC-qTOF screening of a
list of proposed N-nitrosamine structures has enabled to identify a novel N-nitrosamine
(N-nitroso-N-methyldodecylamine) from the chloramination of benzalkonium chloride. This finding
supports the hypothesis that different functional groups in quaternary amines can act as leaving
groups during chloramination and form differing N-nitrosamine structures at significant yield.
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Molar TONO yields determined for micropollutants were finally validated under experimental
conditions closer to real water matrices, confirming their representativeness also for lower

concentration ranges.

Keywords: total N-nitrosamines (TONO), NDMA, nitrogenous micropollutants, N-nitrosamines

formation potential, chloramination

1. Introduction

N-nitrosamines are a group of emerging disinfection by-products that can be formed during
chloramination, chlorination and ozonation of drinking water and wastewater (Krasner et al., 2013;
Mitch and Sedlak, 2004; Richardson and Ternes, 2014). Several N-nitrosamines are classified as
probable human carcinogens and mutagens, with low nanogram-per-litre drinking water
concentrations associated with a 10-¢ lifetime excess cancer risk (IRIS US EPA, 2018; Mitch et al,,
2003). US-EPA listed five N-nitrosamines on the Contaminant Candidate List 4 (CCL4) as contaminants
potentially occurring in public water systems (US EPA CCL4, 2016).

Previous studies (Kemper et al., 2010; Le Roux et al., 2011; Mitch and Sedlak, 2004; Zeng and Mitch,
2015) showed that various consumer products, such as pharmaceuticals, personal care and household
products, play an important role in the formation of N-nitrosamines. These classes of compounds are
typically present in municipal wastewater effluents, wherefrom they are discharged into the aquatic
environment and may reach water resources used for drinking water production (Schwarzenbach et
al, 2006). Zeng and Mitch (2015) found that domestic greywater and blackwater streams are
significant sources of chloramine-reactive and ozone-reactive N-nitrosamine precursors. Even though
specific precursors have not been characterized, N-nitrosamine formation was associated with the
presence of shampoos, handsoaps, dishsoaps and pharmaceuticals. Specific N-nitrosamine precursors
may include tertiary or quaternary amines, being common macro-constituents of many consumer
products (Dai and Mitch, 2013; Shen and Andrews, 2011a).

Various tertiary amines commonly present in herbicides and in pharmaceutical and personal care

products were found to be N-nitrosodimethylamine (NDMA) precursors during chloramination,
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showing molar conversion yields varying from <1% up to 60-90% for ranitidine (Le Roux et al., 2011;
Lee et al., 2007; Mitch and Schreiber, 2008; Mitch and Sedlak, 2004; Sacher et al., 2008; Schmidt and
Sacher, 2006; Selbes et al, 2013; Shen and Andrews, 2011a, 2011b; Spahr et al., 2016). Various
mechanisms have been proposed for NDMA formation during chloramination of tertiary amines (Choi
and Valentine, 2002a, 2002b, 2003; Shah et al., 2012; Shah and Mitch, 2011). NDMA formation was
initially attributed to the liberation of the dimethylamine (DMA) moiety via reactions of chlorine or
monochloramine followed by reactions between DMA and dichloramine (Krasner et al., 2013; Mitch
and Schreiber, 2008; Mitch and Sedlak, 2004). Further studies suggested that tertiary amines can also
form N-nitrosamines without proceeding through a secondary amine intermediate, but through
nucleophilic attack of the amine on chloramine (Selbes et al., 2013). Recent studies showed that the
stability and the electron distribution of the moieties bound to the DMA group play a key role in NDMA
formation and strongly affect its production yields (Shah and Mitch, 2011). In particular, the presence
of an electron-donating group close to the DMA moiety can increase the electron density on the
nitrogen atom, enhancing a nucleophilic attack on the chloramines (Le Roux et al., 2011; Selbes et al,,
2013; Shen and Andrews, 2011a).

Compared to tertiary amines, only few studies investigated the formation of N-nitrosamines from
specific quaternary ammonium compounds (QACs). Various quaternary ammonium cationic polymers
(e.g., polyDADMAC, polyamine, polyacrylamide) used for water coagulation and flocculation are
known to promote NDMA formation during chloramination, due to direct polymer nitrosation and
mainly the formation of intermediate polymer degradation products (Cornwell et al., 2015; Park et al,,
2009b, 2015; Zeng et al, 2016). Kemper et al. (2010) found that NDMA is formed during
chloramination of different QACs used as surfactants and disinfection agents, such as quaternary
alkylamines and benzyl trialkylamines, with relatively low molar yields (0.03-0.28%). So far, the
mechanism of the formation of N-nitrosamines from QACs remains unclear. The full substitution of the
nitrogen and the positive charge on the quaternary amine should hinder the reaction with chloramines
(Krasner et al, 2013). QACs can contain impurities that might constitute potential N-nitrosamines
precursors. However, Kemper et al. (2010) have shown that the formation of N-nitrosodibutylamine

(NDBA) by chloramination of benzyltributylammonium chloride only slightly decreased after
3
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purification. This indicates that the QAC itself, rather than impurities, was the dominant N-nitrosamine
precursor. Even though the reaction pathways have not been defined, the same authors suggested that
the NDMA formation from QACs may involve amidogen or chloramino radicals formed from
chloramines. Some quaternary amine monomers (e.g., choline, cocoamidopropyl betaine) and
polymers (e.g., polyDADMAC, polyquaternium-7, polyacrylamide, polyamine and DMA-epi-DMA) were
also found to form NDMA during ozonation (Marti et al., 2015; Padhye et al,, 2011), free chlorine and
chlorine dioxide disinfection (Park et al., 2009a; Zhang et al., 2014), even though at molar yields lower
than those observed for chloramination.

The majority of the studies in the literature deals with the formation of NDMA, being the most often
detected N-nitrosamine in tap and wastewater (Russell et al., 2012). However, previous studies
showed that NDMA is often a minor part of the total N-nitrosamines (TONO) pool (Dai and Mitch,
2013; Kulshrestha et al., 2010; Zeng and Mitch, 2015). Analysing 36 drinking water treatment plants
and distribution systems, Dai and Mitch (2013) found that NDMA made up only 5% of the TONO pool
on a median basis. Zeng and Mitch (2015) observed that the contribution of NDMA to TONO was
1-11% and 3-60% in domestic greywater streams treated by chloramine and ozone, respectively. The
same authors suggested that the precursors of the uncharacterized N-nitrosamine fraction were
associated to common macro-constituents of consumer products, such as QACs present in shampoos
and soaps.

While many NDMA precursors were identified in the literature, the determination of the TONO
formation potential (FP) of specific model compounds is not a common procedure. The investigations
of N-nitrosamine formation are typically limited to the species detected by the US-EPA method 521
(US EPA, 2005), while the identity of the other components of the TONO pool remains unclear.

The goal of this study was to investigate the formation of N-nitrosamines during chloramination of
various nitrogenous compounds that can be discharged to municipal wastewater and may end up in
the receiving water bodies. The investigated compounds included two quaternary ammonium
compounds used as disinfectants and surfactants (benzalkonium chloride, BZK, a mixture of benzyl

trialkylamines, and cetyltrimethylammonium chloride, CTMA, a quaternary alkylamine) and two
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biguanides (chlorhexidine, CHD, an antiseptic agent used in disinfectants, pharmaceuticals and
cosmetics, and metformin, MET, a prescription drug used for treating diabetes).

Laboratory experiments on model solutions were performed to determine the formation potential of
total and specific N-nitrosamines for the studied precursors as a function of the pH. Besides analyses
of TONO and N-nitrosamines from the US-EPA 8270 standard mix (US EPA, 2005), high resolution
mass spectrometry analyses were carried out to identify the components of the unknown fraction of
TONO. The role of the molecular structure of the precursors on N-nitrosamine formation was further
investigated by model tertiary and quaternary amines (trimethyl amine, N,N-dimethylbutyl amine,
N,N-dimethylbenzyl amine and tetramethyl ammonium) containing functional groups similar to the

selected micropollutant moieties.

2. Materials and methods

2.1 Chemicals and reagents
All the experiments were conducted in ultrapure water (Milli-Q, Millipore) buffered with a phosphate
buffer (0.5 M) at different pH values (6, 7 or 8). Chlorhexidine dihydrochloride (CHD, >98%),
metformin hydrochloride (MET, 99%), benzalkonium chloride (BZK, >95%), cetyltrimethylammonium
chloride (CTMA, 25%wt in H:0), tetramethylammonium chloride (TeMA, >99%), trimethylamine
(TMA, 98%), N,N-dimethylbenzyl amine (DMBzA, >99%) and N,N-dimethylbutyl amine (DMBA, 99%)
were purchased from Sigma-Aldrich. The molecular structures and main properties of the selected
compounds are provided in Table 1. Concentrated stock solutions of each precursor were prepared in
ultrapure water. The US-EPA 8270 N-nitrosamine standard mix, containing N-nitrosodimethylamine
(NDMA), N-nitrosodiethylamine (NDEA), N-nitrosomethylethylamine (NMEA), N-nitrosomorpholine
(NMOR), N-nitrosodibutylamine (NDBA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR),
N-nitrosodipropylamine (NDPA) and N-nitrosodiphenylamine (NDPhA) at the same mass
concentrations (2000 pg mL! of each component in dichloromethane), was obtained from Sigma-
Aldrich. Monochloramine stock solutions were prepared daily as described by Le Roux et al. (2011)

using sodium hypochlorite (NaOCl, 15-20%, Sigma-Aldrich) and ammonium chloride (99.9%, VWR
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Chemicals). The concentrations of monochloramine (NH:Cl) and dichloramine (NHCI;) (see section
2.3) in the stock solutions were measured after preparation; the NHCl, concentration was always not
quantifiable (see section 2.3). Ascorbic acid, HPLC grade acetonitrile, dichloromethane and methanol

were purchased from Sigma-Aldrich.

2.2 Experimental procedures

The self-decay of monochloramine at various initial concentrations (1, 5, 20 and 100 mM) and pH
values (6, 7 and 8) was investigated by measuring the NH,Cl concentration over time (see section 2.3)
in buffered ultrapure water solutions. Chloramination experiments were conducted in amber
borosilicate bottles at room temperature (23°C) under two experimental setups (ES), denoted ES1 for
high concentrations of precursors and ES2 for more realistic lower concentrations of precursors.

Under ES1, reactions were conducted in 10 mL solutions, composed of variable volumes of precursor
stock solutions, sodium phosphate buffer (125 mM in the sample), pre-formed monochloramine stock
solution and ultrapure water. The initial concentration of the precursors was set to 0.1 mM for CHD
and 0.5 mM for all the other precursors, while the one of the buffer was set to have a buffer excess
with respect to the initial monochloramine concentration. N-nitrosamine FP is operationally defined
as the maximum N-nitrosamine concentration that can be formed from a precursor, using a NH>Cl
concentration and a contact time much higher than applied during drinking water treatment (Krasner
etal., 2013). In this study, the experimental conditions to be adopted in the FP tests (i.e., reaction time,
initial concentrations of precursors and monochloramine) under ES1 were selected according to a
series of preliminary kinetic tests. The kinetics of N-nitrosamine formation from CHD, MET, BZK and
CTMA at pH 7 were investigated by testing different initial NH,Cl concentrations (corresponding to
10-, 20-, 40-, 100- and 200-fold molar excess) and reaction times (1, 2, 5, 7 and 10 days) and
measuring TONO concentrations and the residual precursor concentrations (only for CHD and BZK)
(SL, Text S3). According to the results of the kinetic tests (discussed in section 3.1), FP tests at pH 6, 7
and 8 were conducted with all the precursors (micropollutants and model compounds) at a reaction
time of 7 days and a 200-fold molar excess of NH,Cl relative to the precursor compound; only in the

case of BZK, FP tests were performed with a 10-fold NH2Cl molar excess, assuring the highest
6
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N-nitrosamine production (according to Kkinetic test results discussed in section 3.1). The
concentrations of TONO and N-nitrosamines of the US-EPA 8270 standard mix (see section 2.3) were
measured at the end of the FP tests.

In ES2, 7 days FP tests were conducted in 0.5 L solutions, containing deionized water, 1 mM sodium
phosphate buffer (pH 8), 100 uM and 0.5 uM initial concentrations of monochloramine and precursor,
respectively (corresponding to a 200-fold NH,Cl molar excess). The TONO concentration was
measured after sample pre-concentration by solid phase extraction (see section 2.3).

The molar yield of N-nitrosamines formation was calculated as the ratio between the produced molar
concentration of the N-nitrosamine and the molar concentration of the precursor.

For all the chloramination experiments, reaction solutions were quenched at the end of the
pre-determined reaction time by dosing an ascorbic acid stock solution (280 mM) to get a
stoichiometric excess relative to the initial NH2CI concentration. Quenched solutions were stored at

4°Cin the dark. All the experiments were performed in duplicate.

2.3 Analytical methods

NHCl and NHCI; concentrations were determined spectrophotometrically (Shimadzu, UV-1800) using
their respective molar extinction coefficients at 245 and 295 nm, respectively and solving the
equations expressing absorbance values at the two wavelengths simultaneously (Schreiber and Mitch,
2005). The NHCI, concentration is quantifiable only when the ratio between absorbance values at
295 nm and 245 nm is 23%, corresponding to a NHCI2:NH:Cl molar ratio <0.01%.

Total N-nitrosamine concentrations were measured by a method based on UV photolysis and
chemiluminescence measurement of nitric oxide (see Breider and von Gunten (2017) for more
details). The chemiluminescence signal was related to the TONO concentration by a standard curve,
obtained with different concentrations of the US-EPA 8270 N-nitrosamine standard mix (from 0.8 to
16.2 UM of each N-nitrosamine). The test solutions in absence of monochloramine were compared
with ultrapure water, to verify the absence of a background signal. The calibration was repeated daily

before each measurement session. The limit of detection (LOD) and quantification (LOQ) at the 95%
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confidence level of the analytical method were calculated based on the standard error (SE) and the
slope (m) of the calibration curve (LOD=3.3xSE/m, LOQ=10xSE/m). Average (*standard deviation)
LOD and LOQ resulted equal to 0.3+0.15 uM and 1.0£0.45 uM, respectively. For each sample, TONO
was measured in triplicate.

US-EPA 8270 standard mix N-nitrosamines were analysed after sample pre-concentration (the
procedure is described in Text S1, SI) by GC-MS/MS (Trace 1310 Series GC, Thermo) according to the
method described by Chen et al. (2012). LOD and LOQ for the investigated N-nitrosamines are
reported in Table S1, SI. The measurements were done in duplicate.

Samples obtained from FP tests in ES1 were analysed by liquid chromatography quadrupole time-of-
flight mass spectrometry (LC-qTOF). All the details about the analytical method and instruments are
reported in Text S2, SI. Data obtained by LC-qTOF analysis were elaborated to verify the presence of a
list of proposed compounds, according to the following procedure: the exact mass (m/z) of each
compound was extracted from the chromatogram. If a peak with intensity at least 3 orders of
magnitude higher than the background noise was observed, the mass spectrum in correspondence of
the peak retention time was further analysed. A list of possible molecular formulas was generated by
the ChemCalc software (Patiny and Borel, 2013) from the masses observed in the MS spectrum. If the
mass of a possible molecular formula corresponded to the theoretical one with an error <5 ppm, the
identification was considered positive.

Samples obtained in FP tests under ES2 were pre-concentrated by solid phase extraction (SPE)
following a modified US-EPA Method 521 protocol: 0.5 L samples were passed under vacuum through
pre-conditioned Superclean Coconut charcoal 2g/6cm3 cartridges (Supelco), subsequently dried with
ultrapure nitrogen gas flow for 15 min. Cartridges were eluted with 6 mL of HPLC grade acetonitrile.
Dichloromethane was not used as eluent because this solvent interferes with the signal measured with
the nitric oxide analyser. The solvent was evaporated at ambient temperature with a nitrogen flow to a
volume of about 2 mL. The recovery of TONO by SPE (1) was specifically assessed for the TONO pools
produced by CHD, BZK, CTMA and MET, according to the following procedure: firstly, a 7 days

chloramination test was conducted in ES1 (as described in section 2.2) and TONO concentration (C1)
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was measured; samples (V1=10 mL) were then diluted by ultrapure water to 0.5 L (V2) of a known
TONO concentration (C), calculated considering the dilution factor (C;=C1-V1/V2). The sample was
then concentrated by SPE to about 2 mL (V3) and the TONO concentration (C3) was measured. The
TONO recovery was finally calculated (n=Cs'V3/C2/V2). The recovery efficiency of SPE was also
evaluated for a solution containing 0.16 uM US-EPA 8270 N-nitrosamine standard mix, 1 mM

phosphate buffer (pH 8) and 2 mM ascorbic acid.

3. Results and discussion

3.1 Total N-nitrosamine formation potential (FP)

The results of kinetic tests are shown in Figure 1, reporting the TONO concentrations as a function of
the reaction time and the monochloramine dose for BZK, CTMA, CHD and MET at pH 7. For each NHCl
dose, all the selected micropollutants showed a similar trend for the TONO concentrations, rapidly
increasing in the first 2-5 days and reaching a stable concentration after about 7 days. For CTMA and
MET, a higher NH:Cl dose yielded a higher TONO formation (TONO concentrations from MET detected
only for 100- and 200-fold NH2Cl molar excess); a similar trend was observed for CHD, for which
TONO production was comparable at the highest NH,Cl doses (100- and 200-fold molar excess). An
opposite behaviour was observed for BZK, for which TONO concentrations obtained at 10- and 20-fold
molar excess were about 2-times higher than those obtained at 100- and 200-fold molar excess. This
opposing trend for BZK compared to the other precursors is unclear and further studies are needed to
elucidate this phenomenon. The monitoring of residual CHD and BZK concentrations during kinetic
tests (SI, Text S3 and Figure S2) showed that the precursors were rapidly consumed, with a >85%
abatement after 1 day of reaction. At the same time, the NH2CI concentration was expected to decrease
over time by disproportionation, as indicated by the monitoring of NH,Cl in control solutions (SI, Text
S3 and Figure S1).

Based on the results of kinetic tests, a 200-fold NH,Cl molar excess was adopted for FP tests with CHD,

MET and CTMA, leading to the maximum TONO formation, while a 10-fold NH,Cl molar excess was
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adopted for BZK. For all the precursors, a reaction time of 7 days was selected for FP tests, being
sufficient to reach the maximum TONO concentrations.

Samples obtained from FP tests at pH 6, 7 and 8 were firstly analysed for the specific N-nitrosamines
present in the US-EPA 8270 standard mix. Among the analysed samples, NDMA concentrations higher
than the LOQ (0.09 uM), corresponding to molar yields >0.09% for CHD and >0.02% for the other
precursors, were detected only for BZK at pH 8, while in all the other samples NDMA was not
detectable. None of the other N-nitrosamines of the US-EPA 8270 standard mix were detected after the
FP tests for any of the precursors.

The average NDMA concentration formed by BZK was 2.81+0.13 uM, corresponding to a molar
formation yield of 0.56+0.03% (Table 2). This value is consistent with previous observations (Kemper
et al, 2010) at pH 7 for the two main constituents of the benzalkonium chloride mixture:
benzyldimethyldodecylamine (0.28% molar NDMA yield) and benzyldimethyltetradecylamine (0.26%
molar NDMA yield).

No NDMA formation was observed for CHD, CTMA and MET (NDMA concentrations <LOD). While, to
our knowledge, NDMA formation from CHD has never been reported, the results obtained for CTMA
and MET were not unexpected, based on previous findings. In fact, relatively low molar NDMA yields
for CTMA (0.03%) and MET (<0.04%) have been observed in previous studies (Kemper et al.,, 2010;
Shen and Andrews, 2011a). Hence, considering these low molar yields, NDMA concentrations close to
the LOQ would have been expected in the current study and were therefore not detected.

The determined TONO FP for CHD, MET, BZK and CTMA at various pH values are reported in Table 2,
expressed as molar TONO yields. Unlike the US-EPA 8270 standard mix for N-nitrosamines, TONO
measurements displayed detectable N-nitrosamine concentrations in all the samples. The TONO
formation increased with increasing pH for all precursor compounds. The pH-dependence of the
N-nitrosamine formation can be explained by (7) the increasing NHCl stability at higher pH and (ii) the
acid-base speciation of some of the precursors. The NH,Cl self-decomposition (SI, Figure S1) is slower
at higher pH values, resulting in a higher NH,CI exposure during the FP test, which in turn may lead to

a higher total N-nitrosamine production. For CHD and MET, the increase in TONO formation with

10
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increasing pH can be explained by the acid-base speciation of these compounds (pKa-values in Table
1). The fractions of the deprotonated forms of CHD and MET (as well as TMA, DMBA and DMBzA)
increase with increasing pH, which enhances the nucleophilic attack on NH>Cl, resulting in significantly
higher N-nitrosamine yields (Selbes et al., 2013).

Among the studied precursor compounds, CHD exhibited the highest molar TONO yields at all pH
values, ranging from 2.64+1.45% at pH 6 to 11.92+0.83% at pH 8. Molar TONO yields from
1.15£0.09% (pH 6) to 4.93¥1.42% (pH 8) were obtained for CTMA, while BZK showed molar
conversions of between 0.68+0.24% and 2.12+0.40%, depending on the pH. Among the studied
micropollutants, MET showed the lowest TONO yields (<0.21+0.03%), being at least one order of
magnitude lower than for the other compounds, for a given pH value.

These results demonstrate the relatively low NDMA formation yields of the studied micropollutants,
consistent with the results recently reported by Woods-Chabane et al. (2017) for tertiary and
quaternary amines in chloraminated wastewater samples. However, despite the low NDMA formation
yield, the studied precursors can produce significant TONO concentrations. The composition of the
formed TONO is unknown and is further discussed in section 3.3. Even though the overall mutagenicity
potential of the TONO pool cannot be easily evaluated, the molar TONO yields suggest that the
corresponding precursors should be taken into consideration during chloramination of wastewaters
and drinking waters. Being associated to consumer products, the studied precursors can easily enter
the aquatic system by wastewater discharge and get into the drinking water by this way. For example,
BZK homologues have been detected in wastewater effluents, river waters and groundwaters at
concentrations ranging from 10 ng L1 to 65 pg L (Clara et al,, 2007; Ding and Liao, 2001; Estévez et
al, 2012; Ferrer and Furlong, 2001; Martinez-Carballo et al, 2007). Relevant concentrations
(0.66 ng L'1) of alkyltrimethylammonium chloride compounds, including CTMA, were found in
Taiwanese rivers (Ding and Tsai, 2003), while concentrations in the range 10-150 ng L-! were detected
in Austrian surface waters (Martinez-Carballo et al., 2007). CHD concentrations of up to 5 ng L-1 have
been found in a drinking water reservoirs in Turkey (Yavuz et al, 2015), while concentrations

between 46.1 and 78.1 ng L-1 were detected in a Spanish DWTP influent treating river water (Boleda et
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al, 2011). Scheurer et al. (2012) detected MET concentrations between 18 and 105 pg Lt in five
German WWTP influents and estimated a discharge in recipient rivers between 8 and 700 g d-1, due to
their incomplete elimination during wastewater treatment. The same authors found MET
concentrations between 0.06 and 2.1ugL?! in eight German rivers. Considering the highest
concentrations reported in the literature for surface waters or DWTP intakes and applying the
maximum TONO molar yields determined in this study (at pH 8), TONO FP of the selected precursors
could vary from 0.02 nM (1.2 ng L-! expressed as NDMA) to 3.97 nM (293.5 ng L-! expressed as NDMA),
for CHD and BZK, respectively. Although intake concentrations are strongly case specific, these
estimates indicate that the contribution of the studied precursors could be relevant. The determined
TONO FPs are consistent with those previously observed by Dai and Mitch (2013) in drinking water
systems, with measured TONO concentrations in the same order of magnitude (1 nM median
concentration). An additional important factor to be considered for evaluating the actual exposure to
N-nitrosamine precursors is their fate in aquatic systems, leading to a natural attenuation of their
concentrations at DWTP intakes. For instance, QACs are known to be easily adsorbed onto negatively
charged solids, such as soils and sludge, and to have a relatively low biodegradability, especially when
containing benzyl or alkyl functional groups (Garcia et al., 1999; lkehata and El-Din, 2004; Li and
Brownawell, 2010; Ying, 2006). In contrast to a low N-nitrosamine molar yield, MET is characterized
by high mobility in natural aquatic systems and can be easily distributed in the aquatic environment,
due to the high persistence and low hydrophobicity (log Kow=-2.64) (Lindim et al., 2017; Mansour et
al,, 2016; Trautwein et al,, 2014). Even if the precursors are partially metabolized, they can contribute
to N-nitrosamine formation (Shen and Andrews, 2011a). For instance, typical biodegradation products
of QACs are tertiary and secondary amines, which can lead to N-nitrosamine formation yields much

higher than their parent compounds (Ying, 2006; Li and Brownawell, 2010).

3.2 Total N-nitrosamine formation potential of model tertiary and quaternary amines
The N-nitrosamine formation potential during chloramination was also determined for various

tertiary and one quaternary amine model compounds (Table 1): trimethyl amine (TMA),
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N,N-dimethylbutyl amine (DMBA), N,N-dimethylbenzyl amine (DMBzA) and tetramethyl ammonium
(TeMA). Molar NDMA and TONO yields obtained in the pH range 6-8 are reported in Table 2. Similar to
the selected micropollutants, for these model compounds, only NDMA was found at detectable
concentrations from the US-EPA 8270 standard N-nitrosamines mix. Quantifiable NDMA and TONO
concentrations were found for all the studied model tertiary amines (TMA, DMBA and DMBzA). TMA
displayed TONO concentrations at pH 7 slightly higher than the LOQ, resulting in a molar conversion
yield of 0.03%. A NDMA concentration higher than the LOQ was determined only at pH 8, with an
average molar yield of 0.10%, while TONO concentrations corresponded to a molar yield of 0.29%. The
TONO FP for TMA at pH 8 was higher than the NDMA FP, which is probably due to the accuracy of the
two analytical methods and related mainly to the different sample pre-treatment procedures. In
particular, GC-MS/MS analysis could be affected by a significant loss of NDMA due to the sample
extraction procedure, which was not necessary for TONO analysis. A formation of non-NDMA
N-nitrosamines is not possible from TMA. Furthermore, the TONO method applied in this study
(Breider and von Gunten, 2017) tends to slightly overestimate NDMA concentrations (115%*5%
recovery of NDMA from standard curve of US-EPA 8270 N-nitrosamines standard mix), which may be
an additional explanation for the observed discrepancy.

NDMA was not detected in DMBA samples at pH 6 and 7, while TONO concentrations slightly above the
LOQ (corresponding to 0.02% molar yield) were measured at pH 7. NDMA and TONO molar yields of
0.05% and 0.17%, respectively, were obtained at pH 8. Similar to TMA, the NDMA FP observed for
DMBA at pH 8 was lower than the TONO FP and the difference in NDMA and TONO concentrations can
again be mainly attributed to the differences in the analytical methods.

Among the model tertiary amines, DMBzA displayed the highest N-nitrosamine formation potentials.
Molar NDMA yields were, on average, 1.22% at pH 7 and 5.05% at pH 8, while molar TONO yields were
0.72% or 3.27% at pH 7 or 8, respectively. The NDMA FPs resulted to be higher than TONO FPs in this
case. However, considering the uncertainties associated to the two analytical methods, measured
NDMA and TONO concentrations can be considered to be comparable, indicating that NDMA was the
most prevalent N-nitrosamine present in the analysed samples. The relatively high formation of NDMA

from DMBZzA can be attributed to the low stability of the benzyl group, which is easily released from
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the N-atom (Kemper et al,, 2010; Selbes et al., 2013; Spahr et al,, 2016). In fact, the benzyl group is a
weaker base compared to alkyl groups and plays a stronger electron donating effect on the DMA
moiety, resulting in higher NDMA formation rates (Shen and Andrews, 2011a).

Comparing the molar yields of NDMA and TONO for all the selected tertiary amines (MET, TMA, DMBA
and DMBzA), the role of the molecular structures of the precursors, in particular the type of the
functional group bound to the DMA moiety, becomes evident. Even though it was not possible to
evaluate the TONO composition, experimental results confirmed that the benzyl functional group is
much more easily released than the methyl, butyl or biguanide moieties, leading to significantly higher
NDMA yields.

For TeMA, the only tested quaternary amine model compound, NDMA concentrations higher than the
LOD were never detected, while quantifiable TONO FPs were found at all the pHs. TONO
concentrations at pH 6 and 7 were slightly higher than LOQ, while quantifiable concentrations were
measured at pH 8, corresponding to a 0.90% molar TONO yield. Since NDMA is expected to be the
most prevalent N-nitrosamine formed from TeMA, the significant difference between NDMA and TONO
yields observed at pH 8 could be explained by an underestimation of NDMA concentration due to the
sample extraction procedure. Even though the TONO composition observed for TeMA was not
characterized, the results obtained for other precursors show a link between the molecular structures
of QACs and N-nitrosamine formation. The TONO FP for TeMA was much lower than for the QACs BZK
and CTMA, with a significant difference in molar yields (difference >60%, considering the average
molar yields reported in Table 2 for pH 8). This indicates that the functional groups bound to the N-
atom of QACs play an important role for the N-nitrosamine conversion efficiency.

A previous study showed that formation of specific N-nitrosamines (i.e. NDMA and NDBA) from
chloramination of QACs is mostly associated to QACs themselves rather than lower order amine
impurities (Kemper et al., 2010). However, the negligible contribution of tertiary amine impurities has
not been demonstrated for the TONO FP. The selected tertiary amine model compounds in the current
study contain the same, or very similar, functional groups as potential impurities in the QACs.
Although the aliphatic chain is shorter in DMBA compared to BZK and CTMA, previous studies have

shown that the length of the alkyl group next to the nitrogen atom does not significantly affect the
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N-nitrosamine conversion yield (Selbes et al, 2013). Results of FP tests showed that molar
N-nitrosamine yields of DMBA and TMA were never high enough to explain N-nitrosamine formation
from QACs by the presence of impurities (maximum estimated contribution to NDMA or TONO FPs of
BZK and CTMA <1%). DMBzA, for which the highest NDMA FP was observed, could contribute up to
the 45% of NDMA formation potential of BZK, if considering a maximum content of 5% as impurity
(BZK purity >95%). In contrast, the maximum contribution of DMBzA impurities to the TONO FP of
BZK would be < 8%, indicating that most of the uncharacterized N-nitrosamine production is due to
BZK itself. Hence, the results from this study indicate that the observed TONO FP from QACs cannot be
attributed to tertiary amine impurities and that QACs themselves are the dominant N-nitrosamine

precursors.

3.3 Elucidation of the potential structures of unknown N-nitrosamines formed from
quaternary ammonium compounds

TONO constituents formed from the selected consumer product ingredients were partially
characterized only for BZK, for which it was possible to determine the NDMA FP. The ratio between
the average observed molar concentrations of NDMA and TONO was 0.26. Even by taking the
differences in the two analytical methods into account, the difference between NDMA and TONO
concentrations is significant. This indicates that a large fraction of the total N-nitrosamine pool
consists of unknown compounds. So far, no known N-nitrosamine has been identified in the TONO
pools formed from CHD, MET and CTMA.
Because no compounds from the US-EPA 8270 standard N-nitrosamines mix were found, some other
N-nitrosamines must be responsible for the measured TONO. Possible N-nitrosamine structures
formed by CHD cannot be easily proposed due to the complex molecular structure of the precursor. In
contrast to most of the tertiary or quaternary amines studied in the literature, CHD does not contain a
dialkylamino group which can be related to the formation of the corresponding N-nitrosamine, such as
NDMA, NDEA or NDBA (Kemper et al, 2010; Le Roux et al., 2011; Selbes et al.,, 2013; Shen and
Andrews, 2011a; Spahr et al, 2016). MET contains similar biguanide moieties as CHD (Table 1),

however, it showed significantly lower N-nitrosamine FP. Comparing the molecular structures of the
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two precursors, the higher N-nitrosamine formation yield of CHD can be attributed to the aromatic
moiety, which is bound to the end-membered N-atom of the biguanide group. In comparison, MET
contains the same biguanide structure, however, with end membered DMA moiety. The low NDMA FP
of MET has been explained by the electron-withdrawing effect of the biguanide group bound to DMA
leading to a lower nucleophilicity of the N-atom (Le Roux et al., 2011; Selbes et al.,, 2013; Shen and
Andrews, 2011a). In contrast, the chlorinated aromatic ring in the CHD structure could enhance the
nucleophilic attack on the chloramine. Nevertheless, further studies are needed to verify these
assumptions.

For QACs, the presence of only one N-atom limits the number of possible reactions with NHCl leading
to potential N-nitrosamine products. It has been demonstrated that N-nitrosamine formation from
tertiary and quaternary amines involves the release of the functional groups bound to the nitrogen
atom in the precursor molecule (Selbes et al., 2013). Various studies have shown that the structure of
the leaving groups in precursors containing a DMA moiety strongly influences the formation of NDMA,
resulting in a large range of formation yields (Kemper et al., 2010; Le Roux et al.,, 2011; Selbes et al,,
2013; Shen and Andrews, 2011b). However, most of these studies focused on NDMA formation and
TONO measurements were rarely performed.

In the current study, the structures of other potential N-nitrosamines were hypothesized based on all
possible leaving groups present in the precursor molecule. The potential N-nitrosamines resulting
from chloramination of BZK and CTMA are shown in Table 3. For instance, the benzyl group and the
aliphatic chain (CnHzn:1) bound to the N-atom in BZK are supposed to act as leaving groups during
NDMA formation. Similarly, the release of one methyl group and the 16-C aliphatic chain (CisH33) may
lead to the formation of NDMA from CTMA. The other N-nitrosamine structures were proposed by
considering all the other potential leaving groups, including the methyl group, the benzyl group and
the long-chain alkyl group for BZK, the methyl groups and the 16-C aliphatic chain for CTMA.

To test the formation of the proposed N-nitrosamines, the samples obtained by the TONO FP tests at
pH 8 were analysed by high resolution LC-qTOF. The high accuracy and resolution of the obtained
mass spectra allow proposing a compound based on its exact mass, in absence of analytical reference

standards. The procedure described in section 2.3 was applied to screen the list of potential N-
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nitrosamines from the chromatograms, by extracting their exact masses (m/z) (calculated by the
ChemCalc software and reported in Table 3, including the protonated molecules). The procedure was
also applied to detect potential denitrosation products of the investigated compounds.

Among the hypothesized N-nitrosamines, a positive match was obtained for BZK. The full
chromatogram of the BZK sample (treated with 10-fold molar excess of monochloramine at pH 8) is
reported in Figure S3, SI. The extraction of the exact mass of C13H2sN20 ([M+H]*=229.2279) allowed to
obtain a distinct peak (intensity of 8.56-105 arbitrary units) at a retention time of 7.34 min (Figure
2 a). The relative mass spectrum (Figure 2 b) showed a peak at m/z=229.2271, corresponding to a
relative abundance of 93% and matching with high accuracy (error<0.1%) with two possible
molecular formulas: (i) the hypothesized N-nitrosamine (C13H2sN20, error=3.876 ppm, Table 3) and
(i) Ci1Hz7Ns (error=1.981 ppm). The formation of the latter compound is highly improbable
considering the investigated reaction system. The identified mass corresponded with a high level of
confidence to N-nitroso-N-methyldodecylamine (Figure 2 a), a potential product of the reaction of
chloramine with benzyldimethyldodecylamine, which is the most abundant constituent of the
benzalkonium chloride mixture (about 70% abundance, according to the supplier (Sigma-Aldrich)).
The detection of N-nitroso-N-methyldodecylamine was not unexpected and its formation at significant
yield is consistent with previous results reported in the literature (Kemper et al., 2010; Selbes et al,,
2013; Spahr et al,, 2016). Because the benzyl group is an electron-donating group, which increases the
electron density on the N-atom, a nucleophilic attack on the chloramine is favoured. In addition,
benzyl-type functional groups are known to be better leaving groups than alkyl groups, both in tertiary
and quaternary amine precursors (Kemper et al, 2010; Selbes et al, 2013). Hence, during
chloramination of BZK homologues, N-nitroso-N-metylalkylamines are expected to have higher yields
than benzyl-containing N-nitrosamines. Consistently, it was found previously that the molar yield of
N-nitrosomethylbenzylamine from benzyldimethyltetradecylamine (the C-14 constituent of BZK) was
only 0.016%, about 16-times lower than the molar NDMA yield (Kemper et al., 2010).

High resolution LC-qTOF analysis of a CTMA sample did not lead to an identification of the
hypothesized compound (C17H36N20) with enough confidence (results are reported in Figures S3 and

S4, SI). The formation of a compound during FP tests cannot be excluded from the absence of a positive
17
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match. [t may be caused by artefacts in the detection method, e.g., the stability of the N-nitroso group
during ionization. Moreover, the absence of reference standards did not allow determining an optimal
sample extraction procedure and optimized analytical conditions for each proposed N-nitrosamine.
Thus, the performed analyses must be considered as a first attempt to characterize the unknown
fraction of TONO. Nevertheless, in the current study, in addition to NDMA, a novel N-nitrosamine from
the TONO FP pool of BZK was potentially identified. This finding strongly supports the hypothesis that
different leaving groups in the precursor molecule can lead to the formation of different
N-nitrosamines.

The novel N-nitrosamine, N-nitroso-N-methyldodecylamine was found to be carcinogenic in
experimental animal tests and its presence in personal care and household products has already been
cause of concern in previous studies (Hecht et al.,, 1982; Kamp and Eisenbrand, 1991; Lijinsky et al,,
1983; Morrison and Hecht, 1982; SCCS, 2012). For instance, a T25 of 0.46 mgkg!d! (being the
chronic dose rate giving tumours in the 25% of the tested animals (Dybing et al, 1997)) was
determined in laboratory rats for N-nitroso-N-methyldodecylamine, which is comparable to the values
obtained for other N-nitrosamines of the US-EPA 8270 standard mix (varying from 0.058 mg kg-! d- of
NDMA to 0.57 mgkg1d?! of NPYR) (SCCS, 2012). Hence, it may significantly contribute to the overall
cancer potency of the total N-nitrosamine pool. Even though the high-resolution LC-qTOF results were
not quantitative, they indicate that the uncharacterized fraction of TONO can be composed of species
as hazardous as the compounds from the US-EPA 8270 standard N-nitrosamine mix. Even if a full
characterization of the TONO pool is not always possible, coupling total and specific (i.e., US-EPA 8270
standard mix) N-nitrosamine analyses is an effective way to fully assess the potential hazardousness of
N-nitrosamine precursors. Product identification in the TONO FP pool by LC-qTOF may lead to further

insights into the formation of individual compounds, which might be of toxicological concern.

3.4 Effect of precursors concentration on TONO formation potential
Experimental conditions adopted in ES1 were suitable for determination of the N-nitrosamine FP of
the studied precursors and investigating the composition of the formed TONO compound pool.

However, the precursor and the monochloramine concentrations were much higher compared to
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realistic systems, leading to the formation of extremely high N-nitrosamine concentrations. To validate
the molar TONO yield values obtained in ES1, FP tests were also conducted in ES2, with experimental
conditions closer to real water matrices (pH 8, 0.5 uM precursor and 100 uM monochloramine,
corresponding to 5.1 mg L1 as NHCl). The relatively long reaction time in FP tests (7 days) was mainly
selected to maximize N-nitrosamine formation and can be considered as an upper limit of residence
times in drinking water distribution systems. In contrast, it is longer than typical contact times for
wastewater disinfection. Due to the lower N-nitrosamine concentrations produced under ES2, TONO
concentrations were measured after sample pre-concentration by solid phase extraction (SPE).

As discussed above, the composition of the generated TONO compound pool is different for each
precursor. Since the physico-chemical properties of the formed N-nitrosamines can strongly affect the
efficiency of SPE (Dai and Mitch, 2013), the recovery of TONO concentrations by SPE was determined
for the specific N-nitrosamine pools formed by each precursor, as reported in section 2.2. The TONO
recovery efficiencies (values reported in Table S2, SI) resulted to be quite low for all the precursors,
with values of about 10%. Applying the obtained recovery efficiency values to the TONO
concentrations measured in the FP tests (ES2), the molar TONO yields resulted, on average as
6.54+0.39%, 4.05+0.38%, 4.05+£0.02% and 0.77+0.32% for CHD, BZK, CTMA and MET, respectively.
Despite the extremely different experimental conditions and the uncertainty associated to SPE, the
molar TONO yields obtained under ES2 were comparable with those obtained in ES1 at pH 8 (Table 2).
CHD and MET displayed the highest and the lowest molar TONO yields, respectively, while
intermediate values were obtained for QACs. Even though the molar TONO yields are slightly different,
they are in the same order of magnitude for ES1 and ES2. This indicates that results obtained in ES1
can be considered representative for more realistic conditions.

When dealing with TONO measurements in real water matrices, the recovery efficiency of SPE plays a
key role and it can strongly vary with the TONO pool composition (Dai et al., 2015; Zeng and Mitch,
2015). In this study, the SPE extraction efficiency was also evaluated for a 0.16 uM US-EPA 8270
standard N-nitrosamine mix solution, both in terms of TONO and specific N-nitrosamine constituents.

Some specific N-nitrosamines (such as NMOR, NDEA and NDBA) were not detected after SPE, denoting
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a very low recovery. Nevertheless, the average recovery efficiency of the TONO concentrations was
42%. The variability in the recovery efficiencies obtained for samples from FP tests demonstrates that
the studied precursors lead to the formation of quite a large range of N-nitrosamines, having different
affinities to the SPE material and probably yielding higher analytical uncertainty. The relatively low
recovery of TONO concentration observed for the reacted samples could be due to the presence of
unreacted precursor molecules, having surface active properties and being present at high initial
concentrations, which could form micellar aggregates with the N-nitrosamines present in solution and
increase their hydrophilicity. Further studies are needed to elucidate the composition and the

properties of the observed TONO pools and to optimize the SPE procedure.

4. Conclusions

Specific and total N-nitrosamine (TONO) formation potentials (FP) for different micropollutants
(chlorhexidine, CHD, metformin, MET, benzalkonium chloride, BZK, and cetyltrimethylammonium
chloride, CTMA) and model compounds (trimethylamine, TMA, N,N-dimethylbutylamine, DMBA,
N,N-dimethylbenzylamine, DMBzA, and tetramethylammonium, TeMA) were determined at pH 6, 7
and 8. All the micropollutants displayed quantifiable molar TONO yields, with maximum values at pH 8
varying between 0.21% (MET) and 11.92% (CHD). A quantifiable NDMA FP was determined only for
BZK, with a molar yield of 0.56% (at pH 8) and corresponding to about 26% of the TONO FP. Generally,
the formed TONO compounds consisted mostly of uncharacterized species, not included in the US-EPA
8270 N-nitrosamines standard mix.

The study of tertiary and quaternary model amines revealed a role of precursor molecular structures,
in particular the nature of functional groups, in NDMA and TONO conversion yields: DMBzA displayed
the highest molar NDMA yields, indicating that the presence of a benzyl functional group in tertiary
amines containing a DMA moiety results in significantly higher NDMA formation. BZK and CTMA
showed molar TONO yields much higher than TeMA, suggesting that the formation of uncharacterized
N-nitrosamines from QACs is favoured by the presence of benzyl and long-chain alkyl functional

groups, instead of only methyl groups.

20



557

558

559

560

561

562

563

564

565

566

567

568

569

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

A screening procedure with high resolution LC-qTOF analysis allowed to identify with high probability
an uncharacterized N-nitrosamine (N-nitroso-N-methyldodecylamine) from the chloramination of
BZK. The detection of a second N-nitrosamine species in addition to NDMA points out that different
functional groups in QAC molecules can act as leaving groups during chloramination and form
different N-nitrosamine structures at significant yield. These results represent a first step in the

understanding of N-nitrosamine formation during chloramination of QACs.
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Table 1 Selected micropollutants and model compounds: molecular structure, molecular weight (MW)

and experimentally determined pK, values (references given in the footnotes). For CHD and MET, the

pKa values are referred to the equilibrium C=NH* & C=NH + H-.

(DMBzA)

MW
Compound Structure (g mol1) pK.
Micropollutants
b a al
: 3 HN HN
Chlorhexidine H N N~ /@l 5784 2.20¢
dihydrochloride (CHD) C‘©/ i NN N ' 10305
a b
c d
Metformin hydrochloride /ﬁj JT 10.27
e 27 ¢
HsCl 165.6
(MET) TONTONT K, 2.974
HaC
+ _CpHons+
N 283.4-423.4
Benzalkonium chloride (BZK) H3CII CI-_|3 (average -
cl 348.4)
(n=8, 10,12, 14, 16, 18)
H,C._+ CH
Cetyl trimethyl ammonium 3 \N< 3 319 4
chloride (CTMA) e H3('3 CreHas '
Model compounds
Tetramethyl ammonium H30~E+H3 or 109.6 ]
chloride (TeMA) HsC' ‘CHa '
H3C\N/CH3
Trimethyl amine (TMA) | € 59.1 9.80¢
H3C
. . AN _CHg3
N,N-dimethylbutyl amine HsC N 7 ;
DMBA | 101.2 10.19
( ) HsC
/CHS
N,N-dimethylbenzyl amine I}lg 135.2 8.919
HaC ' '

ab (Agarwal et al.,, 2012)
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cd (Devi, 2013)

efg ChemlDplus-Toxnet database (https://chem.nlm.nih.gov/chemidplus/).

Table 2 Molar yields of NDMA and TONO observed in formation potential (FP) experiments under

experimental setup ES1 (reaction time: 7 days; initial precursor concentration: 0.1 mM for CHD,

0.5 mM for the other compounds; initial NH,Cl molar excess: 10-fold for BZK, 200-fold for the other

compounds) and ES2 (reaction time: 7 days; initial precursor concentration: 0.5 uM; initial NH>CI

molar excess: 200-fold). Reported molar yields are the average values of multiple measurement

repetitions (two for NDMA and three for TONO) on two experimental replicates.

Molar yield (%)
Precursor pH NDMAS TONO®
average (range) average * st.dev.
ES1 ES1 ES2

Micropollutants

6 <0.09 2.64 +1.45 -
Chlorhexidine hydrochloride (CHD) 7 <0.09 493 +1.33 -

8 <0.09 11.92 £0.83 6.54 +0.39

6 <0.09 0.04 + 0.003 -
Metformin dihydrochloride (MET) 7 <0.09 0.09 £ 0.01 -

8 <0.09 0.21 +0.03 0.77 £ 0.32

6 <0.09 0.68 +0.24 -
Benzalkonium chloride (BZK) 7 <0.09 1.31+0.21 -

8 0.56 (0.55-0.56) 212 +0.40 4.05 + 0.38

6 <0.09 1.15+0.09 -
Cetyl trimethyl ammonium chloride 7 <0.09 477 £ 1.00 )
(CTMA)

8 <0.09 493 +1.43 4.05 +0.01
Model compounds
Tetramethyl ammonium chloride 6 <0.09 0.040.002 :

7 <0.09 0.07 £ 0.004 -
(TeMA)

8 <0.09 0.90 + 0.08 -

6 <0.09 <1.0 -
Trimethyl amine (TMA) 7 <0.09 0.03 £0.005 -

8 0.10¢ 0.29 + 0.007 -

6 <0.09 <1.0 -
N,N-dimethylbutyl amine (DMBA) 7 <0.09 0.02 £ 0.004 -

8 0.05¢ 0.17 £ 0.03 -
N,N-dimethylbenzyl amine (DMBzA) 6 <0.09 <1.0 -
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7 122(1.08-136)  0.72£0.03 -
8  5.05(3.92-618)  3.27+0.34 -

784  2L0OQ for NDMA: 0.09+£0.0001 puM.
785  »LOQ for TONO: 1.0£0.45 uM.

786  <NDMA concentration >L0OQ only in one sample.
787

788  Table 3 Structure, formulas and exact masses of the hypothetical N-nitrosamines formed from BZK
789 and CTMA. Only N-nitroso-N-methyldodecylamine could be confirmed as a product from

790 chloramination of BZK.

Hypothesized N-nitrosamines

Precursor Exact mass (m/z)

Structure Formula

[M]* [M+H] *
O//N\N/CHS
H3(|: C2HeN,0 74.0480  75.0558
(NDMA)

172.1576 ~ 173.1654
O//N\N/CnH2n+1 200.1888  201.1967
BZK | Cnsr1H2naN20 2282202  229.2279
H3C 256.2515  257.2593

y Ottt n=8,10,12,14,16,18  n=8,10,12,14,16,18  284.2828  285.2906
| “CHj 312.3141  313.3219
H3C N~

NgNe)
| CsH10N20 150.0793  151.0871
n=8,10, 12, 14, 16, 18 CHs

248.1888  249.1967
2762202  277.2280
CrHan+1 Cns7HznesN20
©/\'Tl/ " 7H2meiN2 3042515  305.2593
_N 332.2828  333.2906
-~ =

O n=8,10,12,14,16,18 5 .13141  361.3219
388.3454  389.3532

O//N\N/CHB
CA Ha C2HeN:0 740480  75.0558
3
H3C\N/CH3 (NDMA)
| \C16H33 H3C\N/N\\O
H3C | C17H36N20 2842828  285.2906
C16H33
791
792
793
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Figure captions

Figure 1 Kinetics of TONO formation at pH 7 for (a) CHD, (b) BZK, (c) CTMA and (d) MET as a function
of the initial molar NH,Cl excess: 10- (4, 20- (<), 40- (x), 100- (o) and 200-fold (©) NH,Cl molar
excess. The initial precursor concentration was set at 0.1 mM for CHD and 0.5 mM for the other
compounds. Data represent the average + standard deviation of three measurement repetitions on two

experimental replicates.

Figure 2. High resolution LC-qTOF results for a BZK sample (FP test at pH 8): (a) chromatogram

obtained by extraction of the exact mass of C13H2sN20 (m/z [M+H]+=229.2279); (b) mass spectrum at

retention time=7.34 min.
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Total N-nitrosamine (TONO) formation yield of various micropollutants was determined
TONO pools were mostly uncharacterized, only NDMA could be quantified
A LC-qTOF screening procedure was used to characterize the TONO pool

N-nitrosamine formation yield depends on the moieties in precursor molecule



